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Invertible disformal transformations are a useful tool to investigate ghost-free scalar–tensor
theories. By performing a higher-derivative generalization of the invertible disformal trans-
formation on Horndeski theories, we construct a novel class of ghost-free scalar–tensor
theories, which we dub generalized disformal Horndeski theories. Specifically, these theo-
ries lie beyond the quadratic/cubic DHOST class. We explore cosmological perturbations
to identify a subclass where gravitational waves propagate at the speed of light and clarify
the conditions for the absence of ghost/gradient instabilities for tensor and scalar pertur-
bations. We also investigate the conditions under which a matter field can be consistently
coupled to these theories without introducing unwanted extra degrees of freedom.
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1. Introduction
Scalar–tensor theories are a simple and robust framework of modified gravity and have been
employed as a model of the early/late-time universe as well as black holes/neutron stars. In
particular, there have been extensive studies on theories without the problem of Ostrograd-
sky ghosts [1,2], i.e., unstable extra degrees of freedom (DOFs) associated with nondegener-
ate higher derivatives in the equations of motion. The trend for searching for such ghost-free
scalar–tensor theories has accelerated after the rediscovery of Horndeski theories [3] (i.e., the
most general scalar–tensor theories with second-order Euler–Lagrange equations) in the con-
text of generalized Galileons [4,5]. A conventional way to construct ghost-free scalar–tensor
theories is to specify the form of the Lagrangian and then impose the so-called degeneracy
conditions to avoid the problem of Ostrogradsky ghosts [6–11]. For instance, performing this
program for the Lagrangian that contains the second derivative of the scalar field up to the
quadratic or cubic order (supplemented with appropriate interactions with the curvature ten-
sor), one obtains the so-called quadratic/cubic degenerate higher-order scalar–tensor (DHOST)
theories [7,12,13].1 (See Refs. [17,18] for reviews.)

1One could require the degeneracy only in the unitary gauge, in which case one obtains a broader
framework called U-DHOST theories [14–16]. In U-DHOST theories, there is an apparent Ostrogradsky
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Another systematic way to obtain a ghost-free scalar–tensor theory is to perform an invertible
transformation on known ghost-free scalar–tensor theories [19]. In the context of scalar–tensor
theories, one can consider the so-called disformal transformation [20–22], which defines a map
from the space of scalar–tensor theories to itself. A disformal transformation maps a pair of
the metric gμν and the scalar field φ to another one (ḡμν, φ) with the scalar field unchanged,
where

ḡμν [g, φ] = F0(φ, X )gμν + F1(φ, X )∇μφ∇νφ. (1)

Here, F0 and F1 are functions of (φ, X) with X := gαβ∇αφ∇βφ. Clearly, this is a generalization
of the conformal transformation for which F1 = 0. Note that the right-hand side of Eq. (1) is
the most general symmetric rank-two tensor constructed from the metric, the scalar field, and
its first derivative. The above transformation is known to be invertible, i.e., gμν can be uniquely
expressed as a functional of ḡμν and φ at least locally, so long as the following conditions are
satisfied [19,23]:

F0 �= 0, F0 + X F1 �= 0, F0 − X F0X − X 2F1X �= 0, (2)

with a subscript X denoting the partial derivative with respect to X. For a given action S[gμν ,
φ], the replacement gμν → ḡμν [g, φ] yields a new action S̃[gμν, φ] := S[ḡμν, φ]. It is known that
an invertible transformation does not change the number of physical DOFs, and hence the
absence of Ostrogradsky ghosts should be preserved under invertible transformations [24,25].
If one performs the disformal transformation (1) on Horndeski theories, one obtains a subclass
of the quadratic/cubic DHOST class, which we shall dub the disformal Horndeski class. In terms
of the classification in Refs. [12,13], this is a sum of the quadratic DHOST of class 2N-I (also
called class Ia in Ref. [26]) and the cubic DHOST of class 3N-I.2 Of course, one could further
perform the disformal transformation (1) on quadratic/cubic DHOST theories, but this does
not yield a new class of theories. Therefore, the disformal transformation of the form (1) is not
helpful for further enlarging the class of ghost-free scalar–tensor theories. Interestingly, from
a phenomenological point of view, disformal Horndeski theories provide the only viable class
within quadratic/cubic DHOST theories: Those lying outside the disformal Horndeski class
are disfavored because they do not accommodate a stable cosmological solution or otherwise
the tensor perturbations are nondynamical [27]. For this reason, the term “quadratic/cubic
DHOST theories” is often used to mean disformal Horndeski theories in the literature.

When two actions of scalar–tensor theories are related by an invertible disformal transfor-
mation, they are mathematically equivalent (up to boundary terms). Hence, one might think
that theories generated by an invertible transformation of known ones are not essentially new.
However, once matter fields are taken into account, the two theories are no longer related by
the invertible transformation in general, and hence they can be distinguished from each other.
Related to this issue, the introduction of matter fields could introduce extra DOFs; namely, the
number of DOFs of a matter-coupled scalar–tensor theory can be different from the sum of
the numbers of DOFs of the gravitational and matter sectors [28]. This happens because the

mode, but it satisfies an elliptic differential equation on a spacelike hypersurface and hence does not
propagate.

2Precisely speaking, one cannot freely add the Lagrangian of quadratic DHOST and that of cubic
DHOST because the degeneracy structure of the former is incompatible with that of the latter in gen-
eral. In order for the Lagrangian to be degenerate as a whole, one has to require additional degeneracy
conditions that relate coefficient functions in the quadratic sector and those in the cubic sector [13]. A
similar problem appears when matter field(s) are coupled to DHOST theories, as we discuss later.
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matter sector does not respect the degeneracy conditions imposed on the gravitational sector
in general. As such, the extra DOFs would be Ostrogradsky ghosts, and hence one would like
to avoid them.

Along this line of thought, the authors of the present paper developed a higher-derivative
generalization of the disformal transformation, in which the second (covariant) derivative of
the scalar field shows up [23]. We focused on the group structure under the functional com-
position of the generalized disformal transformation to clarify the conditions under which the
transformation is invertible (see Ref. [23] or Sect. 2.1 below for details). In the present paper, we
perform this invertible generalized disformal transformation on Horndeski theories to generate
a novel class of ghost-free scalar–tensor theories, which we dub generalized disformal Horndeski
theories. By construction, generalized disformal Horndeski theories include disformal Horn-
deski theories, i.e., the phenomenologically viable subclass of quadratic/cubic DHOST theories,
and more general ghost-free theories beyond them. We then specify the subclass of generalized
disformal Horndeski theories where gravitational waves propagate at the speed of light, which
is consistent with the almost simultaneous detection of the gravitational-wave event GW170817
and the gamma-ray burst 170817A emitted from a binary neutron star merger [29–31]. More-
over, we study the condition under which a matter field can be consistently coupled without
introducing unwanted extra DOFs.

The rest of this paper is organized as follows. In Sect. 2, we review the construction of in-
vertible generalized disformal transformations based on Ref. [23]. We then perform the trans-
formation on Horndeski theories to write down the action of generalized disformal Horndeski
theories. In Sect. 3, we study homogeneous and isotropic cosmology in generalized disformal
Horndeski theories. In Sect. 4, we investigate the consistency of matter coupling in generalized
disformal Horndeski theories. Finally, we draw our conclusions in Sect. 5.

2. Generalized disformal transformations
2.1 Invertible disformal transformations with higher derivatives
In this subsection, we briefly review the invertible disformal transformation with second deriva-
tives of the scalar field constructed in our previous study [23]. We consider a generalized dis-
formal transformation defined by

ḡμν [g, φ] = F0gμν + F1φμφν + 2F2φ(μXν) + F3XμXν, (3)

where φμ := ∂μφ and Xμ := ∂μX = 2φαφ
α
μ with φμν := ∇μ∇νφ and φα

μ = gαβφβμ. Also, we have
defined the symmetrization of a tensor Tμν by T(μν) := (Tμν + Tνμ)/2. Here, the Fi (i = 0, 1, 2,
3) are functions of (φ, X, Y, Z), with Y and Z defined as

Y := φμX μ, Z := XμX μ. (4)

We define the following quantities for later use:

F := F 2
0 + F0(X F1 + 2Y F2 + ZF3) + W (F 2

2 − F1F3), W := Y 2 − X Z. (5)

Note that the class of conventional disformal transformations of the form (1) is included in the
class of generalized disformal transformations given by Eq. (3).

Let D denote the set of disformal transformations of the form (3). In order to discuss the
inverse transformation, we consider a subset of D that forms groups under the following two
binary operations:
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� Matrix product:3

D2 � (ḡμν, ĝμν ) �→ (ḡ � ĝ)μν := ḡμαgαβ ĝβν. (6)

� Functional composition:

D2 � (ḡμν [g, φ], ĝμν [g, φ]) �→ (ḡ ◦ ĝ)μν := ḡμν [ĝ, φ]. (7)

Note that both the operations are associative and have an identity element (given by gμν

itself). The inverse element of ḡμν associated with the matrix product (after raising the indices
by gαβ) gives the inverse metric ḡμν , while the one associated with the functional composition is
nothing but the inverse transformation gμν [ḡ, φ]. We shall clarify which subset of D can form
groups under these operations.

Provided that F0 �= 0 and F �= 0, it is straightforward to obtain the inverse metric with respect
to ḡμν [23]:

ḡμν = 1
F0

[
gμν − F0F1 − Z(F 2

2 − F1F3)
F φμφν − 2

F0F2 + Y (F 2
2 − F1F3)

F φ(μX ν)

− F0F3 − X (F 2
2 − F1F3)

F X μX ν

]
. (8)

With the inverse metric, the kinetic term in the barred frame can be computed as

X̄ = ḡμνφμφν = X F0 − W F3

F , (9)

which is a function of (φ, X, Y, Z) in general. If X̄ depends on Y and/or Z in a nontrivial
manner, the quantities Ȳ and Z̄, which are respectively the barred counterparts of Y and Z
defined in Eq. (4), yield unwanted higher derivatives like ∂μY and ∂μZ through ∂μX̄ . Therefore,
we require

X̄Y = X̄Z = 0, (10)

where X̄Y := ∂X̄ /∂Y and X̄Z := ∂X̄ /∂Z, so that X̄ = X̄ (φ, X ). We also assume X̄X �= 0 so
that the relation X̄ = X̄ (φ, X ) can be solved for X to yield X = X (φ, X̄ ). Then, we have X̄μ :=
∂μX̄ = X̄X Xμ + X̄φφμ, and hence

Ȳ = ḡμνφμX̄ν = X̄X
Y F0 + W F2

F + X̄φX̄ ,

Z̄ = ḡμνX̄μX̄ν = X̄ 2
X

ZF0 − W F1

F + 2X̄φȲ − X̄ 2
φ X̄ . (11)

We further require that these two equations can be solved for Y and Z to obtain
Y = Y (φ, X̄ , Ȳ , Z̄) and Z = Z(φ, X̄ , Ȳ , Z̄), which is possible if the Jacobian determi-
nant |∂ (Ȳ , Z̄)/∂ (Y, Z)| is nonvanishing. As a side note, the quantity W is transformed as

W̄ := Ȳ 2 − X̄ Z̄ = X̄ 2
X

F W. (12)

The requirements discussed above provide the invertibility condition, namely [23],

F0 �= 0, F �= 0, X̄Y = X̄Z = 0, X̄X �= 0,

∣∣∣∣∂ (Ȳ , Z̄)
∂ (Y, Z)

∣∣∣∣ �= 0. (13)

3Strictly speaking, in order to guarantee the closedness under the matrix product, we need to enlarge
the underlying set D to include the antisymmetric part of φμXν [23]. Nevertheless, the inverse element
of an (invertible) element in D can also be found in D, which allows us to construct the inverse disformal
metric (8).
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Under this condition, we can obtain the inverse transformation for Eq. (3) in the following
form [23]:

gμν = 1
F0

(
ḡμν − X̄ 2

X F1 − 2X̄φX̄X F2 + X̄ 2
φ F3

X̄ 2
X

φμφν − 2
X̄X F2 − X̄φF3

X̄ 2
X

φ(μX̄ν) − F3

X̄ 2
X

X̄μX̄ν

)
, (14)

where the functions of (φ, X, Y, Z) in the right-hand side can be translated back into functions
of (φ, X̄ , Ȳ , Z̄) by use of Eqs. (9) and (11). In other words, the set of conditions (13) defines a
subset of D that forms groups under the matrix product (6) and the functional composition (7).

Thus, we clarified the invertibility condition (13) for the generalized disformal transforma-
tion (3). Before closing this subsection, there are several things to note about the invertible
generalized disformal transformation and its possible further extensions.

(1) The first is about the independent functional DOFs of invertible transformations. As
we already mentioned in Ref. [23], one can regard X̄ = X̄ (φ, X ) as a given function,
which then fixes one of the coefficient functions, say F3, in the generalized disformal
transformation (3) through Eq. (9). Written explicitly,

F3 = X F0 − X̄ (φ, X )
[
F0(F0 + X F1 + 2Y F2) + W F 2

2

]
W + X̄ (φ, X ) (ZF0 − W F1)

. (15)

Therefore, the invertible subclass of transformations is characterized by X̄ (φ, X ) as well
as the remaining three functions F0, F1, F2 of (φ, X, Y, Z). Then, the third condition in
Eq. (13) is trivial, and the independent functional DOFs should be chosen to satisfy the
remaining four conditions.

(2) The invertibility condition (13) for generalized disformal transformations is precisely a
generalization of Eq. (2) for conventional disformal transformations. Indeed, by choos-
ing the independent functional DOFs of generalized disformal transformations as

F0 = F0(φ, X ), F1 = F1(φ, X ), F2 = 0, X̄ = X
F0 + X F1

, (16)

we have F3 = 0 from Eq. (15), and hence the transformation law (3) reduces to the con-
ventional one (1). Then, the last two conditions in Eq. (13) are degenerate, which yield
X̄X ∝ F0 − X F0X − X 2F1X �= 0. Also, we now have F ∝ F0 + X F1 �= 0. Therefore, we re-
cover Eq. (2) from Eq. (13).

(3) The inverse transformation may not be unique in the following sense. We required the
last two conditions in Eq. (13) so that Eqs. (9) and (11) can be solved algebraically for X,
Y, and Z. Since these equations are nonlinear algebraic equations in general, there could
be multiple branches of (real) solutions. In this case, we have the inverse transformation
for each branch of solution.

(4) It could happen that the set of conditions (13) is violated only at some spacetime point(s)
for some particular configurations. If this happens for a solution in some scalar–tensor
theory, then the configuration obtained as a result of the disformal transformation can-
not be regarded as a solution in the disformal counterpart of the scalar–tensor theory in
general. In other words, such a transformation could introduce a new branch of solution
that is not connected to solutions in the original theory [32,33].

(5) The transformation law (3) is not general up to the second derivative of the scalar field,
and there could be other types of invertible transformations (see Ref. [34] for an exam-
ple constructed based on conformally/disformally invariant quantities). In principle, it
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would be possible to find a more general class of invertible disformal transformations
with the second derivative of the scalar field, which we leave for future work.

(6) Finally, it is also possible to construct invertible disformal transformations with third or
higher derivatives of the scalar field [23]. Moreover, as we shall discuss in Appendix A,
one can incorporate the curvature tensor in the transformation law.

2.2 Generalized disformal Horndeski theories
Let us apply the generalized disformal transformation (3) satisfying the invertibility condi-
tion (13) to generate novel ghost-free theories beyond the quadratic/cubic DHOST class. For a
given action Sg[gμν , φ] of scalar–tensor theories, one can replace the metric by the generalized
disformal metric (3) to obtain a new action, i.e.,

Sg[gμν, φ] �→ S̃g[gμν, φ] := Sg[ḡμν, φ]. (17)

Suppose that the generalized disformal metric satisfies the invertibility condition (13). Since
the two gravitational actions Sg[gμν , φ] and S̃g[gμν, φ] are related to each other by invertible
transformation, the two theories are mathematically equivalent in the absence of matter fields.
However, the theory described by the action S̃g[gμν, φ] should be distinguished from the seed
theory when matter fields are taken into account. Let us assume matter fields (which we denote
collectively by �) minimally coupled to gravity and consider the following two actions:

S[gμν, φ, �] := Sg[gμν, φ] + Sm[gμν, �], S̃[gμν, φ, �] := S̃g[gμν, φ] + Sm[gμν, �]. (18)

Due to the existence of the matter fields, the two actions are no longer disformally related to
each other. Indeed, performing the disformal transformation (gμν, φ) �→ (ḡμν, φ) on the first
action, we obtain

S[gμν, φ, �] �→ S[ḡμν, φ, �] = S̃g[gμν, φ] + Sm[ḡμν, �], (19)

where we have used Sg[ḡμν, φ] = S̃g[gμν, φ]. This is different from S̃[gμν, φ, �] because the mat-
ter fields are minimally coupled to ḡμν , not gμν . In this sense, the two theories are no longer
equivalent in the presence of matter fields.

In Ref. [23], we discussed the transformation of a general action via the generalized disfor-
mal transformation (3) and demonstrated that the transformation of a simplest scalar–tensor
theory indeed generates a nontrivial higher-derivative theory. In what follows, we study how
Horndeski theories, which form a large class of ghost-free scalar–tensor theories, are trans-
formed under the generalized disformal transformation and write down the resultant action
explicitly. As mentioned earlier, we are interested in the invertible subset of transformations,
by which any ghost-free theory is mapped to another ghost-free theory. Indeed, this is the case
when one performs the conventional disformal transformation on Horndeski theories, and we
call the resultant class of theories the disformal Horndeski class (or the DH class for short).
The DH class is (literally) part of the DHOST class: It is a sum of the quadratic DHOST of
class 2N-I and the cubic DHOST of class 3N-I [12,13]. We will see that the generalized disformal
transformation of Horndeski theories in general lies beyond the quadratic/cubic DHOST class.
We call the resultant class of novel ghost-free scalar–tensor theories the generalized disformal
Horndeski class (or the GDH class).

The action of Horndeski theories (in four spacetime dimensions) is given by

SH[gμν, φ] =
∫

d4x
√−g

5∑
I=2

LI [gμν, φ], (20)
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with

L2 := G2(φ, X ),

L3 := G3(φ, X )�φ,

L4 := G4(φ, X )R − 4G4X (φ, X )gα[μgν]βφαμφβν,

L5 := G5(φ, X )Gμνφμν + 2G5X (φ, X )gα[μ|gβ|ν|gγ |λ]φαμφβνφγλ. (21)

Here, GI are arbitrary functions of (φ, X), Gμν denotes the Einstein tensor, and indices inside
square brackets are antisymmetrized (note that μ, ν, and λ are antisymmetrized in the second
term of L5). The generalized disformal transformation of the action (20) is obtained by the
replacement gμν → ḡμν , with ḡμν being a functional of gμν and φ given by Eq. (3). By em-
ploying the transformation law for each building block of the action developed in Ref. [23],
it is straightforward to compute the generalized disformal transformation of the action (20).
Written explicitly, the action of GDH theories is given by

SGDH[gμν, φ] := SH[ḡμν, φ] =
∫

d4x
√−gJ

5∑
I=2

L̃I [gμν, φ], (22)

where J := F0F1/2 and

L̃2 := G2,

L̃3 := G3ḡμν (φμν − Cρ
μνφρ ),

L̃4 := G4ḡμν
(
Rμν − 2Cα

β[αCβ
ν]μ

) − 2
(
G4φφα + G4X X̄α

)
ḡμ[νCα]

μν

− 4G4X ḡα[μḡν]β (φαμ − Cσ
αμφσ )(φβν − Cρ

βνφρ ),

L̃5 := G5

(
ḡμλḡνσ − 1

2
ḡμν ḡλσ

)
(φμν − Cρ

μνφρ )
(
Rλσ + 2∇[αCα

σ ]λ + 2Cα
β[αCβ

σ ]λ
)

+ 2G5X ḡα[μ|ḡβ|ν|ḡγ |λ](φαμ − Cσ
αμφσ )(φβν − Cρ

βνφρ )(φγλ − Cη
γ λφη), (23)

with all GI and their derivatives evaluated at (φ, X̄ ). Here, we have defined the tensor C as the
change of the Christoffel symbol under the generalized disformal transformation:

Cλ
μν := �̄λ

μν − �λ
μν = ḡλα

(
∇(μḡν)α − 1

2
∇αḡμν

)
, (24)

which contains the third derivative of φ through ∇ḡ since ḡ itself contains the second derivative
of φ [see Eq. (3)]. Note that we have performed an integration by parts to remove a covariant
derivative acting on the tensor C in L̃4. There still remain terms containing ∇C and hence the
fourth derivatives of φ, but they can also be removed by integration by parts.4 This means that
the action (22) of GDH theories can be recast in a form where derivatives of the scalar field
appear only up to the cubic order.

In Fig. 1, we illustrate the inclusion relation among ghost-free scalar–tensor theories. The
GDH theory (22) is characterized by the functions GI(φ, X) (I = 2, 3, 4, 5) associated with the
seed Horndeski theory and the functions X̄ (φ, X ) and Fi(φ, X, Y, Z) (i = 0, 1, 2) associated
with the invertible generalized disformal transformation. As mentioned above, the GDH class
involves known ghost-free scalar–tensor theories as special subclasses. Clearly, it includes the
Horndeski class as a subclass, which amounts to considering the identity transformation (i.e.,
F0 = 1, F1 = F2 = F3 = 0). For conventional disformal transformations characterized by F0(φ,

4The authors would like to thank Hiroaki W. H. Tahara for useful discussion on this point.
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Fig. 1. Inclusion relation among ghost-free scalar–tensor theories. Independent functional DOFs are
shown for each theory. The DH class is part of the DHOST class. It is related to the Horndeski class via
the conventional disformal transformation (1) and can accommodate viable cosmological solutions. The
GDH class is a generalization of the DH class, which is related to the Horndeski class via the generalized
disformal transformation (3).

X) and F1(φ, X) satisfying the invertibility condition (2), the action (22) reduces to DH theories,
though the entire class of quadratic/cubic DHOST theories is not covered by GDH theories. It
is known that the complement of the DH subclass in the quadratic/cubic DHOST class, which
corresponds to the shaded region in Fig. 1, does not accommodate a stable cosmological solu-
tion or otherwise the tensor perturbations are nondynamical [27]. Hence, from a phenomeno-
logical point of view, DH theories provide the only viable class within quadratic/cubic DHOST
theories. With generic Fi(φ, X, Y, Z) satisfying the invertibility condition (13), the generalized
disformal transformation allows us to go beyond quadratic/cubic DHOST theories and obtain
a wider framework of GDH theories (22), which are free from Ostrogradsky ghosts and are
expected to admit stable and viable cosmological solutions.

3. Homogeneous and isotropic cosmology
In this section, we investigate homogeneous and isotropic cosmology in GDH theories based
on the transformation property of the metric at both the background and perturbative levels. In
particular, we show that there is a nontrivial subclass of GDH theories where the propagation
speed of gravitational waves coincides with that of light. We also clarify the conditions for the
absence of ghost/gradient instabilities for tensor and scalar perturbations.

3.1 ADM decomposition under the unitary gauge
We first study how the Arnowitt–Deser–Misner (ADM) variables are transformed under the
generalized disformal transformation. This is useful in the context of cosmology where the
scalar field has a timelike profile and hence defines a preferred time direction. Note, however,
that the results in this subsection apply to arbitrary spacetimes with a timelike scalar profile.

Let us introduce the ADM decomposition of the metric gμν as

gμνdxμdxν = −N 2dt2 + γi j (dxi + N idt)(dxj + N jdt), (25)

where N is the lapse function, N i is the shift vector, and γ ij is the induced metric. Likewise, the
ADM decomposition of the disformal metric ḡμν in Eq. (3) is written as

ḡμνdxμdxν = −N̄ 2dt2 + γ̄i j (dxi + N̄ idt)(dxj + N̄ jdt). (26)
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Under the unitary gauge where the scalar field is spatially uniform [i.e., φ = φ(t)], we have

X = − φ̇2

N 2
, X̄ = − φ̇2

N̄ 2
, (27)

with a dot denoting the derivative with respect to t.5 In what follows, we study the relationship
between (N ,Ni, γi j ) and (N̄ , N̄i, γ̄i j ).

On performing the (generalized) disformal transformation, one could simultaneously redefine
the time coordinate so that the new time–time component of the disformal metric coincides
with the original one. It is natural to perform such a coordinate redefinition when one works
in a coordinate system where the lapse function is set to unity, as done in, e.g., Refs. [35,36].
However, we do not do so in the present paper in order to clarify how each component of the
metric is changed under the disformal transformation. Hence, one should be careful about this
issue when comparing the following results with those in earlier works.

For the transformation (3) to be invertible, we require that X̄ should be written in the
form X̄ (φ, X ), under which we obtain

N̄ 2 = − φ̇2

X̄ (φ, −φ̇2/N 2)
. (28)

Note that this equation can be solved for N algebraically as

N 2 = − φ̇2

X (φ, −φ̇2/N̄ 2)
. (29)

Here, X = X (φ, X̄ ) is the inverse function of X̄ = X̄ (φ, X ), which exists again due to the in-
vertibility of the transformation (3) [see Eq. (13)]. It is also straightforward to obtain the barred
counterpart of the shift vector and the induced metric as

N̄i = ḡ0i = F0Ni + (F2φ̇ + F3Ẋ )DiX,

γ̄i j = ḡi j = F0γi j + F3DiX D jX, (30)

where Di is the covariant derivative associated with γ ij. The quantities Y and Z are written as

Y = g0μφ̇Xμ = − φ̇

N 2

(
Ẋ − N kDkX

)
,

Z = gμνXμXν = DkX DkX + Y 2

X
, (31)

so that

W = Y 2 − X Z = −X DkX DkX . (32)

Note that spatial indices for unbarred quantities are raised by γ ij. From this equation, we find
that the quantity W does not contain Ẋ (and hence Ṅ ). Using the above relations, we obtain
the inverse spatial metric in the barred frame as

γ̄ i j = 1
F0

(
γ i j − X F3

X F0 − W F3
DiX D jX

)
, (33)

5In an epoch where the scalar field does not evolve monotonically in time, one cannot choose the unitary
gauge. Such a situation typically happens if we identify the scalar field as the inflaton in the context
of standard inflationary cosmology, where the inflaton oscillates in the reheating era. In this case, one
should choose another appropriate gauge or perform a gauge-independent analysis. Nevertheless, it is
straightforward to redo our analysis either in another gauge or in a gauge-independent way, and there
would be no conceptual problem.
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which is used to raise spatial indices for barred quantities. For instance,

N̄ i = γ̄ i jN̄ j = N i + φ̇
X F2 + Y F3

X F0 − W F3
DiX . (34)

We stress that the invertibility of the generalized disformal transformation is crucial to obtain
the transformation law for the lapse function in the simple form of Eq. (28). Then, as it should
be, the map (N ,Ni, γi j ) �→ (N̄ , N̄i, γ̄i j ) is invertible. For noninvertible transformations that do
not satisfy the condition (10), one can still obtain N̄ as a functional of unbarred variables by
employing Eq. (9). However, the transformation law now contains Ṅ and hence is no longer an
algebraic equation for N .

3.2 Background
Hereafter, we restrict ourselves to the spatially flat Friedmann–Lemaître–Robertson–Walker
(FLRW) background and perturbations about it. The background metric and scalar field are
described by

gμνdxμdxν = −N(t)2dt2 + a(t)2δi jdxidx j, φ = φ(t), (35)

with a(t) being the scale factor. Then, the scalar-field kinetic term X also depends on t only.
From Eqs. (27) and (31), the background value of the quantities X, Y, and Z are given by

XBG := − φ̇2

N2
, YBG := XBGẊBG

φ̇
, ZBG := Y 2

BG

XBG
, (36)

respectively. Here and in what follows, quantities with the subscript “BG” indicate their back-
ground value (and we omit the subscript when it is unnecessary). Equation (36) means that the
quantity W = Y2 − XZ vanishes at the background level, which is an important property of
the FLRW spacetime.

The barred-frame metric also takes the FLRW form,

ḡμνdxμdxν = −N̄(t)2dt2 + ā(t)2δi jdxidx j, (37)

with N̄ = N̄(N ) and ā = ā[N, a] given by

N̄2

N2
= XBG

X̄ (φ, XBG)
= FBG

F0,BG
, ā = F 1/2

0,BG a. (38)

Hence, on the FLRW background, F0 > 0 and F > 0 should be required in order to preserve
the metric signature. Note that we have used Eq. (9) with W = 0 and also X̄ = X̄ (φ, X ), which
follows from the invertibility condition (13). It should also be noted that Eq. (38) can be inverted
to obtain N = N(N̄ ) and a = a[N̄, ā], which is consistent with the result of Ref. [37].

Let us now investigate perturbations about the FLRW background. In principle, the formulae
in Sect. 3.1 provide transformation laws for nonlinear perturbations. Actually, the authors of
Ref. [36] studied how nonlinear perturbations about the FLRW background are transformed
under conventional disformal transformations. However, the extension of their discussion to
generalized disformal transformations would be nontrivial due to the additional terms in the
transformation laws, i.e., the second term of each equation in Eq. (30). In any case, the formulae
in Sect. 3.1 are useful to study linear perturbations about the FLRW background, as we do in
the following subsections.
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3.3 Tensor perturbations
We first consider tensor perturbations about the FLRW background. In the unbarred frame,
the tensor perturbations hij appear in the metric as

gμνdxμdxν = −N2dt2 + a2 (
δi j + hi j

)
dxidx j, (39)

with hii = 0 = ∂ jhij. Note that X remains unperturbed under the tensor perturbations. Hence,
performing the disformal transformation (3) on Eq. (39), we have

ḡμνdxμdxν = −N̄2dt2 + ā2 (
δi j + hi j

)
dxidx j . (40)

This means that the tensor perturbations are disformally invariant, i.e.,

h̄i j = hi j, (41)

which is consistent with the result in Ref. [38].
For Horndeski theories described by the action (20), the quadratic action for the tensor per-

turbations takes the form [5]

S(2)
T [hi j ] = 1

8

∫
dtd3x Na3

[GT

N2
ḣ2

i j − FT

a2
(∂khi j )2

]
, (42)

where we have defined

GT := 2
[

G4 − 2X G4X + X
2

G5φ + H (−X )3/2G5X

]
,

FT := 2
(

G4 − X
2

G5φ + Y
2

G5X

)
, (43)

with H := ȧ/(Na) being the Hubble parameter. So long as there is no tensor perturbation as-
sociated with the matter sector, one can use this quadratic action to study the linear dynamics
of the tensor perturbations associated with the metric. Here and in what follows, coefficients
in the quadratic action are evaluated at the background. Also, repeated spatial indices of per-
turbation variables are contracted by the Kronecker delta. From the above action, we find the
squared sound speed for the tensor perturbations as

c2
T = FT

GT
. (44)

We see that the tensor perturbations are free of ghost/gradient instabilities if

GT > 0, FT > 0. (45)

The quadratic action (42) for Horndeski theories can be straightforwardly mapped to the one
for GDH theories. More concretely, we first replace all the variables by barred ones and then
translate it in the unbarred language by use of Eqs. (38) and (41), i.e.,

S̃(2)
T [hi j ] = 1

8

∫
dtd3x N̄ā3

[
ḠT

N̄2
˙̄h2

i j − F̄T

ā2
(∂kh̄i j )2

]

= 1
8

∫
dtd3x Na3J

[
G̃T

N2
ḣ2

i j − F̃T

a2
(∂khi j )2

]
, (46)

where we have defined

ḠT := 2
[

G4 − 2X̄ G4X + X̄
2

G5φ + H̄ (−X̄ )3/2G5X

]
,

F̄T := 2
(

G4 − X̄
2

G5φ + Ȳ
2

G5X

)
, (47)
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with H̄ := ˙̄a/(N̄ā) and

G̃T := X̄
X
ḠT , F̃T := F̄T

F0
. (48)

Note that the functions G4 and G5 as well as their derivatives are now evaluated at (φ, X̄ ). The
squared sound speed is given by

c̃2
T = F̃T

G̃T
= X F̄T

X̄ F0ḠT
. (49)

Also, the conditions for the absence of ghost/gradient instabilities are given by

G̃T > 0, F̃T > 0. (50)

In what follows, we discuss issues on the speed of gravitational waves. First, it should be noted
that we always assume the existence of matter field(s) that are minimally coupled, and hence
light propagates at a unit speed in both the seed Horndeski and GDH theories. As mentioned
earlier, the almost simultaneous detection of the gravitational-wave event GW170817 and the
gamma-ray burst 170817A posed a tight constraint on the propagation speed of gravitational
waves in the late-time universe, which motivates us to study theories where gravitational waves
propagate at a unit speed. It is now well known that Horndeski theories with G4X = G5 = 0
satisfy c2

T = 1 regardless of the background evolution so long as we consider a homogeneous
and isotropic background [39–41]. Indeed, we haveGT = FT = 2G4 in this case, and hence c2

T =
1 is deduced from Eq. (44). A subclass of DHOST theories with c2

T = 1 is also isolated [42].
Here, we further enlarge the viable theory space by using the framework of GDH theories.

Let us use Horndeski theories with G5 = 0 (and not necessarily G4X = 0) as a seed, for which

ḠT = 2
[
G4(φ, X̄ ) − 2X̄ G4X (φ, X̄ )

]
, F̄T = 2G4(φ, X̄ ). (51)

Note that both ḠT and F̄T can be translated into functions of (φ, X) since we are interested in
the invertible subclass of the generalized disformal transformations for which X̄ = X̄ (φ, X ).
The reason why we set G5 = 0 is to remove the term containing the scale factor a, whose time
evolution depends on the matter sector. Then, the squared sound speed of tensor perturbations
in Eq. (49) can be written as

c̃2
T = X G4(φ, X̄ )

X̄ F0
[
G4(φ, X̄ ) − 2X̄ G4X (φ, X̄ )

] . (52)

Therefore, if we choose the conformal factor of the disformal transformation as6

F0 = X G4(φ, X̄ )

X̄
[
G4(φ, X̄ ) − 2X̄ G4X (φ, X̄ )

] , (53)

we can make c̃2
T = 1. This also means that one can map a Horndeski model with c2

T �= 1 to one
with c̃2

T = 1 by generalized disformal transformation, which is a generalization of the results
in Refs. [39,40,43]. We note that the above expression for F0 does not contain either Y or Z
(though there could be an implicit dependence through W). As a result, J = F0F1/2 is also
independent of Y or Z on the FLRW background, which can be verified by use of Eq. (38). As
we shall see in Sect. 4.1, this property leads to the consistency of matter coupling at the level
of linear cosmological perturbations.

6Since WBG = Y 2
BG − XBGZBG = 0 on the FLRW background [see Eq. (36)], this requirement does not

completely fix the functional form of F0(φ, X, Y, Z). This ambiguity may be solved by studying a spatially
inhomogeneous background (e.g., black hole solutions) where WBG �= 0.
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One can also see that the expression of the speed of gravitational waves remains unchanged
for transformations with

F0 = X

X̄
, (54)

or, equivalently, F1X + 2F2Y + F3Z = 0. This is the case for purely conformal transformations.
For conventional disformal transformations, this requirement yields F1 = 0; i.e., the transfor-
mation must be conformal. On the other hand, nonconformal transformations satisfying the
condition (54) exist within generalized disformal transformations. However, one should bear in
mind that, although the expression of the gravitational-wave speed itself does not change un-
der the disformal transformation if the condition (54) is satisfied, its value could change. This
is because c2

T and c̃2
T depend on the time evolution of φ in general, which could change under

the disformal transformation.

3.4 Vector perturbations
In this subsection, we study vector perturbations about the FLRW background. In the unbarred
frame, the vector perturbations appear in the metric as

gμνdxμdxν = −N2dt2 + 2NaUidtdxi + a2 (
δi j + 2∂(iVj)

)
dxidx j, (55)

with ∂ iUi = 0 = ∂ iVi. Similarly, we write the barred-frame metric with vector perturbations as

ḡμνdxμdxν = −N̄2dt2 + 2N̄āŪidtdxi + ā2 (
δi j + 2∂(iV̄j)

)
dxidx j, (56)

with ∂iŪi = 0 = ∂iV̄i. The ADM variables are given by

N = N
(

1 + 1
2

U 2
i + · · ·

)
, Ni = NaUi, γi j = a2 (

δi j + 2∂(iVj)
)
,

N̄ = N̄
(

1 + 1
2

Ū 2
i + · · ·

)
, N̄i = N̄āŪi, γ̄i j = ā2 (

δi j + 2∂(iV̄j)
)
, (57)

where the ellipses denote terms of third or higher order in perturbations. We remind the reader
that U 2

i means δijUiUj. Note that X remains unperturbed under the vector perturbations up
to the linear order. Then, Eqs. (28) and (30) allow us to express barred variables in terms of
unbarred ones as

N̄ 2 � N̄2, N̄i �
(

X̄ F0

X

)1/2

N̄āUi, γ̄i j � ā2 (
δi j + 2∂(iVj)

)
, (58)

where the symbol � denotes equality up to linear order in perturbations. Comparing these with
the second line of Eq. (57), we find the following relation between the linear vector perturba-
tions in the barred and unbarred frames:

Ūi =
(

X̄ F0

X

)1/2

Ui, V̄i = Vi. (59)

Note that the vector modes are nondynamical in Horndeski theories and hence in GDH theo-
ries, unless the matter sector introduces a dynamical vector mode.

3.5 Scalar perturbations
Let us now study scalar perturbations about the FLRW background. We focus on the gravita-
tional sector in this section and the coupling with the matter sector is studied in Sect. 4. We take
the unitary gauge where φ = φ(t) and consider only the metric perturbations. In the unbarred
frame, the scalar perturbations appear in the metric as

gμνdxμdxν = −N2(1 + 2α)dt2 + 2Na∂iχdtdxi + a2 [
(1 + 2ζ )δi j + 2∂i∂ jE

]
dxidx j, (60)
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where α, χ , ζ , and E denote the perturbation variables. Likewise, in the barred frame,

ḡμνdxμdxν := −N̄2(1 + 2ᾱ)dt2 + 2N̄ā∂iχ̄dtdxi + ā2 [
(1 + 2ζ̄ )δi j + 2∂i∂ j Ē

]
dxidx j . (61)

In terms of the ADM variables,

N = N
[

1 + α − α2

2
+ 1

2
(∂iχ )2 + · · ·

]
, Ni = Na∂iχ, γi j = a2 [

(1 + 2ζ )δi j + 2∂i∂ jE
]
,

N̄ = N̄
[

1 + ᾱ − ᾱ2

2
+ 1

2
(∂iχ̄ )2 + · · ·

]
, N̄i = N̄ā∂iχ̄ , γ̄i j = ā2 [

(1 + 2ζ̄ )δi j + 2∂i∂ j Ē
]
,

(62)

where the ellipses denote terms of third or higher order in perturbations. Up to the linear order
in perturbations, we have

X � XBG(1 − 2α), Y � YBG(1 − 4α) − 2X 2

φ̇
α̇, Z � ZBG(1 − 6α) − 4XY

φ̇
α̇. (63)

Hence, functions of (φ, X, Y, Z) are also perturbed, e.g.,

F0(φ, X,Y, Z) � F0,BG − 2(X F0X + 2Y F0Y + 3ZF0Z )α − 2X

φ̇
(X F0Y + 2Y F0Z )α̇. (64)

With these relations, Eqs. (28) and (30) yield

N̄ 2 � N̄2
(

1 + 2X X̄X

X̄
α

)
,

N̄i �
(

X̄ F0

X

)1/2

N̄ā∂iχ − 2φ̇(X F2 + Y F3)∂iα,

γ̄i j � F0a2 [
(1 + 2ζ )δi j + 2∂i∂ jE

]
. (65)

Note that, in the expression for γ̄i j , one should keep the linear term of F0 shown in Eq. (64)
since it is multiplied by the background part. Therefore, the linear scalar perturbations in the
barred frame are related to those in the unbarred frame as

ᾱ = X X̄X

X̄
α,

χ̄ =
(

X̄ F0

X

)1/2 [
χ − 2φ̇

F0Na
(X F2 + Y F3)α

]
,

ζ̄ = ζ − 1
F0

(X F0X + 2Y F0Y + 3ZF0Z )α − X

φ̇F0
(X F0Y + 2Y F0Z )α̇,

Ē = E . (66)

Thanks to the invertibility condition (13) imposed on the nonlinear transformation law (3),
the invertibility is also manifest at the level of linear perturbations. Note that, without the
condition (10), the time derivative of α shows up in ᾱ, which makes the transformation of the
lapse perturbation noninvertible. It should also be noted that the above results are consistent
with those in Ref. [38].

One can discuss the linear stability of scalar perturbations in a similar manner to the case of
tensor perturbations studied in Sect. 3.3. Namely, we first start from the quadratic action for
the scalar perturbations in Horndeski theories, and then map it to the one for GDH theories.
As mentioned earlier, we ignore matter field(s) in this section and we shall discuss the case
with matter field(s) in Sect. 4. In what follows, we choose the gauge where E = 0 (on top of
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δφ = 0). Note that this is a complete gauge fixing and hence can be imposed at the Lagrangian
level [44]. For Horndeski theories described by the action (20), the perturbation variables α and
χ (i.e., those associated with the lapse function and the shift vector, respectively) are auxiliary
variables, and hence ζ plays the role of master variable. The quadratic action can be written
as [5]

S(2)
S [ζ ] =

∫
dtd3x Na3

[ GS

N2
ζ̇ 2 − FS

a2
(∂kζ )2

]
, (67)

where we have defined

GS := GT

�2

(
3�2 + GT �

)
, FS := 1

Na

( a
�
G2

T

)·
− FT , (68)

with

� := X G2X + 2X 2G2X X − 6H φ̇
(
2X G3X + X 2G3X X

) − X
(
G3φ + X G3φX

)
− 6H2 (

G4 − 7X G4X − 16X 2G4X X − 4X 3G4X X X
)

− 6H φ̇
(
G4φ + 5X G4φX + 2X 2G4φX X

) + 2H3φ̇
(
15X G5X + 13X 2G5X X + 2X 3G5X X X

)
+ 3H2X

(
6G5φ + 9X G5φX + 2X 2G5φX X

)
,

� := φ̇X G3X + 2H
(
G4 − 4X G4X − 4X 2G4X X

) + φ̇
(
G4φ + 2X G4φX

)
− H2φ̇

(
5X G5X + 2X 2G5X X

) − HX
(
3G5φ + 2X G5φX

)
. (69)

We now map the action (67) by replacing all the variables by barred ones and then translate it
in the unbarred language by use of Eq. (38), i.e.,

S̃(2)
S [ζ̄ ] =

∫
dtd3x N̄ā3

[
ḠS

N̄2
˙̄ζ 2 − F̄S

ā2
(∂kζ̄ )2

]

=
∫

dtd3x Na3J
[
G̃S

N2
˙̄ζ 2 − F̃S

a2
(∂kζ̄ )2

]
, (70)

where ḠS and F̄S are the barred counterparts of GS and FS, and

G̃S := X̄
X
ḠS, F̃S := F̄S

F0
. (71)

Therefore, the conditions for the absence of ghost/gradient instabilities are given by

G̃S > 0, F̃S > 0. (72)

Note that the master variable ζ is transformed in a nontrivial manner under the generalized
disformal transformation. As a result, the master variable in GDH theories, i.e., ζ̄ , is a linear
combination of ζ , α, and α̇ [see Eq. (66)]. Related to this point, when reconstructing metric
perturbations from the master variable, one also needs the transformation law (66) for each
perturbation variable.

4. Coupling with a matter field
By construction, any DHOST theories have three physical DOFs in total: two from the met-
ric and one from the scalar field. Let us consider matter field(s) coupled to DHOST theories.
Provided that the matter sector has n DOFs, one would expect that the whole system has n +
3 DOFs. However, this is not the case in general: The whole system can have more than n + 3
DOFs, which happens when the matter sector does not respect the degeneracy conditions im-
posed on the gravitational sector (see Ref. [28] for a detailed discussion). One should avoid such
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a situation as the revived DOF(s) would be unstable Ostrogradsky mode(s). When a DHOST
theory with matter field(s) has exactly n + 3 DOFs, the matter coupling is said to be consistent.

Regarding this point, the authors of Ref. [28] investigated which matter fields can be coupled
to DH theories in a consistent manner. Along this line of thought, in this section, we shall clarify
which GDH theories can accommodate consistent matter coupling. We perform calculations
in the “Horndeski frame” where the matter scalar field is coupled to the generalized disformal
metric. As we shall see below, this not only simplifies the analysis but also clarifies the origin of
the revival of the Ostrogradsky mode in the presence of a matter field. Note that, throughout
this section, functions of (φ, X, Y, Z) are regarded as those of (φ, X, Y, W), i.e., W = Y2 − XZ
is regarded as an independent variable instead of Z for the reason explained below.

4.1 Linear cosmological perturbations
In order to see whether or not the generalized disformal coupling in the matter sector leads to
an unwanted extra DOF, let us first consider cosmological scalar perturbations. As in Sect. 3.5,
we impose the gauge conditions E = δφ = 0, which completely fix the gauge DOFs. For con-
creteness, in this section, we consider only a k-essence scalar field [45] as a choice of the matter
sector, which is often used in the context of cosmology to mimic a barotropic perfect fluid. Nev-
ertheless, we shall see that our conclusion actually does not rely on the details of the matter La-
grangian and applies to a much broader class of matter Lagrangian. Let σ denote the k-essence
scalar field (whose perturbation is denoted by δσ ) and consider the following Horndeski-frame
action:

S = SH[gμν, φ] + Sm[ḡμν, σ ], (73)

where SH denotes the action of Horndeski theories (20) and the matter action Sm is given by

Sm[ḡμν, σ ] :=
∫

d4x
√

−ḡ P(X̄σ ), X̄σ := ḡαβ∂ασ∂βσ. (74)

Here, ḡμν is the generalized disformal metric defined in Eq. (3).
The quadratic Lagrangian has contributions from both the gravitational and matter sectors.

The contribution from the gravitational sector L(2)
H is given by [5]7

L(2)
H [α, χ, ζ ] = Na3

(
− 3GT

ζ̇ 2

N2
− FT

a2
ζ∂2ζ + �α2 − 2�

a2
α∂2χ

+ 6�α
ζ̇

N
− 2GT

a2
α∂2ζ + 2GT

a2

ζ̇

N
∂2χ

)
, (75)

with GT , FT , �, and � being those defined in Eqs. (43) and (69). Note that L(2)
H does not contain

α̇, i.e., the time derivative of the lapse perturbation. On the other hand, the contribution from
the matter sector L(2)

m contains α̇, which makes α dynamical and hence leads to inconsistent
matter coupling in general. In order to avoid this problem, we require that the kinetic matrix
of the matter sector is degenerate. The kinetic terms in L(2)

m are given by

L(2)
m ⊃ Na3J

(
2X 4

φ̇2

JYY

J Pα̇2 + 4X 2σ̇

φ̇N̄2

JY

J P′α̇ ˙δσ − P′ + 2X̄σ P′′

N̄2
˙δσ

2
)

, (76)

where P′ := dP/dX̄σ and P′′ := d2P/dX̄ 2
σ , and we recall that J = F0F1/2. Note that, as men-

tioned earlier, we now regard J as a function of (φ, X, Y, W) so that α̇ appears only through

7Terms with (∂2χ )2 vanish after using the Hamiltonian constraint. Also, if one ignores the matter sector,
integrating out α and χ from Eq. (75) yields the quadratic action (67).
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Y. Since we require that the kinetic matrix associated with Eq. (76) should be degenerate for
any function P, the quantity J should satisfy

JY = JYY = 0 (77)

at the background level. Interestingly, GDH theories with c̃2
T = 1 obtained in Sect. 3.3 auto-

matically satisfy this condition [see Eq. (53) and the subsequent discussion].

4.2 Nonlinear and background-independent consideration
The above discussion at the linear level suggests that the appearance of the time derivative of
the lapse function results in an extra DOF. With the formulae in Sect. 3.1, one can obtain the
condition on the generalized disformal transformation under which the matter action (74) does
not contain Ṅ even at the nonlinear level on an arbitrary background with a timelike scalar
profile. We note that Ṅ can show up only through the components of the disformal metric N̄i

and γ̄i j because the barred lapse function N̄ does not depend on Ṅ under the invertibility
condition (10) [see Eq. (28)]. From Eqs. (30) and (31), we have

N̄i = F0Ni +
[

φ̇

X
(X F2 + Y F3) + F3N kDkX

]
DiX, γ̄i j = F0γi j + F3DiX D jX . (78)

As in the previous subsection, it is useful to regard all functions of (φ, X, Y, Z) as functions of
(φ, X, Y, W) so that Ṅ appears only through Y. Then, requiring the Y-independence of N̄i and
γ̄i j , we obtain the following condition:

F0Y = F3Y = X F2Y + F3 = 0. (79)

Of course, on top of this condition, one has to require the invertibility condition (13). Since we
are now regarding W as an independent variable instead of Z, the invertibility condition (13)
reads

F0 �= 0, F �= 0, X̄Y = X̄W = 0, X̄X �= 0,

∣∣∣∣∂ (Ȳ ,W̄ )
∂ (Y,W )

∣∣∣∣ �= 0. (80)

It should also be noted that, under the invertibility condition, the condition (79) is strictly
stronger than the condition (77). Actually, GDH theories with c̃2

T = 1 do not necessarily satisfy
Eq. (79). Thus, imposing the conditions (79) and (80) isolates a subclass of GDH theories with
c̃2

T = 1 where the matter coupling would be consistent even at the nonlinear level on an arbitrary
background spacetime with a timelike scalar profile.

One can write down an explicit form of invertible generalized transformations that satisfy the
conditions (79) and (80) for consistent matter coupling.8 Equation (79) fixes the Y-dependence
of F0, F2, F3 as

F0 = F0(φ, X,W ) ( �= 0), F3 = F3(φ, X,W ), F2 = h(φ, X,W ) − Y
X

F3(φ, X,W ), (81)

with h being an arbitrary function of (φ, X, W). Then, from Eq. (9) and the third condition in
Eq. (80), the functional form of F1 can be fixed as

F1 = F − W h2

X̄F
− F0

X
− 2Y

X
h + Y 2

X 2
F3, F = X F0 − W F3

X̄
( �= 0), (82)

8The authors would like to thank Atsushi Naruko, Ryo Saito, Norihiro Tanahashi, and Daisuke Ya-
mauchi for their correspondence on this point. The following arguments are based on the correspon-
dence with them and show that our result is consistent with theirs in Ref. [46] under the invertibility
condition (80).
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where we regard X̄ = X̄ (φ, X ) as given and require X̄X �= 0. Also, by use of Eqs. (11) and (12),
we have

Ȳ = X̄X

(
X̄
X

Y + W h
F

)
+ X̄φX̄ , W̄ = X̄ 2

X

F W, (83)

and hence the last condition in Eq. (80) reads W̄W �= 0, or, equivalently,

∂

∂W

(
X F0 − W F3

W

)
�= 0. (84)

To summarize, for given functions F0(φ, X, W), F3(φ, X, W), h(φ, X, W), and X̄ (φ, X ) such
that

F0 �= 0, X F0 − W F3 �= 0, X̄X �= 0,
∂

∂W

(
X F0 − W F3

W

)
�= 0, (85)

the generalized disformal transformation with the coefficient functions given by Eqs. (81) and
(82) is invertible and presumably accommodates consistent matter coupling under the unitary
gauge.

Finally, we stress that the discussion in this section does not rely on the details of the matter
Lagrangian: So long as the matter Lagrangian Lm[ḡμν, �] does not contain derivatives of ḡμν ,
the time derivative of the lapse function does not arise in the matter sector, and hence the matter
coupling would be consistent. Therefore, the matter action does not have to be the k-essence
one (74). For instance, one could incorporate a potential term into the k-essence action. Also,
the matter field can be standard gauge (or Proca) fields. However, the situation is nontrivial for
fermionic matter fields: In the case of fermions, the matter Lagrangian is written in terms of
not the metric itself but the tetrad, and hence one needs to develop the transformation law for
the tetrad [47], which is beyond the scope of the present paper.

5. Conclusions
Disformal transformations have played an important role in the context of scalar–tensor the-
ories. In particular, invertible disformal transformations can be used to enlarge the framework
of scalar–tensor theories free from Ostrogradsky ghosts. Indeed, using the Horndeski class as a
seed and performing conventional disformal transformations containing up to the first deriva-
tive of the scalar field on it, one can generate a more general class of ghost-free scalar–tensor
theories, which belongs to the quadratic/cubic DHOST class. A good thing is that the resultant
class of theories, which we dubbed the disformal Horndeski (DH) class, can accommodate
stable and viable cosmological solutions, whereas the remaining part of the quadratic/cubic
DHOST class does not allow viable cosmology. Motivated by this fact, in the present paper,
we performed a higher-derivative extension of invertible disformal transformations developed
in Ref. [23] on Horndeski theories to construct a novel class of ghost-free scalar–tensor theo-
ries, which we dubbed generalized disformal Horndeski (GDH) theories. While conventional
ghost-free scalar–tensor theories contain derivatives of the scalar field up to the second order,
our GDH theories contain the third derivative of the scalar field (see Sect. 2.2).

In Sect. 3, we studied linear cosmological perturbations in GDH theories. We discussed how
the perturbation variables are transformed under generalized disformal transformations and
showed that the invertibility is manifest at the level of linear perturbations. We also clarified
the conditions for the absence of ghost/gradient instabilities for tensor and scalar perturba-
tions. Moreover, we identified a subclass of theories with c2

T = 1 (i.e., gravitational waves prop-
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agate at the speed of light), which is consistent with the almost simultaneous detection of the
gravitational-wave event GW170817 and the gamma-ray burst 170817A.

In Sect. 4, we studied conditions under which a matter field can be consistently coupled to
GDH theories without introducing unwanted extra DOF(s). For simplicity, we worked in the
frame where the gravitational action is given by the Horndeski one (and hence the matter field
is coupled to the generalized disformal metric). We found that the generalized disformal cou-
pling in the matter sector introduces the time derivative of the lapse function in general, which
results in an unwanted extra DOF. Nevertheless, there is a subclass of GDH theories for which
the matter coupling would be consistent at the level of linear cosmological perturbations (see
Sect. 4.1). Interestingly, theories with c2

T = 1 belong to this subclass. Moreover, in Sect. 4.2, we
specified a class of invertible generalized disformal transformations in which the time deriva-
tive of the lapse function does not show up. The class of GDH theories obtained via such
transformations would accommodate consistent matter coupling even at the nonlinear level on
an arbitrary background spacetime, provided that the matter Lagrangian does not contain the
derivative of the metric to which the matter field is minimally coupled.

There are several possible future directions. It would be intriguing to study how GDH theories
are embedded in the framework of effective field theory of inflation/dark energy. This would
also be helpful to specify the class of GDH theories without gravitational-wave decay into the
scalar field. It is also interesting to investigate the screening mechanism in GDH theories. As is
well known, the Vainshtein screening mechanism [48,49] works successfully in Horndeski the-
ories [50–52]. On the other hand, in conventional DHOST theories (i.e., DH theories), which
lie outside the Horndeski class, it is known that the Vainshtein screening is broken inside as-
trophysical bodies [42,53–57]. The situation can be more nontrivial in GDH theories due to
novel higher-derivative interactions, for which a detailed analysis is required. Another interest-
ing thing is to study the consistency of matter coupling without imposing the unitary gauge.
Actually, we precluded the revival of the Ostrogradsky ghost only under the unitary gauge, and
hence there remains a shadowy mode that satisfies an elliptic differential equation on a space-
like hypersurface. A shadowy mode itself is harmless but needs careful treatment [14,15], so
it would be useful to specify a subclass of GDH theories where matter fields can be coupled
without introducing a shadowy mode. Yet another is to investigate the singular (or noninvert-
ible) subclass of generalized disformal transformations. Within conventional disformal trans-
formations, singular transformations have been studied in the context of mimetic gravity [58].
Interestingly, if one starts from some seed scalar–tensor theory and performs a singular disfor-
mal transformation on it, then the resultant theory obtains an extra symmetry associated with
the singular nature of the transformation [59,60]. Namely, one can systematically construct
DHOST theories from generically nondegenerate theories by use of singular transformations.
As we discuss in Appendix C, singular generalized disformal transformations with X̄X = 0 can
always be recast into the singular conformal transformation by use of an appropriate invert-
ible transformation. However, this does not exhaust all singular transformations and we need
a further analysis. We leave these issues for future studies.

Note added: While we were finalizing this paper, we were informed of research [46] by Atsushi
Naruko, Ryo Saito, Norihiro Tanahashi, and Daisuke Yamauchi on a similar subject. Their
results are consistent with ours on overlapping parts. We would like to thank them for their
kind correspondence.
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Appendix A. Invertible conformal transformation with the curvature tensor
In the main text, we focused on invertible transformations where derivatives of the metric ap-
pear only through covariant derivatives of the scalar field. Interestingly, one can also construct
invertible transformations containing the curvature tensors in the transformation law for the
metric. For instance, the following conformal transformation is invertible in general:

ḡμν = �(C)gμν, C := Wαβγ δWαβγ δ, (A1)

where � is an arbitrary nonvanishing function and Wμ
νλσ denotes the Weyl tensor. The point

is that the quantity C is transformed under the conformal transformation as

C̄ = �−2C, (A2)

which allows us to express C̄ as a function of C (at least locally) unless � ∝ C1/2. Hence, the
inverse transformation is given explicitly by

gμν = �̄(C̄)ḡμν, �̄(C̄) := �−1(C). (A3)

Similarly, with the use of conformally (or disformally) invariant quantities, one can construct
invertible conformal (or disformal) transformations containing higher derivatives of the scalar
field [34].

Note that C above can be replaced by the Chern–Simons (or Pontryagin) term [61,62]

P := 1
2
εαβγ δRμν

αβRμνγ δ = 1
2
εαβγ δWμν

αβWμνγ δ, (A4)

with εαβγ δ being the totally antisymmetric tensor. This is because the quantity P is also trans-
formed as Eq. (A2) under a conformal transformation. Moreover, one can consider a general
function �(C,P ). In this case, the transformation is invertible so long as∣∣∣∣∣∂ (C̄, P̄ )

∂ (C,P )

∣∣∣∣∣ ∝ � − 2C ∂�

∂C − 2P ∂�

∂P �= 0. (A5)

By use of this novel class of invertible transformations, one can generate degenerate higher-
derivative metric theories from general relativity. (For an earlier attempt to construct degenerate
higher-derivative metric theories, see Ref. [63].)

Appendix B. Consistent matter coupling in two-DOF theories
In Sect. 4, we studied conditions under which a matter field can be consistently coupled to
GDH theories. We stress that the conditions obtained there apply only to generic cases where
the scalar field is dynamical, and a separate analysis is required for special cases where the
scalar field is nondynamical (e.g., the cuscuton [64] or its extension [65,66]). This kind of the-
ory is sometimes called minimally modified gravity since there exist just two propagating DOFs
associated with the dynamical metric as in general relativity. In such theories, the gravitational

20/29

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/1/013E01/6849572 by guest on 20 Septem

ber 2023



PTEP 2023, 013E01 K. Takahashi et al.

sector of the action satisfies an additional degeneracy condition compared to the generic case,
and hence the matter sector should also respect it. To the best of our knowledge, the condition
for consistent matter coupling has not been specified even for two-DOF theories within dis-
formal Horndeski theories, i.e., those related to Horndeski theories via invertible conventional
disformal transformation. In this appendix, we clarify the consistency condition at the level of
linear cosmological perturbations.

As we did in Sect. 4.1, we consider cosmological scalar perturbations with a k-essence (matter)
scalar field described by the action (74) and work in the frame where the gravitational action is
given by the Horndeski one. Note that we will impose a condition coming from the two-DOF
nature of the gravitational sector when it is necessary. For the conventional disformal coupling
where ḡμν = F0(φ, X )gμν + F1(φ, X )φμφν , the quadratic Lagrangian for the matter sector can
be written in the form

L(2)
m = Na3J

(
1
2

b1

˙δσ
2

N2
+ b2α

˙δσ
N

+ b3ζ
˙δσ

N
+ 1

2
b4α

2 + b5δσ
∂2χ

a
+ 1

2
b6δσ

∂2δσ

a2

)
, (B1)

where J = F 3/2
0 f 1/2 with f := F0 + XF1 and the coefficients are given by

b1 = − 2
f

(
P′ + 2X̄σ P′′) , b2 = 2σ̇

N

[
1

F 3
0

(
X F 3

0

f

)
X

P′ + 2
(

X
f

)
X

X̄σ P′′
]

,

b3 = − 6
f

σ̇

N
P′, b4 = −XJQQ

J P − f
J 2

[
J 2

(
X
f

)
Q

]
Q

X̄σ P′ + 4
[

f
(

X
f

)
X

]2

X̄ 2
σ P′′,

b5 = − 2
f

σ̇

N
P′, b6 = − 2

F0
P′. (B2)

Here, X̄σ = −σ̇ 2/( f N2) is the kinetic term of the matter scalar field that is coupled to the dis-
formal metric, and a subscript Q denotes the differentiation with respect to Q := √−X , e.g.,

JQ = −2
√−XJX , JQQ = −2 (JX + 2XJX X ) . (B3)

Note that the quantity f is related to F defined in Eq. (5). Indeed, for conventional disformal
transformations where F2 = F3 = 0, we have F = F0 f . Going to the Fourier space, the total
quadratic Lagrangian L(2) = L(2)

H + L(2)
m can be written in the form

L(2) =
4∑

A,B=1

(
1
2
KABv̇Av̇B + MABv̇AvB − 1

2
WABvAvB

)
, (B4)

up to total derivative, where vA := (α, χ , ζ , δσ ) and the coefficient matrices depend on the
wavenumber. [See Eq. (75) for the expression of L(2)

H .] Note that the matrices K and W are
symmetric and M is antisymmetric. Then, the dispersion relation for scalar perturbations can
be computed by

det
[
ω2KAB + iω

(
2MAB + K̇AB

) − (
WAB + ṀAB

)] = 0, (B5)

which yields a quartic algebraic equation for ω in general. Namely, there exist two propagating
DOFs, which can be identified with two dynamical scalar fields φ and σ . This implies that there
is no unwanted extra DOF for generic Horndeski theories in the case of conventional disformal
coupling, which was already pointed out in Ref. [28].

On the other hand, for scalar–tensor theories where the scalar field φ is nondynamical, the
presence of the ω4 term in Eq. (B5) implies the inconsistency of matter coupling. The coefficient
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of the ω4 term in the dispersion relation is proportional to the following quantity:

(b2
2 − b1b4)JGT − 2b1(3�2 + GT �). (B6)

In order for the matter coupling to be consistent, we require that this coefficient should vanish.
For the (extended) cuscutons [64–66] where GS ∝ 3�2 + GT � = 0 is satisfied,9 this requirement
yields

b2
2 − b1b4 = 24X 2F 2

0X

F 5
0 J 2

B1[P] + 12X [F0X (J + 4XJX ) + 2XJ F0X X ]

F 4
0 J 3

B2[P] − 2XJQQ

F 3
0 J 3

B3[P]

= 0. (B7)

Here, B are linearly independent functionals of P(X̄σ ) given by

B1 = 2PP′ − 2X̄σ P′2 + 4X̄σ PP′′ − X̄ 2
σ P′P′′, B2 = (P − X̄σ P′)(P′ + 2X̄σ P′′),

B3 = (P − 2X̄σ P′)(P′ + 2X̄σ P′′). (B8)

Since Eq. (B7) should be satisfied for any function P, we have

F0X = F0X X = JQQ = 0, (B9)

which imposes constraints on the functions F0 and F1 that define the disformal transformation.
Although the above conditions are required only on the background trajectory in the config-
uration space (φ, X), one could impose them over the entire configuration space. Then, the
functional form of F0 and J is fixed as

F0 = F0(φ), J = J0(φ) + J1(φ)
√−X , (B10)

where F0, J0, and J1 are arbitrary functions of φ such that F0 �= 0 and (J0,J1) �= (0, 0).10 The
functional form of F1 is given by

F1 =
[
J0(φ) + J1(φ)

√−X
]2 − F0(φ)4

F0(φ)3X
. (B11)

Note that the choice of J in Eq. (B10) implies that√
−ḡ = √−gJ = √

γ
[
J0(φ)N + φ̇J1(φ)

]
(B12)

under the unitary gauge where
√−X = φ̇/N. Namely,

√−ḡ depends on N only up to the lin-
ear order. In principle, it would be possible to generalize the above discussion to generalized
disformal transformations; this is left for future study.

Appendix C. Canonical form of singular transformations
In the main text, we focused on invertible disformal transformations satisfying the condi-
tion (13). On the other hand, singular (or noninvertible) transformations have been studied
in the context of mimetic gravity [58] (see also Ref. [68] for a review). In this appendix, we focus
on a singular subclass of generalized disformal transformations to show that such transforma-
tions can be brought to a simpler form by use of an appropriate invertible generalized disformal
transformation.

9Note that the quantity 3�2 + GT � is a polynomial of the Hubble parameter whose coefficients are
written in terms of the functions that characterize the gravitational action. The extended cuscutons were
constructed by requiring that each of these coefficients should vanish independently without using the
background equations of motion.

10The authors of Ref. [67] studied a two-DOF theory that is obtained from the extended cuscutons via
disformal transformation satisfying Eq. (B10). They found that the theory can be consistently coupled
with a canonical scalar field, which is consistent with our result.
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Let us first consider the case of conventional disformal transformations of the form

ḡμν [g, φ] = F0(φ, X )gμν + F1(φ, X )φμφν, (C1)

for which X̄ = ḡμνφμφν = X/(F0 + X F1). Singular transformations of our interest are charac-
terized by the following conditions:

F0 �= 0, F0 + X F1 �= 0, X̄X (φ, X ) = 0. (C2)

The simplest example of such singular transformations would be the following conformal one:

ḡμν [g, φ] = X
c(φ)

gμν, (C3)

with c(φ) being an arbitrary (nonvanishing) function of φ. For this transformation, the barred
inverse metric is given by ḡμν = c(φ)X −1gμν and hence X̄ = ḡμνφμφν = c(φ). The noninvert-
ibility of this particular transformation can be understood by the conformal invariance of the
right-hand side of the transformation law. Indeed, under any conformal transformation gμν →
�gμν , the right-hand side of Eq. (C3) remains unchanged. Due to the conformal invariance,
the transformation law cannot be solved uniquely for gμν . It was shown in Ref. [59] that any
singular disformal transformation satisfying Eq. (C2) can be brought to the simplest form (C3)
by use of an appropriate invertible (conventional) disformal transformation. In this sense, the
noninvertible conformal transformation (C3) can be regarded as the canonical form of singular
conventional disformal transformations.

In what follows, we discuss a singular subclass of the generalized disformal transformation (3)
and prove an extension of the above statement. In this case, the invertibility conditions were
given in Eq. (13), which we recapitulate here for convenience:

F0 �= 0, F �= 0, X̄Y = X̄Z = 0, X̄X �= 0,

∣∣∣∣∂ (Ȳ , Z̄)
∂ (Y, Z)

∣∣∣∣ �= 0. (C4)

The first two conditions are responsible for the existence of the inverse metric ḡμν , while the
third one is necessary for the closedness under the functional composition of two disformal
transformations (see Sect. 2). In what follows, we study generalized disformal transformations
that do not satisfy the fourth condition in Eq. (C4); i.e., we focus on transformations charac-
terized by the following conditions:

F0 �= 0, F �= 0, X̄ = c(φ), (C5)

with c(φ) being a nonvanishing function of φ. This is a generalization of the singular subclass
of conventional disformal transformations satisfying Eq. (C2). We shall argue that the singular
conformal transformation (C3) also serves as the canonical form of singular generalized dis-
formal transformations satisfying Eq. (C5). We note in passing that there also exists another
type of singular transformations satisfying X̄X �= 0 but not the last condition in Eq. (C4). A
specific example is given by

ḡμν [g, φ] = hZ

Y 2 − X̄0hZ2

[
W gμν + (

X − X̄0h
)

XμXν

]
, h = h

(
Y
Z

)
, X̄0 = X̄0(φ, X ),

(C6)

with h �= 0 and X̄0X �= 0. These transformations may also provide an interesting class of singular
transformations, which we leave for future study.
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Let us now consider the following two transformations:

ḡμν [g, φ] = F0gμν + F1φμφν + 2F2φ(μXν) + F3XμXν, (singular)

ĝμν [g, φ] = f0gμν + f1φμφν + 2 f2φ(μXν) + f3XμXν, (invertible) (C7)

where Fi and fi are functions of (φ, X, Y, Z). Here, we assume that ḡμν [g, φ] is singular and
ĝμν [g, φ] is invertible. We shall prove that, for any singular transformation ḡμν [g, φ] with the co-
efficient functions Fi satisfying Eq. (C5), there exists an invertible transformation ĝμν [g, φ] such
that the functional composition (ḡ ◦ ĝ)μν [g, φ] coincides with the singular conformal transfor-
mation (C3). As in the main text, we require the existence of the inverse metrics ḡμν and ĝμν ,
which are used to define the barred/hatted counterparts of the kinetic term of the scalar field:

X̄ [g, φ] := ḡμν [g, φ]φμφν = X F0 − W F3

F 2
0 + F0(X F1 + 2Y F2 + ZF3) + W (F 2

2 − F1F3)
, (C8)

X̂ [g, φ] := ĝμν [g, φ]φμφν = X f0 − W f3

f 2
0 + f0(X f1 + 2Y f2 + Z f3) + W ( f 2

2 − f1 f3)
. (C9)

As explained in Sect. 2, X̄ [g, φ] and X̂ [g, φ] must be functions of (φ, X) to guarantee the closed-
ness under the functional composition. Also, as mentioned earlier, we assume that the singular
transformation has X̄ = c(φ), with c being a nonvanishing function of φ [see Eq. (C5)].

Under this setup, the functional composition of the two disformal transformations is given
by

(ḡ ◦ ĝ)μν [g, φ] = F0ĝμν + F1φμφν + 2F2φ(μX̂ν) + F3X̂μX̂ν

= F0 f0gμν + (F0 f1 + F1 + 2X̂φF2 + X̂ 2
φ F3)φμφν

+ 2(F0 f2 + X̂X F2 + X̂φX̂X F3)φ(μXν) + (F0 f3 + X̂ 2
X F3)XμXν. (C10)

The functions Fi are now evaluated at (φ, X̂ , Ŷ , Ẑ), with

Ŷ := ĝμνφμX̂ν = X̂X (Y f0 + W f2)
f 2

0 + f0(X f1 + 2Y f2 + Z f3) + W ( f 2
2 − f1 f3)

+ X̂φX̂ ,

Ẑ := ĝμνX̂μX̂ν = X̂ 2
X (Z f0 − W f1)

f 2
0 + f0(X f1 + 2Y f2 + Z f3) + W ( f 2

2 − f1 f3)
+ 2X̂φŶ − X̂ 2

φ X̂ . (C11)

It is also useful to introduce the following quantity:

Ŵ := Ŷ 2 − X̂ Ẑ = X̂ 2
XW

f 2
0 + f0(X f1 + 2Y f2 + Z f3) + W ( f 2

2 − f1 f3)
. (C12)

One could also consider the functional composition of the reversed order, i.e., ĝ ◦ ḡ. However,
in this case, the functional composition cannot be brought to the conformal form in general. In
any case, we are interested in the functional composition (C10) for the reason explained below.

Let us clarify conditions under which the functional composition (C10) coincides with the sin-
gular conformal transformation (C3). Requiring that the disformal factors in Eq. (C10) vanish,
the functions f1, f2, and f3 satisfy

f1 = −F1 + 2X̂φF2 + X̂ 2
φ F3

F0
, f2 = − X̂X F2 + X̂φX̂X F3

F0
, f3 = − X̂ 2

X F3

F0
. (C13)

The functional form of f0 is fixed by the condition [see Eq. (C8)]

X̄ [ĝ, φ] = X̂ F0 − Ŵ F3

F 2
0 + F0(X̂ F1 + 2Ŷ F2 + ẐF3) + Ŵ (F 2

2 − F1F3)
= c(φ). (C14)
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Plugging Eqs. (C9) and (C11)–(C13) into this condition, we obtain

f0 = X
c(φ)F0

. (C15)

Hence, Eq. (C10) reads

(ḡ ◦ ĝ)μν [g, φ] = X
c(φ)

gμν. (C16)

Note that the functional form of X̂ (φ, X ) remains unfixed and it can be an arbitrary function
as long as X̂X �= 0 (as well as the other invertibility conditions for ĝμν [g, φ] are satisfied).

In summary, for any given singular generalized disformal transformation ḡμν [g, φ] with
the coefficient functions Fi satisfying Eq. (C5), one can choose an invertible transforma-
tion ĝμν [g, φ] such that the functional composition (ḡ ◦ ĝ)μν [g, φ] is the singular conformal
transformation. The coefficient functions fi that characterize the invertible transformation can
be fixed up to an arbitrary choice of the function X̂ (φ, X ) with X̂X �= 0. Indeed, f0 is given by
Eq. (C15), and then Eq. (C13) provides a system of algebraic equations that fixes f1, f2, and
f3.11 Note that, as mentioned above, the Fi in Eq. (C13) are evaluated at (φ, X̂ , Ŷ , Ẑ), which
can be rewritten as functions of (φ, X, Y, Z) by use of Eq. (C11). Finally, one should check
whether the thus-obtained transformation ĝμν [g, φ] is invertible. If not, one may try another
choice of X̂ (φ, X ) to make the transformation invertible.

One may find the above simple result surprising, but this is actually expected. Indeed, since
ḡμν [g, φ] is singular, the functional composition (ḡ ◦ ĝ)μν [g, φ] must be singular as well. Also, we
fixed ĝμν [g, φ] so that (ḡ ◦ ĝ)μν [g, φ] ∝ gμν . Then, (ḡ ◦ ĝ)μν [g, φ] is a singular conformal trans-
formation, which must be of the form (C3). The above discussion shows that Eq. (C3) can be
regarded as the canonical form of singular generalized disformal transformations satisfying
Eq. (C5), which is a natural extension of the result of Ref. [59].

Let us demonstrate the above result for the following singular generalized disformal trans-
formation:

ḡμν [g, φ] = gμν + F3(φ, X,Y, Z)XμXν, F3(φ, X,Y, Z) := X − c(φ)
Y 2 − X Z + c(φ)Z

, c(φ) �= 0,

(C17)

for which X̄ = c(φ).12 In this case, we set F0 = 1 and F1 = F2 = 0 in the above discussion. As
mentioned above, one can choose an arbitrary X̂ (φ, X ) as long as X̂X �= 0, so we simply set
X̂φ = 0 and hence X̂ = X̂ (X ). Then, Eqs. (C13) and (C15) read

f0 = X
c

, f1 = f2 = 0, f3 = −X̂ 2
X F3. (C18)

Note that F3 in Eq. (C18) is still evaluated at (φ, X̂ , Ŷ , Ẑ), which we need to rewrite in terms
of unbarred quantities. From Eq. (C11), we obtain

Ŷ = cX̂XY
X + cZ f3

, Ẑ = cX̂ 2
X Z

X + cZ f3
, (C19)

11In general, the algebraic equations have a nonlinear dependence on fi, and hence the existence of
a solution may be nontrivial. One may choose the simplest X̂ (φ, X ) so that the system of algebraic
equations has a (global) solution.

12Actually, with X̄ = c(φ), F0 = 1, and F1 = F2 = 0, the functional form of F3 is fixed to the one in Eq.
(C17) by use of Eq. (15).

25/29

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/1/013E01/6849572 by guest on 20 Septem

ber 2023



PTEP 2023, 013E01 K. Takahashi et al.

Fig. C1. Functional composition of singular and invertible disformal transformations acting on scalar–
tensor theories. For any given singular generalized disformal transformation g → ḡ[g, φ] satisfying Eq.
(C5), there exists an invertible transformation g → ĝ[g, φ] such that g → ḡ ◦ ĝ[g, φ] is the canonical sin-
gular transformation (C16).

and hence

F3(φ, X̂ , Ŷ , Ẑ) = (X̂ − c)(X + cZ f3)2

cX̂ 2
[
cY 2 − Z(X̂ − c)(X + cZ f3)

] . (C20)

From Eqs. (C18) and (C20), the functional form of f3 is determined as

f3(φ, X,Y, Z) = − X 2(X̂ − c)

c2(Y 2 − X Z) + cX X̂ Z
. (C21)

Therefore, one obtains the canonical singular transformation (C16) by the functional compo-
sition of the singular transformation (C17) and the following transformation:

ĝμν [g, φ] = X
c

gμν − X 2(X̂ − c)

c2(Y 2 − X Z) + cX X̂ Z
XμXν, (C22)

with X̂ being an arbitrary nonvanishing function of X. Also, it is straightforward to check that
the transformation (C22) satisfies the invertibility condition (C4).

Finally, let us explain the implication of the above result when the disformal transforma-
tions act on scalar–tensor theories. Suppose that we start from some seed scalar–tensor the-
ory described by the action S[g, φ] and perform sequential replacements g → ḡ[g, φ] and then
g → ĝ[g, φ]. The first replacement yields S′[g, φ] := S[ḡ, φ], and then the second one yields
S′′[g, φ] := S′[ĝ, φ]. Note that the action S′′[g, φ] can be directly obtained from the seed ac-
tion S[g, φ] by the singular conformal transformation g → ḡ ◦ ĝ[g, φ], and hence it is nothing
but the action of conventional mimetic gravity models. On the other hand, the theory described
by the action S′[g, φ] is a generalization of known mimetic gravity models as it is obtained by
performing the singular generalized disformal transformation g → ḡ[g, φ]. Our result implies
that the generalized mimetic theory S′[g, φ] is related to the conventional mimetic theory S′′[g,
φ] via invertible generalized disformal transformation. This is why we have focused on the func-
tional composition ḡ ◦ ĝ, not ĝ ◦ ḡ (see Fig. C1). Of course, the two theories S′[g, φ] and S′′[g,
φ] are distinguished from each other when matter fields are taken into account. Even so, when
one studies the generalized mimetic theory S′[g, φ], our result can be used to move to the frame
where the gravitational action is given by that of the conventional mimetic theory, which could
simplify the analysis.
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