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4 We construct in this paper a general purpose algorithm for sol-

ving polynomi al 0-1 programming problems. The algorithm is applied

directly to the polynomial problem in its original form. Further,

no additional variables are introduced in the solution process.

The algorithm was tested on randomly generated modest size prob-

lems and the preliminary computational results obtained are very

encouraging.
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1. IIffRODUCT ION

We consider in this paper the general (linear or nonlinear) 0-1

programming (uP) problem of the form

?~x

s.t.
(GP)

f
1
(x) < b. (i = 1, ... , m)

x .  € (o,i) (j  = 1, ... , n)

where the f.’s are polynomials in the x
~ 

variables.

It was shown that every (uP) problem is equivalent to a specia l

structured linear 0-1 problem - the Generalized Covering (GC ) problem

of the form

Mm

S. 
~~~

(Gc ) 
-

A x > b

i — x
3 

= € Co,i) (j = 1, ... , n)

where A = (a
jj

) with a
1~ € (0,1,-i) and b

1 
= 1 + ~~Min(a~~.~

0)

(1. = 1, ... , in) .  See , for example, Granot and. Hammer (5, 6] for the

general (uP ) problem and Balas and Jeroslow [1] for the linear (up)

problem.

Granot and Hammer [5] attempted to employ this equivalence relation

In an algorithm for solving (GP ) problems. Untortur~~tely, this attempt

failed because of the large number of constraints in the equivalent

(oc ) problem. For example , a constraint of the form 
~
) X

j  ~ t~~
) is

j =l

equivalent to generalized. covering constraints. 

~~~~~~~~~~~~ ~~~~ -- ~~~~ ~~~~~ -~~~~~ - --~~~~ -——-~~—~ --
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Another approach for solving nonlinear (GP ) problems suggests to

first linearize the n~nlinear constraints and then solve the equivalent

linear problem, see e.g. (2,3,8]. However, the most severe shortcoming

of this linearization approach stems from the radical increase in the

dimension of the problem. For example, a (uP) pioblem with n 0-1

variabJes , m constraints and k distinct products of variables is

transferred, by Glover and Woolsey [31, to an equivalent linear problem

with n + k variables and m + n + k constraints. Clear ly , this

approach will produce unmanageable problems for large k.

A branch and bound algorithm for solving linear and nonlinear 0-1

problems was devised by Hammer in [7].

In [‘ii an efficient genera l purpose algorithm ( not a branch and

boun d type) was developed for solving the monotone (GP) problem , i.e.,

when the coefficients of the f 1 s  are all nonnegative . In this paper

we extend the results of [ ii. ] and construct an algorithm for solving

general (GP) problems . The algorithm solves a sequence of relatively

small (GC ) problems, where each (oc ) problem is a relaxation of the original

(up ) problem as wefl as a tighter relaxation than its predecessor in the

sequence.

Though the algorithm is applicable to both linear and nonlinear

(up ) problems, its pr Dmise lies mainly for the nonlinear case. One of

its main advantages is that no additional variables are introduced in

~~~~~ the solution procedure .

Preliminary computational results for randomly generated (uP) problems

are reported in Section I4.~

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~



2. PRELIMINARIES

Consider first the linear (GP) problem of the form:

(i) ?~~c c
T
x

s.t.

(2) A x < b

(3) x (o,i}

nXl mXl
where c € R , b € B , A € R are given with c > 0.

Every constraint of (2) can be replaced by an equivalent set of

generalized covering constraints in the following manner. Consider

a single inequality of the form:

(1i~) ~ a’x <b ’
j = 1 ~ 

—

where laji > ja
~ I ? ~ 

a’~. For every j  for which a~ < 0 we

can substitute x
3 

1 - to obta in an equivalent constraint of the

form

(5) 
~~ 

a~x~~ = E Ia~~Ix~~ 
< b ’ - D min(O ,a

j
) = b

• j=l j=l j=l

where

a . f x  if a > 0
x 3

=~ ~
if a < 0 .

A subset VCN = (1,2 , ... , n) is said to be a cover of (5) if

(6) ~~~a~~> b .

I
~~~~~~~~~ 

It is said to be a prime cover if no proper subset of it is a cover.

- • , 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• _
~~~~~~~~~~~~~~~~~~~~
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~~~~~~~~~~~~
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~~~~ 
.

~~~~~~ ~~~~~~~~~~~~~~~~~~~
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n a.
If we further denote by S = Cx: ~~ a . x~

3 < b) and by (~ the set
j=l ~~ 

S

of all prime covers V
1 

of (5) ,  then it Is easy to see (e.g. [1,5])

that

(7) x€ S i f f  
~ 

x.i = O V V
1

€ f l
5
iff 

~ ~~> 1 V V .  € f l~
j€V . ‘~ j€v ~ 

3.

3. 1
a

where x . ” = I - x .
3 3

Applying the above procedure to every constraint in (2) will result

with an equiva lent generalized covering problem.

This result can be further generalized (see [5]) to (GP) problems

of the form

T
?v~ x c x

s.t.
(8)

f
1
(x) <b

1 
(1 = 1, ... , m)

(o,i) (j 1, ... ,

where f.(x1, ... , x~ ) are polynomials of the form:

(9) f.(x
1
, ... ~ x~

) = 
~ 

a
1~ 

ir X
j

k=1 j € N~~

with N
ik 

any subset of N.

In order to obtain the set of generalized covering constraints

which is equivalent to a polynomial inequality of the form

(io) f = a
1~ 

iT X
j  ~~

k=l j€N~

one can proceed as follows For every k for which a~ < 0 substitute 

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~-- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



x . iT x g for iT x • in (io) to obtain an equivalent constraint

j€N~ ~ £eN~ j€N~ ‘~

of the form:

a

~ 

iT x~~ ~ ~~ a~ iT x~ + 2~ 
I a~~I ~~ X

j  
7T

k=l JEN
k 

+ j€N~ 
- j€N

1~ 
2€N

~
(U) 2 < j

<b’

where 
~~ (s. ) denotes summation over positive (negative ) values of a~

and ~~~ equals to either or in accordance with (ii). Now,

by substituting 1k 
= ~ x . ’~ in (11) we obtain an equivalent linear
jEN

k

Inequality in the variables of the form:

Using the method described earlier one can now obtain the set fl~

of prime covers V
1 

to (12). Then (12) is equivalent to

iT Yk
_ O V V

I
E f l

S 
1ff iT iT x~~~= 0 V V

1
€ ?~~.

k€V
i 

kcV
1 
JENk

Thus, an inequality of the form (io) is equivalent to the following set

of generalized covering inequalities

(13) 
~~
j  Lvi

wher e V
1 

= U N
k
.

k€V
1

• —~~ — - —— — -  

~~~~~~~~~~

—

~

—•  •— ~~~~~~~~~~~~~~~ —-- - -- —- •~~-- -—-- ---~---- ~~~~~~~~ • •“- -.--- -•-•• • - --~- - --— - . --- - -
~~ 
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~nploying the above procedure to every 
constraint of (uP) results

with an equivalent generalized covering problem.

3. AN A1~G0Rfl’HM FOR SOLVING (uP) PROBLE~4S

We construct in this section a general purpose algorithm for solving

(up) problems. We first generate a generalized covering problem which

is a relaxation of (uP), referred to as the Generalized Covering Relaxation

(GcR) problem. If the optimal solution to (OCR) is feasible to (up),

it is also optimal. Otherwise (ocn) is au~~iented by additiona l generalized

covering constraints that eliminate this optimal solution. Each augmented

constraint will be shown to dominate the corresponding generalized covering

constraint produced by the method of Section 2. The (OCR ) problem is

then resolved. The variables in each (GCR) problem are the original

variables of (~~~
) and its constraints are a small subset of the constraints

of the equivalent (GC) problem.

A distinctive feature of this algorithm is that it does not generate

the entire equivalent (Ge ) problem. Rather , the size of each (OCR )

problem solved is relatively small. Additional constraints are generated

oni,y to eliminate the optimal solution to (OCR) when not feasible to

(GP). Moreover , no additional variables are introduced in the solution

procedure . The variables in each (Ge) problem are the origina l variables

of the (~~~
) problem.

Consider again the genera l (~~~
) problem:

I ~
(lu ) 

a
lk 

iT X
j  ~ 

b
1 

(I = 1, ... m)

k=1 jE N
Ik

- 

I 

s.t.

X
j 

L (o,i) Cl = 1, ... , n)
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and assume, without loss of generality, that C
j 
> 0. Let (GCR ) be any

relaxation of (lii.) with 2 its optimal solution. Further let I denote

the set of indices corresponding to constraints In (JA ) which are violated

by 2. For each i € I denote by:

s~(2) = (k: a
lk

> 0 and ir 2 = 1)

~~~ik

= (k: a .k < 0 and iT = 1)

s9(2) = (k: a .k < 0 and iT = 01 ,
:i. 

jeN
ik

i.e., s~(2)(s~(2)) is the set of indices corresponding to terms in

the ~
th 

constraint with positive (negative) coefficients that do not

vanish at 2, and s?(2) corresponds to terms in the ~
th 

constraint

with negative coefficients that do vanish at 2. Let s~
(2) denote

the ordered set s1(2) = (s(l),s(2), ... , s(2))  where s(i) € s~(2) U

and s(k) < s(j) if either Ial (k)I > Ia i(.)I
~ 

or if Iai (k)I =

IaiS(j)I and k<j.

Consider now the constraint

1

(15) 
~~ 

a . ( ~~) 
iT X

j 
~~~ 

b~ 
- 

~
) a

u 
=

i€N
is(k) j€s (2)

which was derived frori the 1
th 

constraint in (iii.), I € I. Since (15 )

is violated by 2, it can serve for generating generalized covering

constraints which when augmented to (OCR ) will elIminate 2. The

constraint we will generate,using the following procedure, dominates

that constraint produced from an original violated constraint using Granot

and Hammer ’s method [5]  (as described in Section 2). 

~~•~•--~ ~~~~~ ---- -~~~~~~~~~- - -
~~~~~ •~~

-• —~ • - -~~ 
• -~~~~ • -~~~~~~~~~~~~~~~~~~ -~~~~~~~~~ -- ~~~ - •—— ~~~~~~~~~~~~~~~ -•-~~~-~~
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Procedure I

Step 0: Set = 0, k = 1, Cover = 3

b = ~~ 1
— ~~ 

~
j 5 ( j )

• j€S~(2)

Go to Step 1.

Step 1: Set b = b ÷ IaiS(k)~
. If a.

S(k) 
> 0, then set

Cover = Cover tJ(j: j € N
js(k)

)

Otherwise if a
jS(k) 

< 0 and j is any index in Ni
(k)

for which 2. = 0 set
3

Cover = Cover UCi )

Step 2: If > b, then augmented (OCR) with

( 16) 
~~~ sign (a

1 1.4 )
) . ~ > 1 — 

~~~ 
Min(O,sIgn(a151.)

)
j €Cover j€C over

Otherwise, if b < b , set k = k + 3. and go to Step 1.

Observe that since Procedure I is applied only to constraints i,

I € I, the procedure will terminate after applying Step 2 at most

1s~
(2)f times, where (s1(2)~ is the cardinality of s1(2). Moreover

(16) dominates the corresponding constraint obtained using Granot and

Hammer’s method (5] .  This since a term in (15) with a negative coefficient

contr ibutes at most a single variable to (i6).

-

— - —---~~--~~ 1•-- •
~
—---- - ~—•—---
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Example 1:

Consider the following constraint:

5x1
x
2 

- 3x
3
x11x5 

+ 2x
2
x
6 

< Ii.

and the solution 
~

? = (1,1,1,1,0,0). Since 2 violates the given

constraint, we apply Procedure I to the following:

(17) 5x
1
x
2 

- 3x
3
x~x5 

< 
~

which will result with the generalized covering constraint:

(18) X
1

+ X
2

_ X
5

> 0 s

Applying the method described in Section 2 for generating a gi
~iieral-

ized cover, we first transfer (17) to the following equivalent constraint

with positive coefficients

5x
1
x
2 

+ 3~3 
+ 3X

3
~~~ + 3x

3
x~~5 

< 7

Now since 
35 = = 0 we will derive a generalized cover from

5x1
x
2 

+ 3x
3
x~~5 

< 7

which results with

X
3

+ X
2 +35  + X ~ - X ~~~> O

This constraint is obviously weaker than (18).

Lemma 1:

• Augmenting (OCR ) with (16) eliminates 2 and results with a new

(OCR ) problem which is a relaxation of (~~~).

_____ 

______ ___________________________ 

‘

1
• ~~~~ ,rf r r, r.. ’* .sb’ta~ - _ _ _ _  

— - — - - —~ 
— -

— - -—- - -•  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ 

•
~~~~~~~~~~~

-
~~~
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~ 
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~-~
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Proof:

Since 2 violates the i
th 

constraint in (iii.), we have

~1
(19) b < 

~~ 
a~~ 

iT 2 . = ~~ a
1~ 

+ a..
k 1  iLN

ik ~ j €s1
(2) j€ç(2) ~

~~1t

£
(20) a.,. = a

1 (k 
ir 2 . > b - a.. = b.

j€s.(2) = 
~ is(k) jeS (2)

and thus 2 violates (15) .  Any cover derived from (15 ) wIll result

with a constraint that when augmented to (OCR) will eliminate 2.

Further, since (16) is valid for (15), it is also valid for (iIi~) and

thus no feasible solutions to (l~
1.) are eliminated.

An Algorithm for Solving (ci’) Problems:

Step 0: Start with (OCR ) being the tr ivial relaxation, i.e.,

• Max(cTx: x € (o,1)), whose optimal solution is 2 = (1, ... , i).

Step 1: Let I be the set of indices corresponding to constraints of

(JJi. ) which are violated by 2. Apply procedure I to generate

k generalized covering constraints for each i € I and add

them to (GCR).

Step 2: Solve the augmented (OCR) problem to obtain its optima l solution

: terminate with x~ an optimal solution to (up). Otherwise

• go to step l.

t 

2. If x = 3. — (j = 1, ... , n) is feasible to (u p),
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Theorem:

The algorithm described above converges to an optimi solution of

(GP) In finitely many iterations.

Proof:

From Lemma 1 we conclude that (OCR ) is a relaxation of (up), which

• implies optima lity. In step 1 of the algorithm we eliminate an optimal

solution to (GCR) which is not feasible to (uP) . Since the number of

binary vectors is finite, the convergence follows.

Remark 1:

Observe that (15) is violated by 2 for every I € I and thus every

one of the K x 
~~ 

(where 
~iI 

is the cardinality of I) constraints

added to (GCR) is sufficient to eliminate 2. GeneratIng more than one

generalized cover will hopefully reduce the number of ((3CR) problems

needed to be solved.

Remark 2:

Note that no additional variables are introduced by the algorithm

in the solution process. Further, no special devices are needed to handle

nonlinear constraints.

Example 2:

Solve

I

- • —a.. — 
•

_______ _______ —~~ -• • . - • •— • — —~~~~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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!~ x 3x1 
+ !ix~ + 6x

3 
+ x~1 

+ x
5 

+ 5x
6

s.t.

7x1 
- 2x

2
x~1 

+ 435 - 2x
4 

- x
5 

+ 6x
6 

< 4

- 8x
2
x
3 

+ 3x
1
x
2
x
3 

- 2
35x11 

- 3x
5
x
6 

+ 7x
6 

< -l

3x1
x
2 

+ 
1135 - x11x5 

< 5

5x
1
x
3 

+ 14x~x
6 

- 11x
1
x11 + 2x

3 
- x

11x5
x~ 4

x
1
, x

2
, 

~~~

, x11 , x
5
, x

6 
(o,i)

We start with 2 = (1,1,1,1,1,1).

Iteration_I:

For 2 = (1,1,1,1,1,1) the left—hand sides equal (12,1,6,6),

hence every constraint is initially violated, i.e., I = (1,2,3,4).

We start by setting ~c = 1 and thus generate one generalized coverirg

constraint from every violated constraint. Since s~(2) = 4~
, i € i,

the generalized covers are derived from the following constraints:

7x
1

+ 11x
3
+6x

6 
< 9

‘lx
i
x
, 

+ 3x1
x

2
x

3 
+ 7x6 

< 12

3x1
x

2 
+ I Ix

3 
< 6

• 5x
1
x

3 
+ + 235 ~ 

11

The ( GCR ) problem obtained is

________________________________________________ ~-~- -—~ - - —-— —- •— —.---—----~---—- — —
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Mm 
~
x
i 

+ 1l 3( + + + 35 +

s.t.

X
1

+ X
6 

1

>1

+ + 35 + 1

€ ~o,
i) (i = 1, ... , 6)

whose optimal solution is = 1, = 0, (1 = 2, ... , 6).
Iteration 2:

For 2 = (0,1,1,1,1,1) the left-hand sides equal to (~,
..6,3,5).

Since the only violated constraints are the first and the last one,

I = [1,4) and we derive additioneJ. generalized covers from the following

constraints

4x
3
+6x

6 
< 9

1ix
2
x

6 
- 4x

1
x
4 

+ ax
, < 5 .

When augmenting the newly derived generalized covers to the previous

(GCR) problem we obtain, after some simplifications,

Mm + + 

~~
, ÷ XII. + ÷ 5x~

s.~ .

X
1
+X

6 
>1

X + X
6 

>3 .

X
3.

4 X
2

+ X
3 

>1

x
2
+x

3
+x
6
-x
4
>0

- 4 — 

c (o,i) (I = 1, , 6) 

-•- • - •- • — -  -
~~~~~~~~~~~~ - - ~—

--
~~~

----• -- • - •-. —~~~~-~-- -~~~~~~~
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2 (0,1,1,1,1,0) is feasible to the original problem, it is also an

optima l solution .

Observe that if we attempt to solve the above example by first

transferring it to a linear 0-1 problem, via Glover and Woolsey’s most

efficient transformation [3], the resulting equivalent problem will

have 11 additional variables and 17 additional constraints.

4 • SIMPLIFICATION A!~D COMPUTkTIONAL RESULTS

It is well known that simplification and elimination rules can be

applied to the rows and columns of the coefficient matrix of a covering

problem before solving the problem. Similar simplification and elimi-

nation rules can be devised for the generalized covering problem. These

simplification rules, to be described below, are employed to any newly

generated generalized cover in order to reduce the size of the coefficient

matrix A of the (GcR) problem.

Let a
i

(a1) denote the 1
th 

row (
.th 

column ) of the ma trix A. Then

the following simplifications are applied at each iteration , see also [5].

Simplification 1

If a row a
1 

contains a unique 1 (unique —1) in the ~th 
column,

then set x
j 

= 0 (x
1 

= 1) in the original (uP) problem.

Simplification 2

If there exist rows ~~~ a1 
for which a

lk ~‘ 
0 implies a

lk 
= aik,

then row a. can be eliminated.

Simplification 3

If there exist rows a1, a1 
for which = a

lk 
V K / I and

a
u = 1 = 

~
ajt, then substitute a

12 
= 0 and eliminate row fran A. 
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Simplification 4

If there exist rows a1, a~ and index p such that a
1~ 

= -a~ 3 / o

and a
lk 

( 0 implies a
lk 

= a.k, k 
~ 
p, then substitute a .~ = 0

and eliminate row a
~
.

Simplification 5

If there exist rows a
1
, a

1
, and indices r, p for which a

ik =

a
1k 

= 0, K r, P and a
ir 

= 
~~jr 

= —a1~ 
= a

1~ 
~1 o, then substitute

X
r = x~ in the original (up ) problem.

Simplification 6

If there exist rows ~~~ a~ and indices r , p for which a
lk =

a
lk 

= 0, k ~ r, ~ 
and a

ir 
= 

~~jr 
= ~~~ = -a~~ ~

( 0, then substitute

X = 1 - x~ in the original (GP ) pr oblem.

Simplification 7

If there exist a row a
1 

for which a
lk 

= 0 V k ~ 2, r and

a
u = a~~ = 1 (a~2 = air 

= —i), then in any row a
1 

for which

a
12 

= _a
jr 

= 1 substitute a
ir 

0 (a
12 

= 0), and in any row a~

for which a
12 

= _ajr 
= —l substitute a

12 
= 0 (a

ir 
= o).

Simplification 8

If there exist a row a
1 

for which a
lk 

= 0, k / 2, r and

a
12 

= 
~~ir 

= 1, then in any row a
1 

for which a
j 2 = &

ir 
= 1 (a

12 
=

a
1 

= —1) substitute a
ir 

= 0 (a
12 

= 0).

Simplification 9

If there exist columns a
i
, a1 for which a

1 
> a1 and C

1 
<
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Simplification 10

If there exist a column a
1 

and an index set J, I ~ J , for which

~ a3 > a
1 

and ~ c
1 
< c

1
, then column a

1 
can be eliminated.

jELl j€J

Our algorithm was programmed in Fortran IV, implemented on an

IBM 370/168 and tested on randomly generated problems.

In the preliminary computational results to be reported, the vector

c was determined by setting a
0 

= 0 and c~~1 
= c

1 
+ k where K is

uni form on [0,10]. Every constraint Is of the form

K f

~ a
11
T
1 
<b

1 
with T 4 = 7r X~

j=1 ~ r=l r

and is generated as follows:

K - the n-umber of terms is chosen uni formly between 3 and K.

f - the number of variables in each term is clwsen uniformly

between 1 and 6.

a
11 

- is chosen uniformly between -20 and 20.

D
r 

- is chosen uniformly between 1 and the number of variables.

— is the range [Za11, ~~a11
] = [L1,U1

] where 
~ (s.

) denotes
- + - +

t summation over negative (positive ) coefficients. Thus

[L
i
,u
1
] denotes the range of the left-hand side of the

th
i constraint .

a — a constant.

M - the number of constraints.

N — the number of variables.

~r changing a, we tested the influence of large and small values of

b on the computation time.

_ _ _ _ _ _ _ _ _ _ _ _ _  
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In the following four tables we summarize the preliminary compi-

tational results. Each cell is averaged from 4 runs and contains

three entries , A , B, C, which designate

A - Number of iterations (i.e., (OCR) problems solved)

B — Number of covers in the last (OCR) problem solved (after sim—

plifications)

C — True execution time in seconds, i.e., tota l CPU time minus

loading, input/output and overhead time.

a= .6 a= .75 a= .9

N = 30 11, 28, 1.30 * *

N = 40 ~~ 32, 2.43 3.6, 9.3, .07 * 

—

N = 50 12, 34, 4.68 6.6, 15.5, .11 1, 3.6, .03

Table 1: M = 20, K = 7, b
1 

= c~u. + (1-c~
)L
1 
(i = l,...,2o)

a= .6 c r = .75 a = .9

N = 3 0 17, 14.9, 2.08 * *

N = 40 17.5, 51, 11 .82 5.2, 13, .08 *

N = 50 20, 60, 12.81 7.2, 18.5, .214 1.5, II.o, .o4

Table 2: M = 20, K = 10, b
i 

= + (l-a)L~ (1 = 1,...,20 )

Observe that the columns in Tables 1, 2 correspond to setting up the

right-band side b
1 

to equal a certain value in the range R
i 

of the

1
th 

constraint.

*
The missing entries in the above tables correspond to trivial cases,

and thus are not reported.

— - ~-- • _________________________________________ ______________________________ ~~~~~~~~~~~~~~~~ - - —



r M = 15 M = 20 M = 25 M = 30fl
F H

L’~ 
13, .16 7, 20, .32 9.5,32.5, 1.114. J14 , 514 , 4.4 :

Table 3: N = 40, K = 7; b~ is uniform on

(
~~~

U
1 
+
~~~~L1, ~~~~~ 

+
~~~~

L.] (I = l,...,M)

LM = 15, N = 30] M = 20, N = 4o M = 25,

6.2 , 17, .25 10, 26.5, 2.ili. 17, 36, 6.38

Table 4: K = 7; b~ is uniform on

E~~
u1 ~~~~~~~ ~~~U1 +~~~~L1] (i = 1, ... , M)

The following conclusions can be drawn from the preliminary compu-

tational results.

a) Tables 1 and 2 reveal that the tighter the constraints are the

more difficult it 1~ to solve a (up ) problem. We recall that the covering

relaxation algorithm for solving monotone 0-1 problems [14 ] has precisely

the same property.

We remark that when we attempted to further restrict the r.h.s.

vector b (i.e., decreasing a) almost all of the randomly generated

problems were found to be infeasible by our algorithm. Further, increasing

the number of constraints M beyond the ratio N/M = 2 also results

with almost all randomly generated problems being infeasible.

+ 
The r.h.s. b

1 
in Tables 3, 4 was chosen so as to roughly vary between

2/3 and 3/li. of the range R
1
.

iIT _±_
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b) By comparing Tables 1 and 2 we conclude that the difficulty

of solving a (GP) problem increases with an increase in the number of

terms in each constraint (i.e., an increase in K). This result again

was expected since by increasing K we increase the number of equivalent

generalized covering constraints.

c) Tables 1 and 2 exhibit also the significant effect of an increase

in the number of variables on the execution time. We remark though that

the increase in both the number of iterations and the number of generalized

covers is more moderate.

d) Table 5 reveals that an Increase in the number of constraints

increases significantly the execution time. Again, the increase in the

number of iterations and the size of the (OCR) problems is more moderate.

e) Table 14 exhibits the effect of increasing both M and N, in

a fixed ratio, on the solution characteristics. Again, the increase

in execution time Is very significant while the increase in the number

of iterations and the number of generalized covers is more moderate.

It appears that the genralized covering relaxation approach for

solving modest size (GP) problems is quite promising. For example,

(up ) problems with 50 variables, 20 constraints and K = 10 are solved,

on the average, in l2.dl seconds. What is particularly encouraging is

the relatively modest nu±er of iterations required to solve a (GP)

problem, for example,(GP) problems with N = 50 , M = 20 , K = 10 are

solved on the average in 20 iterations. Clearly, by improving the ef-

ficiency of our generalized covering algorithm we can further reduce

the execution time.

—-

~ 
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Some improvements of the algorithm are being currently considered.

In particular, devising and employing approximate algorithms for both

the (OP) and the (OCR) problems in order to accelerate the implicit

enumeration algorithm used for solving the (OCR) problem.

L
~~~~~~ 

_ _ _ _ _ _  J
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