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GENERALIZED DERIVATIONS ON SEMIPRIME RINGS

Vincenzo De Filippis and Shuliang Huang

Abstract. Let R be a prime ring, I a nonzero ideal of R and n a fixed
positive integer. If R admits a generalized derivation F associated with a

derivation d such that (F ([x, y]))n = [x, y] for all x, y ∈ I. Then either R
is commutative or n = 1, d = 0 and F is the identity map on R. Moreover
in case R is a semiprime ring and (F ([x, y]))n = [x, y] for all x, y ∈ R, then

either R is commutative or n = 1, d(R) ⊆ Z(R), R contains a non-zero
central ideal and F (x)− x ∈ Z(R) for all x ∈ R.

1. Introduction

Let R be a prime ring with center Z(R) and extended centroid C, U the
Utumi quotients ring (for more details on these objects we refer the reader to
[3]). We denote by [a, b] = ab − ba the simple commutator of the elements
a, b ∈ R and by a ◦ b = ab+ ba the simple anti-commutator of a, b. Recall that
a ring R is prime if for any a, b ∈ R, aRb = (0) implies either a = 0 or b = 0,
and it is semiprime if for any a ∈ R, aRa = (0) implies a = 0. Let f : R → R
be an additive mapping on R. It is a derivation if f(xy) = f(x)y+xf(y) holds
for all x, y ∈ R. It is a left multiplier if f(xy) = f(x)y for all x, y ∈ R.

An additive mapping F : R → R is called a generalized derivation if there
exists a derivation d : R → R such that F (xy) = F (x)y + xd(y) holds for
all x, y ∈ R, and d is called the associated derivation of F . Hence, the con-
cept of generalized derivations covers both the concepts of derivations and left
multipliers. Basic examples of generalized derivations are mappings of type
x → ax+xb for some a, b ∈ R. These maps are called inner generalized deriva-
tions. More informations on generalized derivations can be found in [8]. We
would like to point out that in [11] Lee proved that every generalized derivation
can be uniquely extended to a generalized derivation of U and thus all gener-
alized derivations of R will be implicitly assumed to be defined on the whole
U . In particular Lee proves the following result:
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Fact 1 ([11, Theorem 4]). Let R be a semiprime ring. Then every generalized
derivation g on a dense right ideal of R can be uniquely extended to U and
assumes the form g(x) = ax+ d(x) for some a ∈ U and a derivation d on U .

In [5, Theorem 2], Daif and Bell showed that if R is a semiprime ring, I is
a nonzero ideal of R and d : R → R is a derivation such that d([x, y]) = [x, y]
for all x, y ∈ I, then I ⊆ Z(R).

Later in [14], Quadri et al. discussed the commutativity of prime rings with
generalized derivations. More precisely, they proved that if R is a prime ring, I
a nonzero ideal of R and F a generalized derivation associated with a nonzero
derivation d such that F ([x, y]) = [x, y] for all x, y ∈ I, then R is commutative.

In [2, Theorem 4.1], Ashraf and Rehman obtained a similar result in case R is
a prime ring, replacing the simple commutator by the simple anti-commutator.
They proved that if I is a nonzero ideal of R and d is a derivation of R such
that d(x ◦ y) = x ◦ y for all x, y ∈ I, then R is commutative.

More recently in [1, Theorem 1], Argac and Inceboz generalized the above
result as follows: Let R be a prime ring, I a nonzero ideal of R and n a fixed
positive integer; if R admits a derivation d with the property (d(x◦y))n = x◦y
for all x, y ∈ I, then R is commutative.

Motivated by these results, we study prime and semiprime rings admitting
a generalized derivation F satisfying a condition (F ([x, y]))n = [x, y].

2. The results

Firstly we consider the case when R is a prime ring and begin with the
following:

Remark 1. If I is a non-zero ideal of the prime ring R, then:

(1) I, R and U satisfy the same generalized polynomial identities with
coefficients in U (Theorem 2 in [4]);

(2) I, R and U satisfy the same differential identities (Theorem 2 in [12]).

Theorem 1. Let R be a prime ring, I a nonzero ideal of R and n a fixed positive
integer. If R admits a generalized derivation F associated with a derivation d
such that (F ([x, y]))n = [x, y] for all x, y ∈ I, then either R is commutative or
n = 1, d = 0 and F is the identity map on R.

Proof. Assume first that n = 1. In view of Theorem 2.1 in [14], we have either
R is commutative or d = 0. Consider now this last case and assume that R is
not commutative. Thus F (xy) = F (x)y for all x, y ∈ R. Let x, y, z ∈ I, then
xz ∈ I. By the hypothesis it follows F ([xz, y]) = [xz, y] and expanding this we
have (F (x)−x)[z, y] = 0. Replace now z by zr ∈ I for any r ∈ R. Thus one has
0 = (F (x)− x)[zr, y] = (F (x)− x)z[r, y], which means (F (x)− x)I[R, I] = (0)
for all x ∈ R. Thus, by the primeness of R and since R is assumed not
commutative, it follows that F (x) = x for all x ∈ I. Hence, for any s ∈ R
we have sx ∈ I and sx = F (sx) = F (s)x, i.e., (s − F (s))I = 0 which implies
F (s) = s for all s ∈ R and F is the identity map on R.
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Assume now that n ≥ 2. By Fact 1 we have that for all x ∈ R, F (x) =
ax+ d(x) for some a ∈ U and a derivation d on U . By the given hypothesis we
have now [x, y] = (a[x, y] + d([x, y]))n = (a[x, y] + [d(x), y] + [x, d(y)])n for all
x, y ∈ I. This means that I satisfies the generalized differential identity

(1) (a[x1, x2] + [d(x1), x2] + [x1, d(x2)])
n − [x1, x2].

Since I and U satisfy the same differential identities (Remark 1) we also have
that U satisfies (1). We divide the proof into two cases:

Firstly we assume that d is the inner derivation induced by some element
q ∈ U , that is d(x) = [q, x] for all x, y ∈ U . In this case we will prove that
q ∈ C.

Notice that U satisfies the generalized polynomial identity

(a[x1, x2] + [[q, x1], x2] + [x1, [q, x2]])
n − [x1, x2].

In case the center C of U is infinite, we have that (a[x1, x2] + [[q, x1], x2] +
[x1, [q, x2]])

n − [x1, x2] is a generalized polynomial identity for U ⊗C C, where
C is the algebraic closure of C. Remark that, in light of Remark 1, [q, x] is a
generalized polynomial identity for U if and only if it is a generalized identity
also for R; analogously U is commutative if and only if R is commutative.
Therefore, in order to prove that either q ∈ C or R is commutative, we may
replace R by U or U ⊗C C according as C is finite or infinite. Moreover, since
both U and U ⊗C C are prime and centrally closed (Theorem 2.5 and Theorem
3.5 in [6]), we may assume thatR is centrally closed over C (i.e., RC = C) which
is either finite or algebraically closed and (a[x, y]+[[q, x], y]+[x, [q, y]])n = [x, y]
for all x, y ∈ R. By Theorem 3 in [13], R is a primitive ring which is isomorphic
to a dense ring of linear transformations of a vector space V over a division
ring D.

Assume that dimVD ≥ 3. Our first aim is to show that v and qv are linearly
D-dependent for all v ∈ V . Suppose there exists v ∈ V such that v and qv
are D-independent. Since dimVD ≥ 3, then there exists w ∈ V such that
v, qv, w are also D-independent. By the density of R, there exist x, y ∈ R such
that: xv = 0, xqv = w, xw = v; yv = 0, yqv = 0, yw = v. These imply that
v = (a[x, y] + [[q, x], y] + [x, [q, y]])nv = [x, y]v = xyv − yxv = 0, which is a
contradiction. So we conclude that v and qv are linearly D-dependent for all
v ∈ V .

Our next goal is to show that there exists b ∈ D such that qv = vb for all
v ∈ V . In fact, choose v, w ∈ V linearly D-independent. Since dimVD ≥ 3,
then there exists u ∈ V such that u, v, w are linearly D-independent, and so
bu, bv, bw ∈ D such that qu = ubu, qv = vbv, qw = wbw, that is q(u+ v +w) =
ubu + vbv + wbw. Moreover q(u + v + w) = (u + v + w)bu+v+w for a suitable
bu+v+w ∈ D. Then 0 = u(bu+v+w−bu)+v(bu+v+w−bv)+w(bu+v+w−bw) and
because u, v, w are linearly D-independent, bu = bv = bw = bu+v+w, that is b
does not depend on the choice of v. Hence now we have qv = vb for all v ∈ V .
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Now for r ∈ R, v ∈ V , we have (rq)v = r(qv) = r(vb) = (rv)b = q(rv), that
is [q,R]V = 0. Since V is a left faithful irreducible R-module, hence [q,R] = 0,
i.e., q ∈ C and so d = 0.

Therefore (a[x, y])n = [x, y] for all x, y ∈ R. Suppose there exists v ∈ V
such that v and av are D-independent. Since dimVD ≥ 3, there exists w ∈ V
such that v, av, w are also D-independent. By the density of R, there exist
x, y ∈ R such that xv = 0, yv = w, xw = v, xav = 0, yav = 0. Hence it follows
the contradiction v = [x, y]v = (a[x, y])nv = 0. Therefore, using the same
above argument, we have that a ∈ C. This means that an[x, y]n = [x, y] for
all x, y ∈ R. Again fix v1, v2, v3 ∈ V linearly D-independent vectors. As above
there exist x, y ∈ R such that xv1 = 0, yv1 = v2, xv2 = v3, xv3 = 0, yv3 = 0.
Finally we have the contradiction v3 = [x, y]v1 = an[x, y]nv1 = 0.

Suppose now that dimVD ≤ 2. In this case R is a simple GPI-ring with
1, and so it is a central simple algebra finite dimensional over its center. By
[10] (Lemma 2), it follows that there exists a suitable field E such that R ⊆
Mk(E), the ring of all k × k matrices over E, and moreover Mk(E) satisfies
the same generalized polynomial identities of R. In particular Mk(E) satisfies
(a[x1, x2] + [[q, x1], x2] + [x1, [q, x2]])

n − [x1, x2]. If k ≥ 3, by the same above
argument we get q ∈ C. Obviously if k = 1, then R is commutative.

Thus we may assume that k = 2, i.e., R ⊆ M2(E), where M2(E) satisfies
(a[x1, x2] + [[q, x1], x2] + [x1, [q, x2]])

n − [x1, x2].
Denote eij the usual matrix unit with 1 in (i, j)-entry and zero elsewhere.

Let [x1, x2] = [e21, e11] = e21. In this case we have (ae21 + qe21 − e21q)
n = e21.

Right multiplying by e21, we get

(−1)n(e21q)
ne21 = (ae21 + qe21 − e21q)

ne21 = e21e21 = 0.

Set q =
∑2

i,j=1 qijeij , with qij ∈ E. By calculation we find that (−1)nqn12e21
= 0, which implies that q12 = 0. Similarly we can see that q21 = 0. Therefore
q is diagonal in M2(E). Let f be any automorphism of M2(E) and notice that
(f(a)[f(x), f(y)]+[[f(q), f(x)], f(y)]+[f(x), [f(q), f(y)]])n = [f(x), f(y)]. Thus
the same above argument shows that f(q) is a diagonal matrix in M2(E). In
particular, let f(x) = (1−eij)x(1+eij) for i ̸= j, then f(q) = q+(qii− qjj)eij ,
that is qii = qjj for i ̸= j. This implies again that q is central in M2(E).
Therefore d = 0 and M2(E) satisfies the generalized identity (a[x1, x2])

n −
[x1, x2]. Let [x1, x2] = e21. Thus we have (ae21)

n = e21. Analogously, for
[x1, x2] = e12 we have that (ae12)

n = e12. As above we obtain that a is a
diagonal matrix and using the same above argument, we conclude that a is
a central matrix. Thus M2(E) satisfies an[x1, x2]

n − [x1, x2]. In this case we
notice that, for [x1, x2] = e12, the contradiction 0 = e12 follows.

Assume now that d is not an inner derivation of U . Hence, by (1) and the
Kharchenko’s result in [9], it follows that U satisfies the generalized polynomial
identity

(2) (a[x1, x2] + [y1, x2] + [x1, y2])
n − [x1, x2].
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As above, we may replace R by U or U ⊗C C according as C is finite or
infinite, and assume that R is centrally closed over C. Thus R satisfies (2) and
in particular, R satisfies the blended component ([x1, y2])

n, that is, R is a ring
satisfying a polynomial identity. Hence there exists a suitable field E such that
R ⊆ Mk(E), the ring of all k×k matrices over E, and moreover Mk(E) satisfies
the same polynomial identities of R. In particular Mk(E) satisfies [x1, x2]

n. If
k ≥ 2, for x1 = e12 and x2 = e21, we get the contradiction (e11 − e22)

n = 0.
Thus k = 1 and then R is commutative. □

The following example shows that R to be prime is essential in the hypoth-
esis.

Example. Let S be any ring and let R = {( a b
0 0 ) | a, b ∈ S} and let I =

{( 0 a
0 0 ) | a ∈ S} be a nonzero ideal of R. We define a map F : R → R by

F (x) = 2e11x − xe11. Then it is easy to see that F is a generalized deriva-
tion associated with a nonzero derivation d(x) = [e11, x]. It is straightforward
to check that F satisfies the property: (F ([x, y]))n = [x, y] for all x, y ∈ I.
However, R is not commutative.

Finally we extend the above result to semiprime rings:

Theorem 2. Let R be a semiprime ring and n a fixed positive integer. If
R admits a generalized derivation F associated with a derivation d such that
(F ([x, y])n = [x, y] for all x, y ∈ R, then either R is commutative or n = 1,
d(R) ⊆ Z(R), R contains a non-zero central ideal and F (x)− x ∈ Z(R) for all
x ∈ R.

Proof. First consider n = 1. Let P be a prime ideal of R such that [R,R] ̸⊆ P
and set R = R/P . Assume first that d(P ) ̸⊆ P . Let p be any element of P .
Since for all y ∈ R, a[p, y] + [d(p), y] + [p, d(y)] = [p, y] ∈ P , then [d(p), y] ∈
P , that is [d(P ), R] ⊆ P . Thus [d(PR), R] ⊆ P and by calculations we get
d(P )[R,R] ⊆ P . So d(P )[R2, R] ⊆ P which implies that d(P )R[R,R] ⊆ P .
By the primeness of P and since d(P ) ̸⊆ P , it follows that [R,R] ⊆ P , a
contradiction.

Hence we may assume that d(P ) ⊆ P , then d induces a canonical derivation
d on R. By the assumption we have a[x, y] + d([x, y]) = [x, y] for all x, y ∈ R.
It follows from the prime case that one of the following holds:

1. either [R,R] = 0, that is [R,R] ⊆ P , a contradiction; or
2. d(R) = (0) and ax−x = 0 for all x ∈ R, that is d(P ) ⊆ P and ax−x ∈ P

for all x ∈ R.
In light of previous argument we have that both d(R)[R,R] ⊆

∩
i Pi =

(0) and (ax − x)[R,R] ⊆
∩

i Pi = (0) for all x ∈ R (where Pi are all prime
ideals of R). Starting from d(R)[R,R] = 0, we have 0 = d(R2)[d(R), R] =
d(R)R[d(R), R], in particular we have both d(R)R2[d(R), R] = 0 and

Rd(R)R[d(R), R] = 0.
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Therefore [d(R), R]R[d(R), R] = 0 and by the semiprimeness of R, [d(R), R] =
0, that is d(R) ⊆ Z(R).

Now consider also (ax−x)[R,R] = 0. A result of Zalar [15, Lemma 1.3] says
that in this case there exists a non-zero central ideal of R. Moreover we have
that 0 = (ax− x)[R2, R] = (ax− x)R[R,R], in particular we have both (ax−
x)R2[R,R] = 0 and R(ax−x)R[R,R] = 0. Therefore [ax−x,R]R[R,R] = 0 and
a fortiori [ax−x,R]R[ax−x,R] = 0. By the semiprimeness of R, [ax−x,R] = 0,
that is ax − x ∈ Z(R) for all x ∈ R. Thus, for all x ∈ R, ax = x + αx, where
αx ∈ Z(R) is depending on the choice of x; hence F (x) = ax + βx, where
βx = d(x) ∈ Z(R), that is F (x) = x+ γx for γx = αx + βx ∈ Z(R).

Let now n ≥ 2. As above let P be a prime ideal of R, and set R = R/P .
Assume first that d(P ) ̸⊆ P . Let p be any element of P . Since for all y ∈
R, (a[p, y] + [d(p), y] + [p, d(y)])n − [p, y] = 0, then [d(p), y] = 0 in R for all
y ∈ R. Since R is a prime ring, by a result of Giambruno and Herstein [7]

(Theorem 1) either R is commutative, that is [R,R] ⊆ P , or d(p) is central in
R, that is [d(P ), R] ⊆ P . In this last case, by using the same above argument,
one can see that again [R,R] ⊆ P . Hence we may assume that d(P ) ⊆ P ,
then d induces a canonical derivation d on R. By the assumption we have
(a[x, y] + d([x, y]))n − [x, y] = 0 for all x, y ∈ R. It follows from the prime case
that R is commutative, that is [R,R] ⊆ P . In light of previous argument we
have that in any case [R,R] ⊆ P . So [R,R] ⊆

∩
i Pi = (0) (where Pi are all

prime ideals of R) and R is commutative. □
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