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Consider the ridge estimate :(A) for 3 in the model y = Xf + E, e ~ 3(0, a21), a2 unknown, 

0(X) = (XTX + nXI)- XTy. We study the method of generalized cross-validation (GCV) for 

choosing a good value X for X, from the data. The estimate X is the minimizer of V(A) given by 

V({) - |I( - A(X))y\2 / Trace ( - A(X)), 

where A(X) = X(X7X + nXI)-'X. This estimate is a rotation-invariant version of Allen's 
PRESS, or ordinary cross-validation. This estimate behaves like a risk improvement estimator, 
but does not require an estimate of a2, so can be used when n - p is small, or even ifp > n in 
certain cases. The GCV method can also be used in subset selection and singular value 
truncation methods for regression, and even to choose from among mixtures of these methods. 
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Ridge parameter 

1. INTRODUCTION 

Consider the standard regression model 

y = X: + e (1.1) 

where y and e are column n-vectors, 0 is a p-vector 
and X is an n X p matrix; c is random with EE = 0, 
EeET = a2I, where I is the n X n identity. 

For p > 3, it is known that there exist estimates of 

0 with smaller mean square error than the minimum 
variance unbiased, or Gauss-Markov, estimate $(0) 

Received June 1977; revised April 1978 

= (XTX)-1 XTy. (See Berger [8], Thisted [39], for 
recent results and references to the earlier literature.) 
Allowing a bias may reduce the variance tremen- 

dously. 
In this paper we primarily consider the (one pa- 

rameter) family of ridge estimates :(X) given by 

=(X) 
= (XrX + nXI)-'Xy'y. (1.2) 

The estimate ((X) is the posterior mean of 0 if 0 has 
the prior 0 - 9(0, aI), and X = a2/na. $(X) is also the 
solution to the problem: 

Find B which satisfies the constraint 

11l11 = 

and for which 

1 Ily- XlII =min. 
n 

Here 11 II indicates the Euclidean norm and we use 
this norm throughout the paper. Introducing the 
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Lagrangian we find that the above problem is equiva- 
lent to finding the minimum over d of 

Il - XlI12 + Axll l2 n (1.3) 

where X is a Lagrange multiplier. Methods for com- 
puting A given y are given in [17]. See [29] for dis- 
cussion of (1.3). The method of minimizing equation 
(1.3), or its Hilbert space generalizations, is called the 
method of regularization in the approximation theory 
literature (see [21, 44] for further references). 

It is known that for any problem there is a X > 0 
for which the expected mean square error E II - 

$(A) 112 is less than the Gauss-Markov estimate; how- 
ever the X which minimizes, say Elli - B(X)112, or 
any other given nontrivial quadratic loss function 

depends on a2 and the unknown d. 
There has been a substantial amount of interest in 

estimating a good value of X from the data. See [10, 
11, 12, 15, 20, 22, 23, 25, 26, 27, 30, 31, 32, 35, 38, 39]. 
A conservative guess might put the number of pub- 
lished estimates for X at several dozen. 

In this paper we examine the properties of the 
method of generalized cross-validation (GCV) for 
obtaining a good estimate of X from the data. The 
GCV estimate of X in the ridge estimate (1.2) is the 
minimizer of V(A) given by 

/1 /1 2 

V()=- II(I-A(X)yl2/ 1 Trace(I- A(A)) n n fn 

(1.4) 

where 

A(A) = X(XTX + nXI)-XTr. (1.5) 

A discussion of the source of V(X) will be given in 
Section 2. This estimate is a rotation-invariant ver- 
sion of Allen's PRESS or ordinary cross-validation, 
as described in Hocking's discussion to Stone's paper 
[36] (see also Allen [3], and Geisser [13]). 

Let T(X) be the mean square error in estimating 
X#, that is, 

T(A) 1 ||IX - X(A) 12. (1.6) n 

It is straightforward to show that 

1T) = (I- A))g2 T ) (1. ET(X) = iI(- A(X))gll + Tr A 2(X) (1.7) n 

where 

g = Xl. 

An unbiased estimator T(A) of ET(X), for n > p, is 
given by 

1 2 2 
(x) = 11(I- A(A))y ||2 - Tr(I- A(X)) + a2, n n 

(1.8) 

where 

a2= 1 (I - X(XTX)-X )ly 1 2. 
n-p 

Mallows [28, p. 672] has suggested choosing A to 
minimize Mallows' CL, which is equivalent to mini- 
mizing n (AX)/52. (This follows from [28] upon not- 
ing that 1(I - A(X))y112 is the "residual sum of 
squares.") The minimizer of t was also suggested by 
Hudson [25]. We shall call an estimate formed by 
minimizing t an RR ("range risk") estimate. 

We shall show that the GCV estimate is, for large 
n, an estimate for the X which approximately mini- 
mizes ET(X) of (1.7), without the necessity of estimat- 
ing a2. As a consequence of not needing an estimate 
of a2, GCV can be used on problems where n - p is 
small, or (in certain circumstances), where the "real" 
model may be 

o00 

yi = ? xjj + 'E, 
J=1 

It is also natural for solving regression-like problems 
that come from an attempt to solve ill-posed linear 
operator equations numerically. In these problems 
there is typically no way of estimating a2 from the 
data. See Hanson [19], Hilgers [21], Varah [40] for 
descriptions of these problems. See Wahba [44] for 
the use of GCV in estimating X in the context of 
ridge-type approximate solutions for ill-posed linear 
operator equations, and for further references to the 
numerical analysis literature. See Wahba, Wahba and 
Wold, and Craven and Wahba [9, 42, 43, 45, 46] for 
the use of GCV for curve smoothing, numerical dif 
ferentiation, and the optimal smoothing of density 
and spectral density estimates. At the time of this 
writing, the only other methods we know of for esti- 
mating X from the data without either knowledge of 
or an estimate of a2, are PRESS and maximum likeli- 
hood, to be described. We shall indicate why GCV 
can be expected to be generally better than either. 
(PRESS and GCV will coincide if XXr is a circulant 
matrix.) 

A fundamental tool in our analysis and in our 
computations is the singular value decomposition. 
Given any n X p matrix X, we may write 

X = UDVT 

where U is an n X n orthogonal matrix, V is a p X p 
orthogonal matrix, and D is an n X p diagonal matrix 
whose entries are the square roots of the eigenvalues 
of XTX. The number of non-zero entries in D is equal 
to the rank of X. The singular value decomposition 
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arises in a number of statistical applications [18]. 
Good numerical procedures are given in [16]. 

In Section 2 we derive the GCV estimate as a 
rotation-invariant version of Allen's PRESS and dis- 
cuss why it should be generally superior to PRESS. In 
Section 3 we give some theorems concerning its prop- 
erties. In Section 4 we show how GCV can be used in 
other regression procedures, namely, subset selection, 
and eigenvalue truncation, or principal components. 
Indeed GCV can be used to compare between the 
best of the three different methods, or mixtures, of 
them, if you will. In Section 5 we present the results 
of a Monte Carlo example. 

2. THE GENERALIZED CROSS-VALIDATION ESTIMATE 

OF X AS AN INVARIANT 

VERSION OF ALLEN'S PRESS 

The Allen's PRESS, or ordinary cross-validation 
estimate of X, goes as follows. Let 13k'(X) be the ridge 
estimate (1.2) of d with the kth data point yk, omit- 
ted. The argument is that if A is a good choice, then 
the kth component [Xo'k'(X)]k of X#/3t(A) should be a 
good predictor of yk. Therefore, the Allen's PRESS 
estimate of A is the minimizer of 

P(A) = -. ([X(k')(X)] - yk). (2.1) n k=1 

It has been observed by one of the referees that 
P(A) may be viewed as a direct sample estimate of 
n1Ey*ly* - X/(A)lJ2 = T(X) + a2, where here :(X) is 
supposed fixed, y* is a future hypothetical observa- 
tion vector, and Ey* denotes expectation over the 
distribution of y*. 

It can be shown, by use of the Sherman-Morrison- 
Woodbury formula (see [24]), that 

P(X) = 
IIB(X)(I-A))y 1, (2.2) 

where B(A) is the diagonal matrix withjjth entry 1/(1 
- aj(X)), aJXX) being thejjth entry of A(X) = X(XTX 
+ nXI)- XT. 

Although the idea of PRESS is intuitively appeal- 
ing, it can be seen that in the extreme case where the 
entries of X are 0 except for xii, i = 1, 2, * , p, then 
[Xfl(k)(X)] cannot be expected to be a good predictor 
of Yk. In fact, in this case A(X) is diagonal. 

P() = 
2, 

and so P(X) does not have a unique minimizer. It is 
reasonable to conclude that PRESS would not do 
very well in the near diagonal case. If 0 and e both 
have spherical normal priors, then various arguments 
can be brought to bear that any good estimate of X 
should be invariant under rotations of the (measure- 

ment) coordinate system. The GCV estimate is a 
rotation-invariant form of ordinary cross-validation. 
It may be derived as follows: Let the singular value 
decomposition [16] of X be 

X= UDVT. 

Let W be the unitary matrix which diagonalizes the 
circulants. (See Bellman [7], Wahba [41].) In complex 
form the jkth entry [W1,k of W is 

1 
[W]nk:= ~ e e2Jk/n j, k =-- 1, 2, . , n. 

The GCV estimate for X can be defined as the result 
of using Allen's PRESS on the transformed model 

y = WLU y = WDVrT + WUTE 
-? X:+ WUE. 

The new "data vector" is y = 0(, ., ,n)T, and the 
new "design matrix" is f = WDVr. A* (X"*" means 
complex conjugate transpose) is a circulant matrix 
(see [6,41]). Thus intuitively, [A,?k'(X)]k should con- 
tain a "maximal" amount of information about yk, 
on the average. By substituting X and y into (2.2), 
and observing that Ai(A) -= ,(*f + nXI)-1,* is a 
circulant matrix and hence constant down the diago- 
nals, and A(X) and A(X) have the same eigenvalues, it 
is seen that P(A) becomes V(X) (see (1.4)) given by 

V(A) = 
I 

II(I - ())2l / 

- Tr(I- A(X)) 
-n 

= n. ,, , nX z,? 

1 nX 2 

-n ̂ ., X, + nA + n- _ (2.3) 

where z = (zx, .* , z.)T = UTy and X,, v = 1, 2, *, n, 
are the eigenvalues of XXr, X,, = 0, v > p. 

It can also be shown that V(X) is a weighted version 
of P(X), namely 

V(x) -= ([X(k)(X)]* - yk)2 wx' 

where 

W(X) 
= 

- 
akk(X) 

wR(X) - 

I1 TrA(X) n 

We define the GCV estimate of X as the minimizer 
of (1.4), equivalently (2.3), and proceed to an investi- 
gation of its properties. 
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3. PROPERTIES OF THE GCV ESTIMATE OF X 

Theorem 1 (The GCV Theorem). 

1 1 
Let , = -Tr A(X), 2 = - Tr A2(X), b2 = 

n n 

n -\ \(I-A{())g\ | 2. 

Then 

ET(X) - EV(X) + o2 -A1(2 - Ai) 

ET(X) (1 - )2 

a2 Al2 
+ <T20 

2 
(3.1) 

+b2 + 
r22 (1 - i)2 (3.1 

and so 

ET(X) - EV() + 0.21 < (2+ 12 

ET(X) 1 ( )2 

whenever 0 < i, < 1. 

Proof: Since ET = b2 + a2M2 EV = [b2 + a2(1 - 2,u + 

A2)]/(1 - i1)2, the result follows from 

ET-EV=(b2+ 22) - (1- )2 

2 (1 - 2,l) 

A12 

(1 - M)2 

ET+ 2-EV: =ET - I( 1)2em ipls tt i2 

Remark: This theorem implies that if 

Tr A(X)= - 
n 

and 

as n-- oo 

Tr A (A) )I Tr A2(A) 
) 
-- O as n (-+ c 

n (/ n 2 as 

then the difference between ET(X) + a2 and EV(X) is 

small compared to ET(X). This result and the fact 

that in the extreme diagonal case P(X) does not have 

a unique minimum suggests that the minimizer of 

V(X) is preferable to the minimizer of P(X) if one 

wants to choose X to minimize 

Ey* Iy* - X,(X) 1|2. 
n 

Corollary: Let 

h= (2 + #1--) 
1 

uI 2 A(1- l)2 

Let X? be the minimizer of ET(X). Then EV(X) always 
has a (possibly local) minimum X so that the "ex- 

pectation inefficiency" 1 defined by 

= ET(X) 
ET(X?) 

satisfies 

< 1 + h(XO) 
I - 

h(~) ' 

Remark: This corollary says that if h(X?) and h(X) 
are small then the mean square error at the minimizer 
of EV(X) is not much bigger than the minimum pos- 
sible mean square error minx ET(X). 

Proof: Let A = {X: 0 < X < oo, EV(X)- a2 < 

T(?X)(I + h(AX))}. 
Since 

ET(X)(I - h(X)) < EV(X)- a2 < ET(X)(1 + h(X)), 

0 X < co, 

and ET, EV and h are continuous functions of X, then 
A is a non-empty closed set. If 0 is not a boundary 
point of A, then EV(X) -a2 has at least one minimum 
in the interior of A, call it X. (See Figure 1.) Now by 
the theorem 

ET(XXl - h(X)) < EV(X) - a2 < ET(XO)(l + h(XO)) 

and so 

Jo T(X) < 1 + h(X?) 
T(X?)- 1 - h(X) 

If A includes 0, then X may be on the boundary of A, 
i.e., X = 0, but the above bound on I? still holds. 

Example 1. Note that 

1=-I TrA= 
I AXn <p 

n n v^- Xvn + nX n 

Al2 Tr A 
I ) (1 Xvn + )2 

2 -TrA n vn - 

n = Xv + X 

Then 

h_3pL 1 

n ( n 

Hence for p fixed and n - oo, it follows 
that 

?< 1 + 6 +0 + 0 
n 

Example 2. p > n. 
It is not necessary that p << n for I/ to tend to 1, as 

this example suggests. What is required is that XXT 
become ill conditioned for n large. 
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Let 

Yi = j x 3 + tg, i 
J=- 

p > n (3.2) 

with 

C xj2 < < , all i, 
J=l 

Suppose 

lim Tr XXT = lim -2 x12 = ks < 
n-,o n n-Co n 1 =1 J=1 

and suppose the eigenvalues {n,,, v = 1, 2, * . , n} of 
XXTr satisfy 

Xvn n -,-m 

say, for some m > 1; (ks = C v-m' 
v=1 

Then 

=1 n A.1 X1n n I 
n Xvn + n n v= 1 + Xvm 

1r dx _ 1 dx 
n J (1+ Xm) nX1m J(1 + m) 

in.Y ( xp 
I 

^ 
n 1 

A 
n1 VXt + nX / n (1 + X ")2 

1I r dx 1 rf dx 
n (1 + Axm)2 n/m (1 + x)2 

and -l 0, 1l2/1m2 -. 0 if nXA/m -,o. 
Now 

ba(X) = X #T(XTX + nXI)-'(nX)XTX(XTX + nXI)-'f 

< A2 1ll2 < k2, 2 I 2 

since the largest eigenvalue of 

(X'X + nXI)- (nX)XTX(XTX + nXI)-1 

max (X^)(nX) < 1 
I (X)2 + (nX)2 - 2 

As n - oo, the minimizing sequence X? = X?(n) of 

ET(X) = b2(X) + a2u( X) clearly must satisfy X? - 0, 
n(Xo)i/m -, o, so that the GCV Theorem may be 

applied. It is proved in [9, 44] in a different context 
that X as well as X? satisfies (nX1/m) -- oo so that h(X) - 

0, h(X?) - 0 and I 1 as n -, o. 
Instead of viewing / as fixed but unknown, sup- 

pose that / has the prior , - 9(0, aI). Let E6 be 
expectation with respect to the prior. (We reserve E 
for expectation with respect to e.) Then 

FIGURE 1. Graphical suggestion of the proof of the corollary to 
the GCV theorem. 

Theorem 2. 
The minimizer of EOEV(X) is the same as the mini- 

mizer of oEET(X) and is X = a2/na. 
Proof: Since Eg gT = E XOfTXT = a XXr, 

a or2 

E~ET(A)= Tr (I- A)2XXT + -TrA2 
n n 

a U2 1 
EOEV(X)= -Tr (I -A )2XXT +-Tr (I-A)2 E-VX n n 

/ 1 2 

-Tr(I-A) ? (3.3) 

The proof proceeds by differentiating (3.3) with re- 
spect to X and setting the remainder equal to 0. This 
calculation has appeared elsewhere [43 p. 8], and will 
be omitted. 

4. GCV IN SUBSET SELECTION AND GENERAL LINEAR 

MODEL BUILDING 

Let y = g + c, where g is a fixed (unknown) n- 
vector and e - 91(0, a21), a2 unknown. Let A(v), v in 
some index set, be a family of symmetric nonnegative 
definite n X n matrices and let 

1 
ul(V) = -TrA(v) 

1 
Vu2() = -Tr A2(v). n 

Letting 

1 
T() =- IIg- A(v)y 112 

and V(v) as before with A(X) replaced by A(v), then 

(3.1) clearly holds irrespective of the nature of A. 
A different way of dealing with ill conditioning in 
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the design matrix is to reduce the number of predictor 
variables by choosing a subset /p,, /2, * *, /j of the 

f''s. Let v be an index on the 2P possible subsets of /,, 
? ', p, let X'^V be the n X k(v) design matrix corre- 

sponding to the vth subset, and let 

(V) 
= 

(XV)TX(V))-l( V)y 

A(v) = X v)(X()TX(V))X(v)y. 

Then 

A1 = k/n, #12/#2 = k/n. 

Mallows [28] suggestion to choose the subset mini- 
mizing Cp becomes, in our notation, the equivalent of 
minimizing fP() of (1.8) with A(X) replaced by A(v), 
see also Allen [2]. This assumes that an estimate of a2 
is available. Parzen [33] has observed that, if one 
prefers to choose a subset without estimating a2, (be- 
cause one believed in the model (3.2), say), GCV can 
be used. The subset of size < kmax with smallest V can 
be chosen, knowing that 

ET(v) - EV(v) - a kmax 

ET(v) n 

even if the model (3.2) is nontrivially true. 
In the subset selection case, GCV asymptotically 

coincides with the use of Akaike's information crite- 
rion AIC [1] since 

AIC = (-2) log maximum likelihood + 2k 

=n log- II(I- A)y 12 + 2k 
n 

and so 

_ 1 
J 1(I - A)y 12 -11(1- A)y 12 

eAICIn = 
n 

V 

es (e ) 

as 

k 
- 0. 
n 

We thank E. Parzen for pointing this out. M. Stone, 
[37] has investigated the relations between AIC and 

(ordinary) cross-validation. 
Another approach, the principal components ap- 

proach, is also popular in solving ill-posed linear 
operator equations, see Baker et al. [6], Hanson [19], 
Varah [40]). The method is to replace X by X(v) 
defined by X(v) = U D(v) VT, where D(v) is the 

diagonal matrix of singular values of V with all but 
the vth subset of singular values set equal to 0. Then 

A(v) = U D(v) (D(v)D(v)T)+ D(v) Ur 

=UI 

0 

0 

1 
0 UT 

0 
0 

O 

O 

where the ones are located at positions of the vth 
subset of singular values, and, again #x < p/n, u12/.2 

< p/n, where p can be replaced by the number of 
singular values in the largest subset considered. 

In fact, it is reasonable to select from among any 
family {A(v)} of matrices for which the corresponding 
,1 and #,2/ u2 are uniformly small, by choosing that 
member for which V(v) is smallest. Mixtures of the 
above methods, e.g. a ridge method on a subset, can 
be handled this way. Note that the conditions #1 
small, l/2/Lu2 small are just those conditions which 
make it plausible that the "signal" g can be separated 
from the noise. These conditions say that the A ma- 
trix essentially maps the data vector (roughly) into 
some much smaller subspace than the whole space. 
Parzen [34] has also indicated how GCV can be used 
to choose the order of an autoregressive model to fit a 
stationary time series. 

5. A NUMERICAL EXAMPLE 

We choose a discretization of the Laplace trans- 
form as given in Varah, [40, p. 262] as an example in 
which XTX is very ill conditioned. 

We emphasize that the following is nothing more 
than a single example, with a single X and /. It does 
not indicate what may happen as X and 0 are varied. 
It is intended as an indication of the type of Monte 
Carlo evaluation study that an experimenter might 
perform with the particular X that he has at hand, 
and perhaps one or several 0 that represent the class 
of O's he believes he is likely to encounter. We suggest 
that an experimenter with particular design matrix at 
hand evaluate candidate methods (at least crudely), 
perhaps including subset selection and/or principal 
components, as well as ridge methods against his X 
and against a realistic set of /, before final selection 
of a method. The values for n and p in the experiment 
presented here were 21 and 10 and the condition 
number of X, namely the ratio of the largest to the 
smallest (non-zero) singular value, was 1.54 X 105. 
The value of IX I IX 2 was 370.84. 

Four values of a2, namely a2 = 10-8, 10-6, 10-4 and 
10-2 were tried and for each value of a2 the experi- 
ment was replicated four times, giving a total of 16 
runs. The i were generated as pseudo-random 1(0, 
a2) independent r.v.'s, V(X) was computed using the 
right-hand side of (2.3) and the Golub-Reinsch singu- 
lar value decomposition [16]. The minimizer X of 
V(X) was determined by a global search. T(X) was 
also computed and the relative inefficiencies fD and fR 

of X defined by 

ID = 11 A-gA Il 2/(min II l-X\ 112) 

IR = T(X)/min T(X) 
A 

(5.1) 

were computed. (D = "domain", R = "range.") 

TECHNOMETRICS ?, VOL. 21, NO. 2, MAY 1979 

220 



GENERALIZED CROSS-VALIDATION FOR CHOOSING A GOOD RIDGE PARAMETER 

TABLE I-Observed inefficiencies in sixteen Monte Carlo runs. 

Replication 1 Replication 2 Replication 3 Replication 4 

ID IR 

o2=10-8, S/N : 4200 

4.43 
1.46 
1.67E3 
2.31E3 
1.00 
1.20 

1.06 
1.00 
1.31 
4.8E4 
1.02 
1.00 

1.65 
1.66 
1.45E2 
6.31E2 
1.00 
2.89 

1.03 
1.03 
1.23 
8.6E4 
1.54 
1.00 

16.71 
8.69 
2.00E3 
3.84E3 
1.00 
5.97 

1.10 
1.01 
1.53 
2.1E5 
2.27 
1.00 

1.02 
1.22 
9.12E3 
2.87E3 
1.00 
1.00 

1.01 
1.03 
1.51 
1 .2E5 
1.00 
1.00 

a2o106, S/N = 420 

1.32 
1.90 
1.70E2 
2.41E2 
1.00 
1.28 

1.50 
1.03 

12.16 
2.03 
1.00 
1.16 

1.00 
1.01 
1.45 
1.39E4 
1.02 
1.00 

2=10-4, S/N = 42 

2.58 
2.27 
3.43 
3.43 
2.05 
1.00 

2=10-2, S/N 4.2 

1.60 
1.70 
1.87 
2.68 
1.01 
1.00 

1 .51E2 
7.03E1 
1 .76E2 

36.37 
1.00 
7.85 

1.00 
1.07 
1.90 
8.66 
1.00 
2.39 

The results of a comparison with three other meth- 
ods are also presented. The methods are, respectively, 

1. PRESS, the minimizer of P(X). 
2. Range risk, (RR) the minimizer of t(X). 
3. Maximum likelihood (MLE). 

The maximum likelihood estimate is obtained from 
the model 

y = X: + e 

with e X 1(0, a21) and 0 having the prior distribu- 
tion B - 91(0, aI). Then the posterior distribution of 

y is 

y - N(0, a(XXr + nXI)) (5.2) 

where X = -2/na. The ML estimate for X from the 
model (5.2) is then the minimizer of M(X) given by 

1 y (I- A(X))y 
M(X) = 

Det )] 
. (5.3) 

n [Det(I-A(x))]1/n 

This estimate is the general form of the maximum 

likelihood estimate suggested by Anderssen and 

Bloomfield in the context of numerical differentiation 

[4,5]. It can be shown that the minimizer of Ed E 

M(X) is a2/na. However, it can also be shown that if f 

behaves as though it did not come from the prior 

(.g. as in the model (1.9), 2 < . as in the model (1.9), 
/ 

< 
, i=1 

then the minimizer of E M(X) may not be a good 
estimate of the minimizer of ER(X). 

ID and IR of (5.1) were determined for each of these 
three methods as well as GCV and the results are 

presented in Table 1. The entries next to "Min Sol'n" 
and "Min Data" are the inefficiencies (5.1) with X 

replaced by the minimizers of 1||1-3x|| and T(X) 
respectively. S/N, the "signal to noise ratio" is de- 
fined by S/N = [l/nllIXlI2/o2]1/2 Figure 2 gives a 
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GCV 
RR 
MLE 
PRESS 
Min Sol'n 
Min Data 

GCV 
RR 
MLE 
PRESS 
Min Sol'n 
Min Data 

GCV 
RR 
MLE 
PRESS 
Min Sol'n 
Min Data 

1.92 
1.83 
1.99E2 
5.80 
1.00 
3.56 

1.27 
1.18 
1.56 
3.53 
1.00 
3.26 

1.05 
1.06 
1.19 
1.01 
1.38 
1.00 

1.07 
1.08 
1.20 
1.57 
1.21 
1.00 

1.26 
1.10 
1.29 
2.43E3 
1.20 
1.00 

1.11 
1.13 
1.49 
2.63 
1.11 
1.00 

2.20 
1.18 
1 .49E2 

67.00 
1.00 

41.29 

1.00 
1.00 
2.97 
2.90 
1.00 
1.16 

1.02 
1.00 
1.32 
6.07E2 
1.03 
1.00 

1.03 
1.03 
1.07 

24.34 
1.03 
1.00 

GCV 
RR 
MLE 
PRESS 
Min Sol'n 
Min Data 

1.40 
1.38 
2.13 
1.04 
1.00 
1.02 

2.47 
2.39 
3.56 
1.01 
1.31 
1.00 

2.01 
2.41 
3.81 
2.02 
1.00 
1.00 

1.59 
1.41 
2.00 
1.00 
1.00 
2.66 

1.01 
1.02 
1.00 
1.22 
1.25 
1.00 

31.20 
10.8 
28.8 
2.16 
1.00 
1.21 

17.2 
10.6 
16.8 
21.5 

1.98 
1.00 
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-7 -6 -5 -4 -3 -2 

FIGURE 2. V(X), T(X), T(X), M(X), P(X) and |(l3- XlI2. 

plot of V(X), 7t(X), M(X), P(X), |I|-3 II2 and T(X) 
for Replicate 2 of the a2 = 10-6 case. The V(X), P(X) 
and T(X) curves tend to follow each other as pre- 
dicted. 

D. I. Gibbons [14] has recently completed a Monte 
Carlo comparison of 10 methods of choosing k. 
Three estimators, GCV, HKB (described in [23]), 
and RIDGM (described in [10,11]) were identified as 
the best performers in the examples studied. HKB 
and RIDGM use estimates of a2. 

6. CONCLUSIONS 

The generalized cross-validation method for esti- 

mating the ridge parameter in ridge regression has 
been given. This estimate does not require an esti- 
mate of a2, and thus may be used when the number of 

degrees of freedom for estimating a2 is small or even; 
in some cases, when the "real" model actually in- 
volves more than n parameters. The method may also 
be used to do subset selection or selection of principal 
components instead of ridge regression, or even to 
choose between various combinations of ridge, subset 
selection or principal components methods. A nu- 
merical example, briefly suggestive of the behavior of 
the method, has been carried out. It illustrates what 
an experimenter might wish to do to examine the 
properties of the method with respect to his/her de- 
sign matrix. 

7. ACKNOWLEDGMENTS 

The work of Gene H. Golub was initiated while a 
guest of the Eidgenossische Technische Hochschule. 

He is very pleased to acknowledge the gracious hospi- 
tality and stimulating environment provided by Pro- 
fessors Peter Henrici and Peter Huber. His research 
was supported in part under Energy Research and 

Development Administration Grant E(04-3) PA # 30, 
and in part under U.S. Army Grant DAHC04-75-G- 
0185. 

Michael Heath's research was supported in part 
under Energy Research and Development Adminis- 
tration Grant E(04-3) 326 PA # 30. 

The work of Grace Wahba was initiated while she 
was a visitor at the Oxford University Mathematical 
Institute at the invitation of Professor J. F. C. King- 
man. The hospitality of Professor Kingman, the 
Mathematical Institute, and St. Cross College, Ox- 
ford, is gratefully acknowledged. Her research was 

supported by the Science Research Council (GB), 
and by U. S. Air Force Grant AF-AFOSR-2363-C. 

REFERENCES 

[1] AKAIKE, H. (1974). A new look at the statistical model 
identification. IEEE Transaction on Automatic Control, AC- 
19, 6, 716-730. 

[2] ALLEN, D. M. (1971). Mean square error of prediction as a 
criterion for selecting variables. Technometrics, 13, 469-475. 

[3] ALLEN, D. M. (1974). The relationship between variable 
selection and data augmentation and a method for predic- 
tion. Technometrics, 16, 125-127. 

[4] ANDERSSEN, B. and BLOOMFIELD, P. (1974). Numeri- 
cal differentiation procedures for non-exact data. Numer. 
Math., 22, 157-182. 

[5] ANDERSSEN, R. S. and BLOOMFIELD, P. (1974). A time 
series approach to numerical differentiation. Technometrics, 
16, 69-75. 

[6] BAKER, C. T. H., FOX, L., MAYERS, D. F., and 

WRIGHT, K. (1964). Numerical solution of Fredholm in- 

tegral equations of the first kind. Comp. J., 7, 141-148. 

[7] BELLMAN, R. (1960). Introduction to Matrix Analysis. New 
York: McGraw-Hill. 

[8] BERGER, J. (1976). Minimax estimation of a multivariate 
normal mean under arbitrary quadratric loss. J. Multivariate 

Analysis, 6, 256-264. 

[9] CRAVEN, P. and WAHBA, G. (1979). Smoothing noisy 
data with spline functions: estimating the correct degree of 

smoothing by the method of generalized cross-validation. 
Numer. Math., 31, 377-403. 

[10] DEMPSTER, A. P. (1973). Alternatives to least squares in 

multiple regression, In Multivariate Statistical Conference, 
Proceedings of the Research Seminar at Dalhousie University, 
Halifax, March 23-25, 1972, ed. by D. G. Kabe and R. P. 

Gupta. 
[11] DEMPSTER, A. P., SCHATZOFF, M., and WERMUTH, 

N. (1975). A simulation study of alternatives to ordinary least 

squares. J. Amer. Statist. Assoc., 70, 77-106. 

[12] FAREBROTHER, R. W. (1975). The minimum mean square 
error linear estimator and ridge regression. Technometrics, 
17, 127-128. 

[13] GEISSER, S. (1975). The predictive sample reuse method 
with applications. J. Amer. Statist. Assoc., 70, 320-328. 

[14] GIBBONS, D. I. (1978). A simulation study of some ridge 
estimators. General Motors Research Laboratories, Research 
Publication GMR-2659, Warren, Michigan. 

[15] GOLDSTEIN, M., and SMITH, A. F. M. (1974). Ridge type 
estimators for regression analysis. J. Roy. Statist. Soc., Ser. 
B, 36, 284-291. 

TECHNOMETRICS ?, VOL. 21, NO. 2, MAY 1979 

222 



GENERALIZED CROSS-VALIDATION FOR CHOOSING A GOOD RIDGE PARAMETER 

[16] GOLUB, G., and REINSCH, C. (1970). Singular value de- 

composition and least squares solutions. Numer. Math., 14, 
403-420. 

[17] GOLUB, G. H. (1973). Some modified matrix eigenvalue 
problems. SIAM Review, 15, 318-334. 

[18] GOLUB, G. H. and LUK, F. T. (1977). Singular value de- 

composition: applications and computations. Transactions of 
the Twenty-Second Conference of Army Mathematicians, 577- 
605. 

[19] HANSON, R. J. (1971). A numerical method for solving 
Fredholm integral equations of the first kind using singular 
values. SIAM J. Num. Anal., 8, 616-622. 

[20] HEMMERLE, W. J. (1975). An explicit solution for general- 
ized ridge regression. Technometrics, 17, 309-313. 

[21] HILGERS, J. W. (1976). On the equivalence of regularization 
and certain reproducing kernel Hilbert space approaches for 

solving first kind problems. SIAM J. Num. Anal., 13, 172- 
184. 

[22] HOERL, A. E., and KENNARD, R. W. (1976). Ridge re- 

gression: iterative estimation of the biasing parameter. 
Comm. in Statist., AS, 77-88. 

[23] HOERL, A. E., KENNARD, R. W., and BALDWIN, K. F. 

(1975). Ridge regression: some simulations. Comm. in Stat- 
ist., 4, 105-123. 

[24] HOUSEHOLDER, A. (1964). The Theory of Matrices in 
Numerical Analysis. New York: Blaisdell. 

[25] HUDSON, H. M. (1974). Empirical Bayes estimation. Tech- 
nical Report No. 58, Stanford University, Department of 

Statistics, Stanford, CA. 

[26] LAWLESS, J. F. and WANG, P. (1976). A simulation study 
of ridge and other regression estimators. Comm. in Statist., 
AS, 307-324. 

[27] LINDLEY, D. V., and SMITH, A. F. M. (1972). Bayes 
estimate for the linear model (with discussion), part 1. J. Roy. 
Statist. Soc., B, 34, 1-41. 

[28] MALLOWS, C. L. (1973). Some comments on Cp. Tech- 
nometrics, 15, 661-675. 

[29] MARQUARDT, D. W. (1970). Generalized inverses, ridge 
regression, biased linear estimation and nonlinear estimation. 
Technometrics, 12, 591-64. 

[30] MARQUARDT, D. W., and SNEE, R. D. (1975). Ridge 
regression in practice. The American Statistician, 29, 3-20. 

[31] MCDONALD, G. and GALARNEAU, D. (1975). A Monte 
Carlo evaluation of some ridge-type estimators. J. Amer. 
Statist. Assoc., 70, 407-416. 

[32] OBENCHAIN, R. L. (1975). Ridge Analysis following a 

preliminary test of the shrunken hypothesis. Technometrics, 
17, 431-446. 

[33] PARZEN, E. (1976). Time series theoretic nonparametric 
statistical methods. Preliminary Report, Statistical Science 

Division, SUNY, Buffalo, New York. 

[34] PARZEN, E. (1977). Forecasting and whitening filter estima- 
tion. Manuscript. 

[35] ROLPH, J. E. (1976). Choosing shrinkage estimators for 

regression problems. Comm. in Statist., A5, 789-802. 

[36] STONE, M. (1974). Cross-validatory choice and assessment 
of statistical prediction. J. Roy. Statist. Soc., B, 36, 111-147. 

[37] STONE, M. (1977). An asymptotic equivalence of choice of 
model by cross-validation and Akaike's criterion. J. Roy. 
Statist. Soc., B., 39, 44-47. 

[38] SWINDEL, B. F. (1976). Good ridge estimators based on 

prior information. Comm. in Statist., A5, 985-997. 

[39] THISTED, R. A. (1976). Ridge regression, minimax estima- 

tion, and empirical Bayes methods. Division of Biostatistics, 
Stanford University, Tech. Report No. 28. 

[40] VARAH, J. M. (1973). On the numerical solution of ill- 
conditioned linear systems with applications to ill posed 
problems. SIAM J. Num. Anal., 10, 257-267. 

[41] WAHBA, G. (1968). On the distribution of some statistics 
useful in the analysis of jointly stationary time series. Ann. 
Math. Statist., 39, 1849-1862. 

[42] WAHBA, G. (1976). A survey of some smoothing problems 
and the method of generalized cross-validation for solving 
them. In Proceedings of the Conference on the Applications 
of Statistics, held at Dayton, Ohio, June 14-17, 1976, ed. by 
P. R. Krishnaiah. 

[43] WAHBA, G. (1976). Optimal smoothing of density estimates. 

Classification and Clustering, pp. 423-458, ed. by J. Van Ry- 
zin. New York: Academic Press. 

[44] WAHBA, G. (1977). The approximate solution of linear op- 
erator equations when the data are noisy. SIAM J. Num. 
Anal., 14, 651-667. 

[45] WAHBA, G., and WOLD, S. (1975). Periodic splines for 

spectral density estimation: the use of cross-validation for 

determining the correct degree of smoothing. Comm. in Stat- 
ist., 4, 125-141. 

[46] WAHBA, G., and WOLD, S. (1975). A completely automatic 
French curve: fitting spline functions by cross-validation. 
Comm. in Statist., 4, 1-17. 

TECHNOMETRICS ?, VOL. 21, NO. 2, MAY 1979 

223 


	Article Contents
	p.215
	p.216
	p.217
	p.218
	p.219
	p.220
	p.221
	p.222
	p.223

	Issue Table of Contents
	Technometrics, Vol. 21, No. 2 (May, 1979), pp. 141-276
	Book Reviews



