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Generalized Decoupled Polynomial Chaos for

Nonlinear Circuits with Many Random Parameters
Paolo Manfredi, Member, IEEE, Dries Vande Ginste, Senior Member, IEEE, Daniël De Zutter, Fellow, IEEE,

Flavio G. Canavero, Fellow, IEEE

Abstract—This letter proposes a general and effective decou-
pled technique for the stochastic simulation of nonlinear circuits
via polynomial chaos. According to the standard framework,
stochastic circuit waveforms are still expressed as expansions of
orthonormal polynomials. However, by using a point-matching
approach instead of the traditional stochastic Galerkin method,
a transformation is introduced that renders the polynomial chaos
coefficients decoupled and therefore obtainable via repeated
non-intrusive simulations and an inverse linear transformation.
As discussed throughout the letter, the proposed technique
overcomes several limitations of state-of-the-art methods. In
particular, the scalability is hugely improved and tens of random
parameters can be simultaneously treated within the polynomial
chaos framework. Validating application examples are provided
that concern the statistical analysis of microwave amplifiers with
up to 25 random parameters.

Index Terms—Circuit simulation, nonlinear circuits, polyno-
mial chaos, statistical analysis, tolerance analysis, uncertainty.

I. INTRODUCTION

With the increasing impact of manufacturing variability on

circuit designs, strong attention has been devoted to the devel-

opment of efficient techniques for statistical circuit analysis.

Virtually all circuit simulators rely on the blind and brute-force

Monte Carlo (MC) method to collect statistical information,

but its computational time rapidly becomes prohibitive as

the required number of simulations is typically on the order

of many thousands. In recent years, alternative approaches

were proposed by exploring the theoretical framework of the

generalized polynomial chaos (PC) [1]. According to PC,

stochastic variables (voltages and currents in the case of

circuit-level simulations) are expanded into series of orthonor-

mal polynomials, whose coefficients readily provide statistical

information.

Different strategies are available to solve for the unknown

coefficients. Many approaches manipulate the governing equa-

tions: recent contributions in the field of circuit simulation

include the extension of the stochastic Galerkin method (SGM)

to nonlinear circuits [2], [3] and the stochastic testing (ST)

method [4]. Unfortunately, the SGM requires the solution
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of coupled equations of an augmented size, which dramat-

ically reduces the efficiency when the number of random

variables (RVs) is large. Furthermore, although potentially

providing optimal accuracy and allowing for efficient adaptive

time stepping, the techniques in [2], [4] are intrusive and

require the development of an ad hoc simulator.

A second class of methods rely on smart sampling-

based strategies, like pseudo-spectral [5] or linear regression-

based [6] techniques. The responses are sampled at suitable

values of the RVs and the PC coefficients are retrieved via

a weighted summation (quadrature) or interpolation of these

samples. These approaches are intrinsically non-intrusive and

therefore compatible with standard commercial circuit simu-

lators, but the required number of samples rapidly grows with

the number of RVs, even when sparse grids are adopted.

Finally, another recent approach decouples the Galerkin-

based equations by exploiting the structure of the resulting

augmented matrices [7]. It has the advantage of allowing a

faster iterative simulation. Nevertheless, the technique relies on

an approximate matrix factorization that applies to Gaussian

variability only. Moreover, it requires larger sets of polyno-

mials compared to traditional PC implementations, thus [7] is

still limited to a small number of RVs.

Hence, the available techniques suffer from several limita-

tions that prevent their application to complex circuits with

many RVs, unless a hierarchy exists among them [8]. The

present letter aims to overcome the aforementioned issues by

putting forward an alternative and general strategy, leveraging

a non-intrusive reformulation of the ST technique [4] by means

of a linear transformation that decouples the classical PC

coefficients of the circuit variables. Consequently, these coef-

ficients are readily obtained via iterative sampling outside the

deterministic solver, thus making the method much easier to

implement. Moreover, compared to state-of-the-art collocation

techniques, the proposed solution requires fewer samples, thus

allowing to account for a much larger number of RVs, while

still largely outperforming traditional MC analysis.

II. GENERALIZED DECOUPLED POLYNOMIAL CHAOS

As most of the circuit simulators are based on the modified

nodal analysis representation, we also cast the equations

describing a circuit with stochastic parameters in this form:

C(ξ)
d

dt
x(t, ξ) +G(ξ)x(t, ξ) + f(x(t, ξ), ξ) = u(t), (1)

where ξ = (ξ1, . . . , ξd) is a d-dimensional variable collecting

all the (standardized) random circuit parameters; x(t, ξ) ∈
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R
N×1 collects the node voltages and the currents flowing

into the circuit components; C(ξ),G(ξ) ∈ R
N×N account

for the linear memory and memoryless elements, respectively;

f(x(t), ξ),u(t) ∈ R
N×1 comprise the nonlinear currents

and the independent stimuli, respectively. The quantities C,

G and f are ξ-dependent because they are affected by the

random circuit parameters. In turn, the waveforms x are,

besides time-dependent, also ξ-dependent and, as a result

of this randomness, they must be assessed from a statistical

standpoint.

According to the general PC framework, the unknown

stochastic waveforms are approximated by expansions of mul-

tivariate polynomials in the RVs:

x(t, ξ) =
K∑

k=1

xk(t)ϕk(ξ), (2)

where the polynomials ϕk are orthonormal with respect to

the probability density function of the random parameters [1].

A total degree truncation is typically adopted, leading to an

overall number of K = (p+d)!/(p!d!) expansion terms, where

p is the maximum total degree of the multivariate polynomials.

For circuit simulations, p = 2 usually provides satisfactory

accuracy [3]. From (2), any statistical information is readily

derived once the coefficients xk(t) are known.

To derive the proposed technique, the PC expansion (2) is

substituted into (1), yielding

C(ξ)
K∑

k=1

d

dt
xk(t)ϕk(ξ) +G(ξ)

K∑

k=1

xk(t)ϕk(ξ)+

+f

(
K∑

k=1

xk(t)ϕk(ξ), ξ

)

= u(t).

(3)

Next, (3) is enforced to hold at a specific value ξ = ξm of

the random parameters [4], as follows:

Cm

K∑

k=1

d

dt
xk(t)amk +Gm

K∑

k=1

xk(t)amk+

fm

(
K∑

k=1

xk(t)amk

)

= u(t),

(4)

where the notation amk = ϕk(ξm) has been introduced

and the subscript m indicates that the corresponding quantity

is evaluated at ξm. So far, all K PC coefficients xk(t)
simultaneously appear in (4) and they are coupled with one

another. Yet, in (4), it is possible to introduce the change of

variable

ym(t) ,
K∑

k=1

xk(t)amk, (5)

leading to

Cm

d

dt
ym(t) +Gmym(t) + fm(ym(t)) = u(t). (6)

The system (6) is formally identical to (1), but it con-

tains merely deterministic parameters and the transformed

variable ym(t) instead of x(t). Hence, ym(t) is the circuit

response for the value ξm of the RVs. By iteratively simulating

the circuit for K different samples, a set of K independent

waveforms ym(t), m = 1, . . . ,K, is obtained. According to

the definition (5), these waveforms are now related to the

classical PC coefficients xk(t) by




y1(t)
...

yK(t)





︸ ︷︷ ︸

ỹ(t)

=

(



a11 . . . a1K
...

. . .
...

aK1 . . . aKK





︸ ︷︷ ︸

A

⊗ IN

)



x1(t)
...

xK(t)





︸ ︷︷ ︸

x̃(t)

, (7)

with IN the N ×N identity matrix and ⊗ the tensor product.

Equation (7) establishes a relationship between the uncou-

pled waveforms and the classical PC coefficients in terms

of a linear transformation. Hence, the following two-step

procedure is put forward: i) the stochastic circuit is repeatedly

simulated for the K collocation points; ii) the classical PC

coefficients are retrieved via the inverse transformation

x̃(t) = (A−1
⊗ IN )ỹ(t). (8)

The ST algorithm [4] represents an ideal strategy for the

selection of the collocation points, as it applies to any distribu-

tion type and yields a non-singular transformation matrix A.

The points are a subset of d-dimensional Gauss quadrature

nodes and a pruning algorithm avoids dealing with initial sets

of points of intractable sizes when d is large.

It is important to stress that the outlined method, as opposed

to [4], is non-intrusive and therefore much easier to implement.

Moreover, other available approaches require the solution of

equations that are either larger [5]–[7] or coupled [2], [3].

By way of example, for the common choice p = 2, the

number of simulations K is 66, 231 and 496 for 10, 20 and

30 RVs respectively, i.e., far less than required by traditional

PC techniques and, of course, by a MC analysis.

III. APPLICATION EXAMPLES AND VALIDATION

+2.5 V

−2.5 V

1 kΩ

10 kΩ

Vin

Vout

Fig. 1. Non-inverting amplifier of the first application example (left) and
internal schematic of its CMOS operational amplifier (right).

The first application example refers to the non-inverting

amplifier of Fig. 1(a), where the operational amplifier has the

schematic of Fig. 1(b) [9]. In this example, d = 17 parameters

are considered to be random, namely the widths of the fifteen

transistors plus the two threshold voltages of the p- and n-type

MOS transistors. These parameters are uniformly varied in a

range of ±10% around their nominal values.

Fig. 2 shows the average and standard deviation of the

transient output voltage Vout(t) for an input step signal with

an amplitude of 0.01 V and a risetime of 1 ns, computed with

HSPICE via the proposed decoupled PC (dashed and solid

lines, respectively) and the MC method (crosses and stars).

No appreciable difference is found between the two results.
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Fig. 2. Average and standard deviation of the amplifier transient output
voltage computed with the decoupled (dec.) PC (lines) and MC (markers).
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Fig. 3. 2-GHz BJT low-noise amplifier of the second application example.

The second example considers the 2-GHz low-noise ampli-

fier (LNA) of Fig. 3 [10]. For this application, d = 25 Gaussian

RVs are considered, including the parasitic resistances, capac-

itances and inductances of the BJT, its forward current gain,

and all the lumped components in the amplifier schematic,

each with a 10% relative standard deviation. Moreover, the

widths of the four transmission lines are also considered as

Gaussian random parameters with a standard deviation of 5%.
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Fig. 4. Top panel: standard deviation of the LNA steady-state output power
for a 10 dBm input, computed with both decoupled PC (solid line) and MC
(stars). Bottom panel: variability of |S11|. Thin lines: samples from MC
analysis; dashed and solid thick lines: 95% and 99% quantiles estimated
with the decoupled PC; markers: same quantiles obtained with MC.

The top panel of Fig. 4 shows the standard deviation of

the steady-state output power for an input power of 10 dBm,

computed with the decoupled PC (full line) and MC (stars)

via a harmonic balance simulation in HSPICE. The bottom

panel provides a statistical assessment of the magnitude of

S11 due to the variability of the parameters. The thin lines are

a superposition of 1000 MC samples from a small-signal (ac)

analysis. The dashed and solid thick lines (crosses and stars)

are the quantiles bounding 95% and 99% of these responses,

respectively, computed from the PC expansions (MC samples).

It is found that, for each case, up to 100 000 MC runs

are necessary to reach the same accuracy as with the newly

proposed technique, thus implying simulation times of several

hours. For the two application examples, the decoupled PC

instead requires 171 and 351 simulations only!

IV. CONCLUSIONS

A generalized and effective technique for the decoupled

PC-based simulation of nonlinear circuits is outlined in this

letter. The method is based on the point matching of the

PC-expanded circuit equations and results in a linear trans-

formation of the PC coefficients into uncoupled waveforms.

These waveforms are obtained by a limited set of simulations

at the collocation points, and the classical PC coefficients

are retrieved via a quick inverse linear transformation. The

proposed strategy is non-intrusive and therefore compatible

with any standard circuit simulator. It allows to overcome

several longstanding issues such as coupling in Galerkin

equations and sample size in collocation approaches. Excellent

accuracy is obtained with a considerably lower number of

simulations with respect to the standard MC analysis, even

when dozens of RVs are considered.
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