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Abstract—The electric field integral equation is a well known
workhorse for obtaining fields scattered by a perfect electric
conducting (PEC) object. As a result, the nuances and chal-
lenges of solving this equation have been examined for a while.
Two recent papers motivate the effort presented in this paper.
Unlike traditional work that uses equivalent currents defined
on surfaces, recent research proposes a technique that results
in well conditioned systems by employing generalized Debye
sources (GDS) as unknowns. In a complementary effort, some
of us developed a method that exploits the same representation
for both the geometry (subdivision surface representations) and
functions defined on the geometry, also known as isogeometric
analysis (IGA). The challenge in generalizing GDS method to
a discretized geometry is the complexity of the intermediate
operators. However, thanks to our earlier work on subdivision
surfaces, the additional smoothness of geometric representation
permits discretizing these intermediate operations. In this paper,
we employ both ideas to present a well conditioned GDS-EFIE.
Here, the intermediate surface Laplacian is well discretized by
using subdivision basis. Likewise, using subdivision basis to
represent the sources, results in an efficient and accurate IGA
framework. Numerous results are presented to demonstrate the
efficacy of the approach.

Index Terms—Debye Sources, Electric Field Integral Equation,
Surface Laplacian, Subdivision Surfaces, Isogeometric Analysis

I. INTRODUCTION

Surface integral equation (SIE) solvers have been the main-

stay in computational electromagnetics, including a range

of problems [1]–[3]. In particular, the electric field integral

equation (EFIE) has been extensively explored for various ap-

plications [4], [5]. As a result, considerable research effort has

been invested in understanding the nuances and ramifications

of discretizing these equations. This includes various efforts

to understand low frequency breakdown [6]–[8], develop well

conditioned formulations [9], introduce higher order basis sets

[10] and investigate accuracy and convergence [11], develop

hierarchical basis [12], and so on. However, by and large, the

problem has remained the same: how does one develop integral

formulations that are well behaved across frequencies of

interest especially when high discretization density is required

to capture geometric features. To this end, several new SIE

formulations and numerical techniques have been proposed;

a partial listing of these includes the current and charge
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integral equation (CCIE) [9], augmented EFIE (A-EFIE) [13],

Calderón preconditioner [14], multi-resolution analysis [15]

and introducing loop-tree/star basis functions [7], [8], [16]–

[18], and Debye sources [19]–[21]. Recently, a decoupled

potential integral equation (DPIE) based on Lorentz gauge

has been proposed in [22] that leads to a second-kind and

stable formulation over a wide frequency band. DPIE was

implemented numerically by using Nyström method in [23].

A similar idea of exploiting generalized gauge based A-Φ
integral formulation was introduced in [24] and its numerical

implementation was presented in [25].

The focus of this work is to build on an approach presented

by Epstein and Greengard [19]. Their approach relies on

using two scalar sources and building an SIE framework to

solve for these unknowns. In their work, they demonstrated

the efficacy of the approach when applied to a sphere and

later to arbitrary shapes. The crux of this approach is to

define two scalars, called Debye sources that are employed to

represent Debye potentials which, in turn, can be generalized

to represent currents on the arbitrary surface, not limited to the

sphere surface. Two second-kind scalar integral equations can

be derived by using this framework. However, implementing

these equations in a discrete setting is challenging as one needs

to find the inverse of the surface Laplacian or the Laplace-

Beltrami operator that maps the unknown Debye sources to

Debye potentials. A recent paper by Chernokozhin and Boag

[26] presented the first numerical discrete implementation of

[19] on piecewise smooth surfaces. In their work, the inverse

of surface Laplacian operator was obtained by exploiting the

finite difference scheme defined on structured grids on the

piecewise flat surface. Besides, additional constraints have

to be imposed in order to ensure the continuity of surface

currents. The question we seek to ask is whether one can create

a better/more accurate framework on surface representation

that are described by an underlying local parameterization.

To summarize the state of art of Debye sources based

integral equation solvers, methods have been presented for

analytical surface descriptions, and piecewise constant/lowest

order Lagrangian surface description. The principal challenge

is the lack of a robust surface Laplacian equation solver.

The approach that we present overcomes this bottleneck by

using a smooth definition of the surfaces. To this end, we

take recourse to our recent work on isogeometric methods

[27]. Iso-geometric/parametric analysis (IGA) has seen a resur-

gence in recent years, thanks in large part to Hughes et al.

[28]. The rationale for this research has been to provide

a seamless interface between computer aided design (CAD)
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and computer aided engineering (CAE). In this framework,

the same basis function set is employed to represent both

geometry and underlying physical quantities residing on the

geometry. While a bulk of the existing work has focused on

using variations of splines, in what follows, we use subdivision

surface representations [29] that provide C2 smoothness on

the geometry almost everywhere. This representation was

exploited to develop an IGA based EFIE solver [27] that relied

on a surface Helmholtz decomposition, wherein the current is

represented in terms of surface gradient and surface curl of

potentials; henceforth referred to as P-EFIE. In this paper, we

will show that this additional smoothness provides the means

to obtain a convergent inverse of the surface Laplacian without

imposing additional constraints to ensure continuity.

The principal focus of this work is to exploit isogeometric

basis sets to extend the idea of generalized Debye sources

(GDS) [19]–[21] to traditional EFIE. This formulation will be

referred to as GDS-EFIE. We will employ subdivision basis

sets to create a discrete system to solve surface Laplacian

equation embedded in GDS-EFIE first and then resolve the

whole GDS-EFIE system within the IGA framework. In this

paper, we shall demonstrate

• performance of different numerical techniques for solving

surface Laplacian equation,

• convergence of the eigenvalues estimation and the solu-

tion to the inverse of Laplace-Beltrami operator,

• low frequency stability and better conditioning of the IGA

GDS-EFIE solver,

• flexibility of the solution technique.

Parenthetically, we note that the proposed solver is straight-

forward to implement compared to the formulations proposed

in [19], [26].

The remainder of this paper is organized as follows: Section

II presents the classical EFIE briefly and then proposes the

variation of the EFIE formulation based on generalized Debye

sources. Subdivision surfaces and functions are presented

concisely in Section III. Numerical implementations of GDS-

EFIE including surface Laplacian equation solvers are detailed

in Section IV. Numerical examples validating the proposed

approach are demonstrated in Section V. Finally, Section VI

summarizes the contribution of this work as well as future

directions.

II. FORMULATIONS

A. Electric Field Integral Equation

Consider a simply-connected PEC object Ω whose boundary

∂Ω is denoted by Γ which is equipped with a unique outward

pointing normal n̂. This object is illuminated by incident fields

(Einc, Hinc), and it results in scattered fields exterior to Ω.

Total fields denoted by (E,H) are composed of incident fields

and scattered fields. The scattered fields due to the object can

be obtained by using the equivalence principle, which posits an

equivalent current j(r) for r ∈ Γ such that the total magnetic

field just outside the surface Γ+ satisfies the jump condition

n̂×H = j, with a slight abuse of notation. The total electric

field satisfies n̂×E = 0, which can be rewritten as

n̂× T (j(r′)) = −n̂× n̂×Einc(r), r ∈ Γ, (1)

that formulates the electric field integral equation (EFIE). In

the above equation, the integral operator T is defined as

T (X(r)) = n̂× ikη

∫

Γ

[

I +
∇∇
k2

]

g(r, r′) ·X(r′)dr′ (2)

in which i is the imaginary unit (i ≡
√
−1), k is the

wavenumber, η is the intrinsic impedance of the background

medium, I is the identity operator and

g(r, r′) =
eikR

4πR
(3)

is the Green’s function in free-space. In the above equation,

R = |r− r′| is the distance between the field point r and

the source point r′. An e−iωt time-dependence convention

is assumed and suppressed throughout this paper. Here, ω is

the angular frequency. The solution to the EFIE is typically

effected by using method of moments (MoM) wherein surface

current is represented by a set of vector basis functions, say the

Rao-Wilton-Glisson basis functions [30] which are equivalent

to the lowest order Raviart-Thomas functions [31]. Alterna-

tives to this approach has been a topic of significant recent

interest; these include using generalized method of moments

(GMM) [32], [33], subdivision surfaces [27], discontinuous

basis set [34] , and more recently, Debye sources [19]. All the

aforementioned methods try to bring features into modeling

electromagnetic scattering; but a common thread that ties

GMM, MoM on subdivision surfaces, and Debye sources is

the use of surface Helmholtz decomposition. In what follows,

we prescribe that generalized Debye sources can be exploited

to solve the EFIE. Ideas for using Debye sources were initiated

by Epstein and others in a series of papers [19]–[21]. While

our approach is slightly different, genesis of ideas are rooted

in the above citations. This approach necessitates the use of

scalar representations for the sources. Next, we briefly describe

EFIE based on generalized Debye sources.

B. Generalized Debye Sources based EFIE

Consider an arbitrary current j(r) that exists on surface Γ.

It is well known that this current may be written by using a

surface Helmholtz decomposition as

j(r) = ∇ΓΨ(r) + n̂×∇ΓΦ(r) + jH(r)

= j1(r) + j2(r) + jH(r),
(4)

where ∇Γ is the surface gradient, Ψ(r) and Φ(r) are scalar

potentials and jH(r) is a harmonic vector field that satisfies

∇Γ · jH(r) = 0, ∇Γ · (n̂× jH(r)) = 0. (5)

The harmonic component vanishes (jH(r) ≡ 0) on the surface

of simply-connected geometry. The potentials can be related

to two scalar sources p(r) and q(r), the so-called generalized

Debye sources via:

∇2
ΓΨ(r) = ∆ΓΨ(r) = iωp(r), (6a)

∇2
ΓΦ(r) = ∆ΓΦ(r) = −iωq(r). (6b)

It is noted that p(r) has direct physical meaning here, i.e.,

surface charge density unlike the one in [19], [26], and ∆Γ is
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the surface Laplacian or Laplace-Beltrami operator. Then the

currents can be rewritten as

j1(r) = iω∇Γ∆
−1
Γ p(r), j2(r) = −iωn̂×∇Γ∆

−1
Γ q(r), (7)

in which ∆−1
Γ is the inverse of Laplace-Beltrami operator. As

surface current is represented by generalized Debye sources,

EFIE (1) can be rewritten in terms of p(r′) and q(r′) as follow:

n̂×T (C(p(r′))− n̂′ × C(q(r′))) = −n̂× n̂×Einc(r), r ∈ Γ,
(8)

where

C(f(r)) = iω∇Γ∆
−1
Γ f(r). (9)

Equation (8) can be considered as generalized Debye sources

based EFIE (GDS-EFIE). It is noted that there are always non-

trivial solutions to equation (6), Ψ=constant and Φ=constant.

To ensure uniqueness of the inverse of Laplace-Beltrami

operator, MΓ, a space of mean-zero function on Γ can be

defined first:

MΓ =

{

f : Γ → R|
∫

Γ

f(r)dr = 0

}

. (10)

Then surface Laplacian operator ∆Γ might be invertible if a

map from MΓ to itself on Γ can be established [19]. Given

that function space of generalized Debye sources belongs to

MΓ, a unique solution to the inverse of ∆Γ can be achieved

by solving the following boundary value problem:

∇2
ΓΨ(r) = f(r), (11a)

∫

Γ

Ψ(r)dr = 0. (11b)

Equation (11b) can be considered as a constraint to surface

Laplacian equation (11a) in order to obtain a unique solution.

Similar comments are valid for Φ(r), and are omitted in the

above discussion for the sake of brevity.

It is worth noting that both discretization and seeking the

inverse of the surface Laplacian operator are non-trivial. First,

one needs to find a smooth enough representation for each

scalar quantity on complex surfaces so that the resulting

currents satisfy the continuity condition. The work in [26]

introduced additional conditions to guarantee continuity. Our

proposed method, however, relies on a smooth basis set (C2

almost everywhere and C1 at isolated points) for scalars with

the help of the subdivision surface representation. Second, the

direct inverse of surface Laplacian operator doesn’t exist if no

constraint is imposed to remove the known constant-value null

space. In the next section, subdivision surface and subdivision

basis set are reviewed briefly.

III. SUBDIVISION SURFACES AND FUNCTIONS

As a shape description, subdivision surfaces technique has

been explored extensively in computer graphics, especially

the animation industry. Even though non-uniform rational

B-splines (NURBS) is built in most CAD systems as an

industry standard, NURBS results in a smooth description

in the interior of a patch but only C0 or even worse across

Fig. 1. A regular triangular patch defined by vertices in its 1-ring vertices.

the boundary between patches [35]. In comparison, the limit

surface generated by subdivision schemes is C2 almost ev-

erywhere except at finite points (irregular vertices) where the

description is C1. Thus, one can exploit subdivision basis to

resolve GDS-EFIE within IGA framework without imposing

any additional conditions to ensure continuity.

Since triangular tessellations are omnipresent in SIE solvers

for EM problems, we employ function spaces defined by the

Loop subdivision scheme [29]. Consider an initial primal mesh

denoted by P0 at level 0 which consists of a set of vertices and

connectivity map. The valence of a given vertex is defined as

the number of triangles incident on itself. A 1-ring of a vertex

consists of all vertices of these triangles. A vertex is considered

as a regular one if its valence equals to 6. Otherwise, it

is called an irregular or extraordinary vertex. A triangle is

regular if its vertices are all regular, and irregular otherwise.

A limit surface can be generated by recursive refinements of

primal mesh P0. Specifically, there are Nt triangles in P0 and

Loop subdivision scheme generates triangular tessellations of

level k recursively including 4kNt new triangular patches by

inserting new vertices at the edge midpoints (in parameter

domain sense) and subdividing a triangle of level k − 1 into

four sub-triangles of level k. It is noted that every newly

inserted vertices are regular and only irregular vertices at level

0 still remain irregular. After each subdivision, the position of

every vertex will be recomputed and each new triangle patch

can be parameterized by 1-ring of the patch(union of vertices

of incident triangles to its three vertices). Fig. 1 illustrates a

regular triangle E defined by its 1-ring vertices indexed from

1 to 12.

When a nodal value function ξn(r) is associated with nth

vertex, a regular triangular patch can be evaluated as

S(r(u, v)) =
12
∑

n=1

tnξn(r(u, v)) (12)

where (u, v) denotes a pairwise coordinate on a parameteri-

zation chart and tn ∈ R
3 is the position vector of nth vertex.

For a regular triangular patch, ξn(r) is a quartic box spline

tabulated in [36]. Since a triangular patch is defined by its

1-ring vertices, the scalar function ξn(r) can affect on 2-ring

domain of vertex tn (union of the 1-rings of the 1-ring). It

is zero outside the vertex’s 2-ring. Thus, ξn(r) has a compact

support and ξn(r) ∈ C2
0 . For an irregular vertex, ξn(r) is still
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a piecewise polynomial function, however, it has a infinite

number of segments towards the irregular vertex itself. As

such, ξn(r) will degrade to C1 smoothness only at the irregular

vertex. For more details on evaluating ξn(r) associated with

an irregular vertex, we refer to the reference [27], [36].

IV. ALGORITHMIC FLOWCHART

In this section, we will describe the procedure that we will

exploit to solve GDS-EFIE (8). The solution to this equation

proceeds from right to left. Specifically, the unknowns in

the system are the scalar sources, p(r) and q(r). These are

then mapped to potentials, Ψ(r) and Φ(r), which are in turn

mapped to the equivalent electric current j(r). Finally, the

integral operator T maps the current onto the scattered electric

field. In what follows, each of these mapping operations is

discussed in sequence, starting with the inverse of the surface

Laplacian and followed by representation of current and then

the discretization of the operator.

To start, we assume that given ξn(r) for nth vertex of

the primal mesh M0 with N vertices in total, the unknown

generalized Debye sources p(r) and q(r) in GDS-EFIE can

be represented by

p(r) ≈
N
∑

n=1

a1,nξn(r), q(r) ≈
N
∑

n=1

a2,nξn(r), (13)

where a1,n and a2,n are unknown coefficients. Since sur-

face current representations in terms of generalized Debye

sources require the inverse of Laplace-Beltrami operator, three

different numerical techniques for solving surface Laplacian

equation are discussed next. In what follows, we only illustrate

the solution for Ψ(r); the solution for Φ(r) can be obtained

in a similar manner.

A. Surface Laplacian Solvers

It can be shown that the solution of equation (11a) will

minimize the functional

F (Ψ) =
1

2

∫

Γ

∇2
ΓΨ(r)dr−

∫

Γ

f(r)Ψ(r)dr (14)

which can be achieved by imposing the stationary requirement

δF = 0. To satisfy this requirement, we start with representing

the potential Ψ(r) by using subdivision basis functions such

that Ψ(r) ≈ ∑N

n=1 b1,nξn(r). Then a N ×N matrix equation

corresponding to the weak form of variational problem δF = 0
can be written as:

Gb1 = h (15)

where

Gm,n =

∫

Γm∩Γn

∇sξm(r) · ∇sξn(r)dr (16a)

and

hn = −
∫

Γn

ξn(r)f(r)dr. (16b)

Here, Γm(n) denotes the support of basis function ξm(n). Thus

far, only discretization of equation (11a) is considered. Since

matrix G is rank deficient by one due to the existing of one-

dimensional null space, one needs to solve the equation (11a)

in tandem with (11b). In this work, three different techniques

including least squares (LSQ), penalty and Lagrange multiplier

(LM) are studied. Comparisons in effectiveness and efficiency

are also made among these methods in the results section.

1) Least Squares Solution: Substituting the representation

of the potential function to the constraint (11b) and letting
∫

Γn

ξn(r)dr = cn, we have

N
∑

i=1

b1,ncn = 0. (17)

Therefore, the last coefficient b1,N can be expressed in a

linear combination of others as b1,N = −b′

1
T
c′/cN , where

b′

1 = (b1,1, b1,2, ..., b1,N−1)
T and c′ = (c1, c2, ..., cN−1)

T .

As a result, one can define a sparse transformation matrix

T =















1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
−c1/cN −c2/cN · · · −cN−1/cN















(18)

that maps b′

1 onto b1 via Tb′

1 = b1. The constraint (11b)

together with the discrete system can be rewritten as

GTb′

1 = h. (19)

This is an overdetermined N × (N − 1) matrix equation with

respect to b′

1 and may be solved approximately via least

squares method as follow:

TTGTb′

1 = TTh. (20)

It is noted that the product of TTGT is not necessarily sparse.

However, as each involved matrix of the product is sparse, one

may obtain an iterative solution with O(N) for per matrix

vector multiplication (MVM).

2) Penalty Method: While the above approach takes the

constraint (11b) directly into account, an alternate approach

is augmenting the functional with a penalty constraint. The

functional defined earlier may be modified to include a penalty

function as follows:

P (Ψ) = F (Ψ) +
γ

2

(
∫

Γ

Ψ(r)dr

)2

(21)

where γ is a prescribed parameter. Hence, the matrix equation

(15) might be modified as

Gpb1 = h (22)

where

Gp
m,n =

∫

Γm∩Γn

∇sξm(r) · ∇sξn(r)dr

+ γ

∫

Γm

ξm(r)dr

∫

Γn

ξn(r)dr.

(23)

Here, p, the subscript of Gp
m,n, indicates the matrix entry of

penalty method. Similar to LSQ method, the final system is a

full matrix.
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3) Lagrange Multiplier Method: Another viable alternative

to the above is to employ a Lagrange multiplier; as before,

this involves a minor modification to the functional that is to

be minimized, viz.,

L(Ψ, β) = F (Ψ) + β

∫

Γ

Ψ(r)dr. (24)

Similarly, the stationary requirement δL = 0 results in a

unique b1 and β0 that will minimize the above functional. Let-

ting ∂L/∂b1,n = 0 and ∂L/∂β = 0, one can obtain a matrix

equation with an augmented dimension of (N +1)× (N +1):

[

G c

cT 0

] [

b1

β

]

=

[

h

0

]

. (25)

It is noted that the resulting matrix of Lagrange multiplier

method is sparse when N ≫ 1. Hence, the complexity for

both memory and MVM scales as O(N).

B. Discretization of GDS-EFIE

Thus far, we have prescribed three different approaches for

seeking the inverse of the surface Laplacian operator based on

the following representation:

Ψ(r) ≈
N
∑

n=1

b1,nξn(r), Φ(r) ≈
N
∑

n=1

b2,nξn(r). (26)

It follows that once the inverse is found, we can obtain the

coefficients b1,n and b2,n which are related to a1,n and a2,n
that are involved to represent the unknown Debye sources

p(r) and q(r). Then, surface currents j1(r) and j2(r) can be

expressed as

j1(r) ≈
N
∑

n=1

a1,nj1,n(r) = iω

N
∑

n=1

b1,n∇Γξn(r), (27a)

j2(r) ≈
N
∑

n=1

a2,nj2,n(r) = −iω
N
∑

n=1

b2,nn̂×∇Γξn(r). (27b)

Using these expressions for the current and testing GDS-EFIE

(8) with ∇Γξn(r) and n̂ × ∇Γξn(r) results in a system that

reads as [27]
[

Z11 Z12

Z21 Z22

] [

b1

b2

]

=

[

e1
e2

]

(28)

where

Zst
mn = −iωµ

∫

Γm

js,m(r)dr ·
∫

Γn

g(r, r′)jt,n(r
′)dr′

+
iδs1δt1
ωǫ

∫

Γm

∇Γ · js,m(r)dr ·
∫

Γn

g(r, r′)∇Γ · jt,n(r′)dr′

(29a)

es,n =

∫

Γn

js,n(r) ·Einc(r)dr (29b)

and

δij =

{

1, if i = j

0, if i 6= j.
(29c)

Fig. 2. Residual of left hand side of constraint (11b) of different surface
Laplacian solvers for a sphere.

Then an iterative solution for the unknown coefficients ai,n
for i = 1, 2 proceeds via two sets of iterations (i) inverse of

the surface Laplacian to map from ai,n −→ bi,n for i = 1, 2,

and (ii) convergence of (28). Together, this results in solutions

to ai,n. Next, we discuss a series of results that address

convergence of surface Laplacian solvers as well as solutions

to the proposed EFIE.

V. NUMERICAL EXAMPLES

A. Performance Comparison of Surface Laplacian Solvers

To test the performance of three aforementioned surface

Laplacian solvers, three metrics are employed: (a) the residual

of left hand side of constraint (11b) which is supposed to be

zero exactly, (b) the condition number of the resulting matrix

system and (c) the convergence rate for each solver. For a

given right hand side of (11) f ∈ MΓ, matrix equations

(20), (22) and (25) are solved iteratively with maximum of

iteration count set to 600 and tolerance 10−13, respectively. Bi-

conjugate gradients (BiCG) method is employed as an iterative

solver for surface Laplacian equation. In this paper, condition

number of matrix A is defined in matrix 2-norm sense, namely,

κ(A) = ||A||2||A−1||2. (30)

For penalty method, the prescribed parameter γ ranges from

1 to 109 and is sampled at every order. Finally, the examples

chosen are akin to those used in computer graphics [37].

A sphere with radius r = 1m is first analyzed. The sphere

surface is discretized into 5120 triangular elements. Hence,

there are 2562 vertices. The residual of constraint of penalty

method as a function of parameter γ is depicted in Fig. 2. For

better comparison and illustration, the residuals of least square

(LSQ) and Lagrange multiplier (LM) methods are also plotted

in the figure even though they are both independent of γ. As

observed, the solution of penalty method is more accurate as

γ increases. It is also evident that the accuracy of both LSQ

and LM method is very high. The condition number of the

matrix system of three different solvers is plotted in Fig. 3,
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Fig. 3. Condition number of resulting matrix system of different surface
Laplacian solvers for a sphere.

Fig. 4. Convergence history of different surface Laplacian solvers for a sphere.

respectively. From the figure, it is evident that the condition

number of penalty method increases rapidly as γ increases.

The condition number of LM method is the lowest among

three solvers. Fig. 4 depicts the relative residuals of three

solvers as iteration number increases. For penalty method, two

curves corresponding to γ = 1 and γ = 107 respectively are

plotted.

In the second example, we consider a hand shape object

meshed as shown in inset of Fig. 5. The hand is discretized

by 2880 triangular elements and 1442 vertices. Fig. 5 demon-

strates the residuals of constraint (11b) and it is evident that the

accuracy of penalty method is the worst. Even when γ = 109,

the residual of penalty method is two orders larger than

LSQ and LM method. Again, as parameter γ increases, the

condition number of penalty method will be larger as shown

in Fig. 6. LM method outperforms once more. Finally, Fig. 7

depicts the residual changes as iteration number increases for

three solvers. It is noted that the accuracy of penalty method

is poor when γ = 1 although it can achieve the tolerance

Fig. 5. Residual of left hand side of constraint (11b) of different surface
Laplacian solvers for a hand shape object. Inset: A meshed hand shape object.

Fig. 6. Condition number of resulting matrix system of different surface
Laplacian solvers for a hand shape object.

fast. Hence, it is not straightforward to provide a guideline

how to choose parameter γ for penalty method. The accuracy

and matrix conditioning will go to the opposite side when γ
increases.

Taking the three metrics into account, we posit that the

performance of LM method is optimal amongst the three

solvers. Moreover, the implementation of LM is not expensive

since the complexity of per MVM only scales as O(N).

B. Convergence Test of the Surface Laplacian

While the above results presented how well different meth-

ods worked, it is also important that the results by themselves

converge with spatial refinement. To this end, we formulate a

generalized eigenvalue problem and exploit this as a metric to

study convergence, specifically that of the LM method. The

generalized eigenvalue can be formulated as

Pv = λnQv (31)
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Fig. 7. Convergence history of different surface Laplacian solvers for a hand
shape object.

Fig. 8. Convergence for generalized eigenvalue on a sphere.

where λn is nth generalized eigenvalue to solve, v is the

corresponding eigenvector and

P =

[

G c

cT 0

]

, Q =

[

M 0

0 1

]

. (32)

Here, M is a mass matrix with its entry defined as

Mm,n =

∫

Γm∩Γn

ξm(r) · ξn(r)dr. (33)

We solve the generalized eigenvalue problems for the both

sphere and hand shape object analyzed earlier. To study the

experimental order of convergence, an initial control mesh

with 642 vertices for the sphere is used and three subsequent

subdivisions are conducted which can generate 2562, 10242

and 40962 vertices, respectively. The reference solution comes

from one more subdivision based on the finest mesh and there

are 163842 vertices in total. Fig. 8 plots the relative errors in

three generalized eigenvalues λ400, λ500 and λ600 for a sphere

as a function of mesh size h. It indicates the convergence rate

Fig. 9. Convergence for generalized eigenvalue on a hand shape object.

Fig. 10. Bistatic RCS solutions at φ = 0 cut for a sphere with radius r =

0.67λ.

scales as h2p approximately where p = 3 when subdivision

basis function is employed. As for hand shape object, we

start from an initial control mesh with 1442 vertices. Three

subsequent subdivisions are processed as well corresponding

to 5762, 23042 and 92162 vertices respectively. Again, the

reference solution is computed based on one more subdivision

with 368642 vertices. The relative error of three generalized

eigenvalues λ1200, λ1300 and λ1400 is demonstrated in Fig. 9.

From these results, it is apparent that the surface Laplacian

equation system can be well discretized by using subdivision

basis ξ(r) within IGA framework.

C. EM Scattering from PEC Objects

Next, several numerical examples are presented to illustrate

the efficacy of the proposed GDS-EFIE for analysis of EM

scattering problems. In all cases, we present comparison with

of radar cross section (RCS) data obtained using the proposed

method with that against a well validated Rao-Wilton-Glisson

based EFIE code, and against analytical data (when available).
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Fig. 11. Convergence history for a sphere with radius r = 0.67λ illuminated
by a plane wave.

First, we consider a PEC sphere with radius r = 0.67λ
illuminated by a plane wave traveling along −ẑ with electric

field −x̂ polarized is considered first. Here λ is the working

wavelength. There are 642 vertices for discretization. Bistatic

RCS solutions from GDS- and P-EFIE [27] are plotted in Fig.

10. Both EFIE formulations have an excellent agreement with

the reference solution obtained by Mie series method. Fig.

11 depicts the relative residuals when the iterative solver is

applied to both GDS- and P-EFIE. With generalized Debye

sources as unknowns, GDS-EFIE converges faster compared

with P-EFIE.

Next, to demonstrate the low-frequency stability of GDS-

EFIE, the mesh size is fixed and the working frequency

decreases gradually. Fig. 12 plots the iteration numbers to

achieve the prescribing tolerance 10−5 for GDS-EFIE for

frequencies ranging from 1Hz to 10MHz. In the figure, the

frequency is sampled at every order. We can see that the itera-

tion number is stable in the low-frequency regime. It is noted

that P-EFIE will not converge without any preconditioning

techniques.

The second example involves scattering from a warhead

which fits into a box 10.4λ× 3.5λ× 3.5λ. The incident plane

wave propagates along −ẑ with electric field −x̂ polarized.

The warhead is discretized by using 21376 triangle elements

and then there are 10690 vertices. Fig. 13 depicts the surface

current density of the warhead obtained by GDS-EFIE and

it is evident that there are no artificial defects since smooth

subdivision basis function is applied. Bistatic solutions from

subdivision basis for GDS-EFIE and RWG based EFIE code

are plotted in Fig. 14. It is evident that both solutions agree

with each other very well.

As the last example, scattering from a plane model with

electrical size of 6.6λ×6.6λ×1.8λ is analyzed. The object is

illuminated by a plane wave traveling along ŷ with electric

field ẑ polarized. The plane is meshed by 39984 triangle

elements associated with 19994 vertices. Fig. 15 shows the

surface current density and again, there does not exist any

artifacts. Bistatic solutions are plotted in Fig. 16 and solution

Fig. 12. Iteration number for GDS-EFIE over a wide band frequency regime.

Fig. 13. Surface current density distribution on a warhead: (a) real part (b)
imaginary part.

of GDS-EFIE agrees well with the reference solution from

RWG based EFIE.

VI. CONCLUSION

In this work, we have developed an integral formulation

called GDS-EFIE based on scalar unknowns by extending the

idea of generalized Debye sources to traditional EFIE. The
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Fig. 14. Bistatic RCS solutions at φ = 0 cut for a warhead.

Fig. 15. Surface current density distribution on a plane model: (a) real part
(b) imaginary part.

proposed formulation inherits the salient property of the work

in [19], [26], i.e., well-conditioned integral equation at low

frequency regime. As is evident in the above description, GDS-

EFIE is straightforward to implement numerically. The chal-

lenge lies on solving the surface Laplacian equation both effec-

tively and efficiently. Thanks to the smooth subdivision basis,

Fig. 16. Bistatic RCS solutions at φ = 0 cut for a plane model.

we can find the inverse of Laplace-Beltrami operator within

IGA framework with high order accuracy and convergence.

Furthermore, no additional continuity constraint is required

and our framework can be applied to arbitrarily shaped simply-

connected triangular control mesh, without being limited to

flat structured mesh. Several numerical examples have been

presented to show the well conditioning and flexibility of

our proposed GDS-EFIE at both regular and low frequency

regimes. Our next steps are to develop a solver for the original

Debye source method proposed in [19] by using subdivision

basis sets within IGA framework, and then extend these to

composite/multiply connected objects.
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