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Abstract: A classical result of Posner states that the existence of a nonzero centralizing derivation on a prime ring

forces the ring to be commutative. In this paper we extend Posner’s result to generalized derivations centralizing on

Jordan ideals of rings with involution and discuss the related results. Moreover, we provide examples to show that the

assumed restriction cannot be relaxed.
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1. Introduction

Throughout R will represent an associative ring with center Z(R). For any x, y ∈ R, the symbol [x, y] stands

for the commutator xy − yx and we will make use of the following basic commutator identities without any

specific mention: [x, yz] = y[x, z] + [x, y]z, [xy, z] = x[y, z] + [x, z]y. R is 2-torsion free if 2x = 0 yields

x = 0. We recall that R is prime if aRb = 0 implies a = 0 or b = 0.

A ring with involution (R, ∗) is ∗-prime if aRb = aRb∗ = 0 yields a = 0 or b = 0. Note that every prime

ring having an involution ∗ is ∗ -prime but the converse is in general not true. For example, if Ro denotes

the opposite ring of a prime ring R , then R × Ro equipped with the exchange involution ∗ex, defined by

∗ex(x, y) = (y, x), is ∗ex -prime but not prime. This example shows that every prime ring can be injected in a

∗-prime ring and from this point of view ∗ -prime rings constitute a more general class of prime rings.

An additive subgroup J of R is said to be a Jordan ideal of R if u ◦ r ∈ J for all u ∈ J and r ∈ R. A

Jordan ideal J that satisfies J∗ = J is called a ∗-Jordan ideal. An additive mapping d : R −→ R is called a

derivation if d(xy) = d(x)y+xd(y) holds for all pairs x, y ∈ R. An additive mapping F : R −→ R is said to be

a generalized derivation associated with a derivation d if F (xy) = F (x)y + xd(y) holds for all pairs x, y ∈ R .

A mapping f of R into itself is called centralizing if [f(x), x] ∈ Z(R) holds for all x ∈ R; in the special case

when [f(x), x] = 0 holds for all x ∈ R, the mapping f is said to be commuting. The history of commuting and

centralizing mappings goes back to 1955 when Divinsky [5] proved that a simple Artinian ring is commutative if

it has a commuting nontrivial automorphism. Two years later, Posner [12] proved that the existence of a nonzero

centralizing derivation on a prime ring forces the ring to be commutative (Posner’s second theorem). Several

authors have proved commutativity theorems for prime rings or semiprime rings admitting automorphisms or

derivations that are centralizing or commuting on an appropriate subset of the ring (see [2–4,6–8] for a partial

bibliography). Recently, Oukhtite et al. generalized Posner’s second theorem to rings with involution in the
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case of characteristic not 2 : Let R be a 2-torsion free ∗-prime ring and U a square closed ∗-Lie ideal. If R

admits a nonzero derivation d centralizing on U, then U ⊆ Z(R) [10, Theorem 1].

In the present paper we shall attempt to generalize Posner’s second theorem to generalized derivations

centralizing on Jordan ideals in rings with involution.

Throughout, (R, ∗) will be a 2-torsion free ring with involution and Sa∗(R) := {r ∈ R/ r∗ = ± r} the

set of symmetric and skew symmetric elements.

2. Jordan ideals and generalized derivations

We shall use without explicit mention the fact that if J is a nonzero Jordan ideal of a ring R, then 2[R,R]J ⊆ J

and 2J [R,R] ⊆ J [14, Lemma 1]. Moreover, from [1] we have 4jRj ⊂ J, 4j2R ⊂ J , and 4Rj2 ⊂ J for all

j ∈ J.

In order to prove our main theorem, we shall need the following lemmas.

Lemma 1 [11, Lemma 2] Let R be a 2-torsion free ∗-prime ring and J a nonzero ∗-Jordan ideal of R. If

aJb = a∗Jb = 0, then a = 0 or b = 0.

Lemma 2 [9, Lemma 3] Let R be a 2-torsion free ∗-prime ring and J a nonzero ∗-Jordan ideal of R. If

J ⊆ Z(R), then R is commutative.

We first fix the following facts, which will be used in the sequel.

Fact 1. If aJ = 0 or Ja = 0, then a = 0. Indeed, if aJ = 0 (resp. Ja = 0), then aJa = 0 = aJa∗

(resp. aJa = 0 = a∗Ja) and Lemma 1 yields a = 0.

Fact 2. Every ∗ -prime ring is semiprime. Indeed, if aRa = 0 then aRaRa∗ = 0 so that a = 0 or

aRa∗ = 0. But aRa∗ = 0 together with aRa = 0 force a = 0.

Fact 3. If x ∈ Z(R) is such that x2 = 0, then x = 0. Indeed, as xRx = 0 then Fact 2 forces x = 0.

Lemma 3 Let R be a 2-torsion free ∗-prime ring and J a nonzero ∗-Jordan ideal of R. If d is a derivation

such that d(x2) = 0 for all x ∈ J , then d = 0 .

Proof From d(x ◦ y) = 0 it follows that

d(x) ◦ y + d(y) ◦ x = 0 for all x, y ∈ J. (1)

Replacing y by x ◦ y in (1) and using (1) we find that

d(x) ◦ (xy) + d(x) ◦ (yx) = 0 for all x, y ∈ J. (2)

Since d(x)x = −xd(x), then (2) becomes

[[d(x), y], x] = 0 for all x, y ∈ J. (3)

Substituting 2y[r, uv] for y in (3) with u, v ∈ J, as 2[r, uv] ∈ J, then equation (3) assures us that

[y, x][d(x), [r, uv]] + [d(x), y][[r, uv], x] = 0 for all u, v, x, y ∈ J and r ∈ R. (4)
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Taking y = x in (4) we arrive at

[d(x), x][[r, uv], x] = 0 for all u, v, x ∈ J and r ∈ R. (5)

Replacing r by xr in (5) we obtain

[d(x), x]x[[r, uv], x] + [d(x), x][x, uv][r, x] = 0 for all u, v, x ∈ J and r ∈ R. (6)

Since [d(x), x]x = x[d(x), x] by (3), in light of (5), equation (6) yields

[d(x), x][x, uv][r, x] = 0 for all u, v, x ∈ J and r ∈ R. (7)

Writing rd(x) instead of r in (7), we get

[d(x), x][x, uv]r[d(x), x] = 0

and thereby

[d(x), x][x, uv]R[d(x), x][x, uv] = 0 for all u, v, x ∈ J and r ∈ R. (8)

In view of Fact 2, equation (8) yields [d(x), x][x, uv] = 0 and thus

[d(x), x]u[x, v] + [d(x), x][x, u]v = 0 for all u, v ∈ J. (9)

Replacing v by 2v[r, s] in (9) we find that [d(x), x]uv[x, [r, s]] = 0 and thus

[d(x), x]uJ [x, [r, s]] = 0 for all x, u ∈ J and r, s ∈ R. (10)

If x ∈ J ∩ Sa∗(R), then [d(x), x]uJ [x, [r, s]]∗ = 0 and Lemma 1 shows that [x, [r, s]] = 0 or [d(x), x]J = 0, in

which case, because of Fact 1, we find that [d(x), x] = 0.

Suppose that

[x, [r, s]] = 0 for all r, s ∈ R. (11)

Substituting rx for r in (11) and using (11) we get

[x, r][x, s] = 0 for all r, s ∈ R. (12)

Replacing s by sr in (12), we get [x, r]s[x, r] = 0 for all r, s ∈ R and thus

[x, r]R[x, r] = 0 for all r ∈ R. (13)

According to Fact 2, equation (13) forces x ∈ Z(R) and therefore [d(x), x] = 0. Hence, in all the cases we have

[d(x), x] = 0 for all x ∈ J ∩ Sa∗(R). (14)

Let x ∈ J, and since x− x∗, x+ x∗ ∈ J ∩ Sa∗(R), then (14) yields

[d(x+ x∗), x+ x∗] = 0 and [d(x− x∗), x− x∗] = 0

in such a way that

[d(x∗), x∗] = −[d(x), x] for all x ∈ J. (15)
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Replacing x by x∗ in (10), in light of (15), [d(x), x]uJ [x∗, [r, s]] = 0 so that

[d(x), x]uJ [x, [r, s]]∗ = 0 for all x, u ∈ J and r, s ∈ R. (16)

Using (10) together with (16) we conclude that [d(x), x] = 0 or [x, [r, s]] = 0, which, as above, leads to

[d(x), x] = 0. Consequently,

[d(x), x] = 0 for all x ∈ J. (17)

Hence, d is centralizing on J , which, in view of [9, Theorem 1], assures us that either d = 0 or J ⊆ Z(R).

Suppose that J ⊆ Z(R); then 2rj = j ◦ r ∈ J for all r ∈ R, j ∈ J.

Since d(xy + yx) = 0 by hypothesis, then by replacing y by 2jr we obtain xjd(r) = 0. Hence

xJd(r) = x∗Jd(r) = 0

and Lemma 1 forces d = 0. 2

Lemma 4 Let F be an additive mapping that is centralizing on a ∗-Jordan ideal J. If R is 2-torsion free

∗-prime, then F (J ∩ Z(R)) ⊂ Z(R).

Proof Linearizing [F (x), x] ∈ Z(R), we obtain

[F (x), y] + [F (y), x] ∈ Z(R) for all x, y ∈ J. (18)

Now if x ∈ J ∩ Z(R), then (18) yields

[F (x), y] ∈ Z(R) for all y ∈ J. (19)

Replacing y by 2y[t, s] in (19), where t, s ∈ R , we get

y[F (x), [t, s]] + [F (x), y][t, s] ∈ Z(R) for all x, y ∈ J, r, s ∈ R. (20)

Writing st instead of s in (20), where t ∈ R , we find that

y[t, s][F (x), t] + y[F (x), [t, s]]t+ [F (x), y][t, s]t ∈ Z(R). (21)

Substituting F (x) for t in (21) we obtain

y[F (x), [F (x), s]]F (x) + [F (x), y][F (x), s]F (x) ∈ Z(R) for all y ∈ J, s ∈ R. (22)

Taking s = y in (22), because of [F (x), y] ∈ Z(R), we arrive at

[F (x), y]2F (x) ∈ Z(R) for all y ∈ J. (23)

Using the fact that [[F (x), y]2F (x), y] = 0, by (23), we find that

[F (x), y]3 = 0 for all y ∈ J. (24)

From [F (x), y] ∈ Z(R), equation (24) yields [F (x), y]2R[F (x), y]([F (x), y])∗ = 0. Since [F (x), y]([F (x), y])∗ is

invariant under ∗ and R is ∗ -prime, then we get [F (x), y]2 = 0 or [F (x), y]([F (x), y])∗ = 0.
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If [F (x), y]([F (x), y])∗ = 0, then [F (x), y]2R([F (x), y])∗ = 0 = [F (x), y]2R[F (x), y] and either [F (x), y] =

0 or [F (x), y]2 = 0. Hence, in all cases we have [F (x), y]2 = 0 and by virtue of Fact 3 it follows that

[F (x), y] = 0 for all y ∈ J. (25)

Replacing y by 2y[r, s] in (25), where r, s ∈ R , and using (25) we get

y[F (x), [r, s]] = 0 for all y ∈ J, r, s ∈ R.

Accordingly

J [F (x), [r, s]] = 0 for all r, s ∈ R. (26)

In view of Fact 1, equation (26) forces

[F (x), [r, s]] = 0 for all r, s ∈ R. (27)

Substituting zt for r in (27), where z ∈ J, in view of (25) we arrive at

[z, s][F (x), t] = 0 for all z ∈ J, s, t ∈ R. (28)

Replacing t by wt in (28), with w ∈ R we obtain

[z, s]w[F (x), t] = 0 for all z ∈ J, s, t, w ∈ R,

and thereby we conclude that

[z, s]R[F (x), t] = 0 for all z ∈ J, s, t ∈ R. (29)

Since J is invariant under ∗ , then (29) assures us that

([z, s])∗R[F (x), t] = 0 for all z ∈ J, s, t ∈ R. (30)

As R is ∗ -prime, then (29) together with (30) yields [z, s] = 0 for all s ∈ R, z ∈ J , in which case J ⊂ Z(R),

or [F (x), t] = 0 for all t ∈ R so that F (x) ∈ Z(R).

Now assume that J ⊂ Z(R); from j ◦ r = 2jr ∈ J for all r ∈ R, j ∈ J , then replacing y by 2jr in (25)

we find that j[F (x), r] = 0 for all j ∈ J, r ∈ R. Hence

J [F (x), r] = 0 for all r ∈ R. (31)

Once again using Fact 1, equation (31) leads to [F (x), r] = 0 for all r ∈ R and thus F (x) ∈ Z(R). In conclu-

sion, F (J ∩ Z(R)) ⊂ Z(R). 2

Now we are ready to state the main result of this paper.

Theorem 1 Let R be a 2-torsion free ∗-prime ring and F a generalized derivation associated with a nonzero

derivation d. If F is centralizing on a nonzero ∗-Jordan ideal J, then R is commutative.

Proof Let F be a generalized derivation associated with a derivation d ̸= 0. Suppose first that J ∩Z(R) = 0;

in light of

4[F (x), x]2 = (4xF (x)x) ◦ F (x)− 4x(F (x))2x− F (x) ◦ (4x2F (x)) + 4x2(F (x))2
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it follows that 4[F (x), x]2 ∈ J and thus 4[F (x), x]2 = 0. Using 2-torsion freeness, then we get [F (x), x]2 = 0

for all x ∈ J , which, according to Fact 3, assures us that

[F (x), x] = 0 for all x ∈ J. (32)

Linearizing (32) we obtain

[F (x), y] + [F (y), x] = 0 for all x, y ∈ J. (33)

Substituting 4zx2 for y in (33), where z ∈ J, and using (33) we find that

z[d(x2), x] + [z, x]d(x2) = 0 for all z, x ∈ J. (34)

Replacing z by 2[r, s]z in (34), where r, s ∈ R , we arrive at [[r, s], x]zd(x2) = 0 and therefore

[[r, s], x]Jd(x2) = 0 for all x ∈ J, r, s ∈ R. (35)

For x ∈ J ∩ Sa∗(R), equation (35) together with Lemma 1 assures us that either d(x2) = 0 or [[r, s], x] = 0

for all r, s ∈ R.

Assume that
[[r, s], x] = 0 for all r, s ∈ R. (36)

Writing xt instead of s in (36) we get [r, x][t, x] = 0 so that

[r, x]R[t, x] = 0 for all r, t ∈ R. (37)

Since x ∈ J ∩ Sa∗(R), then (37) yields

[r, x]∗R[t, x] = 0 for all r, t ∈ R. (38)

Using the ∗ -primeness of R , from equations (37) and (38), it follows that x ∈ Z(R). As J ∩ Z(R) = 0, then

x = 0, in which case d(x2) = 0. In conclusion,

d(x2) = 0 for all x ∈ J ∩ Sa∗(R). (39)

Let x ∈ J ; the fact that x − x∗, x + x∗ ∈ J ∩ Sa∗(R), implies that d((x − x∗)2) = 0 = d((x + x∗)2) , which,

because of charR ̸= 2, forces d(x2) = −d((x∗)2).

Replacing x by x∗ in (35), then we get [[r, s], x∗]Jd(x2) = 0 so that

[[r, s], x]∗Jd(x2) = 0 for all x ∈ J, r, s ∈ R. (40)

Using (35) together with (40), Lemma 1 assures us that for all x ∈ J, either d(x2) = 0 or [[r, s], x] = 0 for

all r, s ∈ R.

If d(x2) = 0 for all x ∈ J , then Lemma 3 yields d = 0, a contradiction. If [[r, s], x] = 0 for all r, s ∈ R,

then it is obvious that x ∈ J ∩ Z(R) and thus J = 0, a contradiction.

Accordingly, we are forced to J∩Z(R) ̸= 0. Let us consider 0 ̸= u ∈ J∩Z(R); linearizing [F (x), x] ∈ Z(R)

we get

[F (x), y] + [F (y), x] ∈ Z(R) for all x, y ∈ J. (41)
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Replacing y by 2u2r in (41) we get

2u2[F (x), r] + [F (2u2)r, x] + 2u2[d(r), x] ∈ Z(R) for all x ∈ J, r ∈ R. (42)

Since 2u2 ∈ J ∩ Z(R), applying Lemma 4, (42) then becomes

2u2[F (x), r] + F (2u2)[r, x] + 2u2[d(r), x] ∈ Z(R) for all x ∈ J, r ∈ R. (43)

Taking r = x in (43) we obtain u2[d(x), x] ∈ Z(R) for all x ∈ J so that

u2[[d(x), x], r] = 0 for all x ∈ J, r ∈ R. (44)

Substituting sr for r in (44), with s ∈ R , we get u2s[[d(x), x], r] = 0 and therefore

u2R[[d(x), x], r] = 0 for all x ∈ J, r ∈ R. (45)

Since u∗ ∈ J ∩ Z(R), a similar reasoning leads to

(u∗)2R[[d(x), x], r] = 0 for all x ∈ J, r ∈ R. (46)

From equations (45) and (46), it follows, according to the ∗ -primeness of R , that [[d(x), x], r] = 0, because

u2 ̸= 0 by Fact 3. Consequently, [d(x), x] ∈ Z(R) for all x ∈ J . Applying [9, Theorem 1], we obtain J ⊆ Z(R)

and Lemma 2 assures the commutativity of R. 2

The following example demonstrates that Theorem 1 cannot be extended to semiprime rings.

Example 1 Let (R1, ∗) be a noncommutative semiprime ring, with involution, which admits a general-

ized derivation F associated with a nonzero derivation d and let R = R1 × R1. Consider J = {0} × R1 and

define a generalized derivation F on R by F (x, y) = (F (x), 0) associated with a derivation D defined by

D(x, y) = (d(x), 0). Obviously, J is a nonzero τ -Jordan ideal of R , where τ is the involution defined on R by

τ(x, y) = (x∗, y∗). Furthermore,

[F (u), u] ∈ Z(R) for all u ∈ J, but R is noncommutative.

In Theorem 1, we cannot exclude the condition“J a ∗ -Jordan ideal” as below.

Example 2 Let R be a noncommutative prime ring that admits a generalized derivation F associated with

a nonzero derivation d and let R= R × R0 . If we set J = {0} × R0, then J is a nonzero Jordan ideal of

the ∗ex -prime ring R. Furthermore, if we define F (x, y) = (F (x), 0), then F is a generalized derivation of R,

associated with the nonzero derivation D defined by D(x, y) = (d(x), 0), which satisfies [F (u), u] ∈ Z(F ) for

all u ∈ J ; however, R is noncommutative.

Corollary 1 Let R be a 2-torsion free ∗-prime ring and F be a generalized derivation associated with a

nonzero derivation. If F is centralizing, then R is commutative.

As an application of Theorem 1, the following theorem gives a version of Posner’s Second Theorem for

generalized derivations on Jordan ideals.

Theorem 2 Let R be a 2-torsion free prime ring and F a generalized derivation associated with a nonzero

derivation d. If F is centralizing on a nonzero Jordan ideal J, then R is commutative.
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Proof Assume that F is a generalized derivation associated with a nonzero derivation d. Let F be the additive

mapping defined on R = R×R0 by F(x, y) = (F (x), y). Clearly, F is a generalized derivation associated with

the nonzero derivation D defined on R by D(x, y) = (d(x), 0). Moreover, if we set J = J × J, the J is a

∗ex -Jordan ideal of R. As F is centralizing on J, it is easy to check that F is centralizing on J . Since R is a

∗ex -prime ring, in view of Theorem 1 we deduce that R is commutative and it follows that R is commutative. 2

The following theorem extends [13, Theorem 3.1] to Jordan ideals.

Theorem 3 Let R be a 2-torsion free prime ring and J be a nonzero Jordan ideal. If R admits a generalized

derivation F such that [F (u), u] = 0 for all u ∈ J, then F is a left multiplier or R is commutative.

Proof Assume that F is a generalized derivation associated with a derivation d. If d = 0, then F is a left

multiplier. If 0 ̸= d , as F is commuting and a fortiori centralizing, then Theorem 2 assures the commutativity

of R. 2
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