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Abstract

We propose a generalized double Pareto prior for Bayesian shrinkage estimation and inferences in linear models.

The prior can be obtained via a scale mixture of Laplace or normal distributions, while forming a bridge between the

Laplace and Normal-Jeffreys’ priors. While it has a spike at zero like the Laplace density, it also has a Student-t-like

tail behavior. Bayesian computation is straightforward via a simple Gibbs sampling algorithm. We investigate the

properties of the maximum a posteriori estimator, as many are interested in sparse solutions, reveal connections with

some well-established regularization procedures and show some asymptotic results. The performance of the prior is

tested through simulations.

Key words: Heavy tails; High-dimensional data; Lasso; Maximum a posteriori estimation; Relevance vector ma-

chine; Robust prior; Shrinkage estimation.

1 Introduction

There has been a great deal of work in shrinkage estimation and simultaneous variable selection in the frequentist

framework. The Lasso of Tibshirani (1996) has drawn much attention to the area, particularly after the introduction of

LARS (Efron et al., 2004) due to its superb computational performance. There is a rich literature analyzing the Lasso

and related approaches (Fu, 1998; Knight and Fu, 2000; Fan and Li, 2001; Yuan and Lin, 2005; Zhao and Yu, 2006;

Zou, 2006; Zou and Li, 2008), with a number of articles considering asymptotic properties.

Bayesian approaches to the same problem became popular with the works of Tipping (2001) and Figueiredo (2003).

By expressing Student-t priors for basis coefficients as scale mixtures of normals (West, 1987) and relying on type II

maximum likelihood estimation (Berger, 1985), Tipping (2001) developed the relevance vector machine for sparse es-

timation in kernel regression. However, sparsity comes with the price of forfeiting propriety of the posterior by driving

the degrees of freedom and the scale parameter of the Student-t distribution towards zero. This yielded the so-called

Normal-Jeffreys’ prior on the parameters, p(θ) ∝ 1/|θ|. Figueiredo (2003) proposed an expectation-maximization

algorithm for maximum a posteriori estimation under Laplace and Normal-Jeffreys’ priors, with estimates under the

Laplace corresponding to the Lasso. The Normal-Jeffreys’ prior leads to substantially improved performance due

to the property of strongly shrinking small coefficients to zero while minimally shrinking large coefficients due to
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the heavy tails. Although interpretable as posterior modes, these estimators and other penalized likelihood estima-

tors do not correspond to Bayes estimators under a reasonable choice of loss function, and hence lack a fully Bayes

justification.

A Bayesian Lasso was proposed by Park and Casella (2008) and Hans (2009). However, these procedures inherit

the problem of over-shrinking large coefficients due to the relatively light tails of the Laplace prior. Strawderman-

Berger priors (Strawderman, 1971; Berger, 1980) have some desirable properties yet lack an analytic form. Recently

proposed priors have been designed to have high density near zero and heavy tails without the impropriety problem

of Normal-Jeffreys. The horseshoe prior of Carvalho et al. (2009, 2010) is induced through a carefully-specified

mixture of normals, leading to desirable properties, such as an infinite spike at zero and very heavy tails. They studied

sparse shrinkage estimation properties of the horseshoe in a normal means problem. Griffin and Brown (2007, 2010)

proposed an alternative class of hierarchical priors for shrinkage, which has some similarities to the prior we propose,

but lacks the simple analytic form facilitating the study of some properties.

There is a need for alternative shrinkage priors that lead to sparse point estimates if desired, do not over-shrink

coefficients that are not close to zero, facilitate straightforward computation even in large p cases, and result in a

joint posterior distribution that does a good job in quantifying uncertainty. We propose the generalized double Pareto

prior which independently finds mention in Cevher (2009). It has a simple analytic form, yields a proper posterior

and possesses appealing properties, including a spike at zero, Student-t-like tails, and a simple characterization as a

scale mixture of normals leading to a straightforward Gibbs sampler for posterior inferences. We consider both fully

Bayesian and frequentist penalized likelihood approaches based on this prior. We show that the induced penalty in

the regularization framework yields a consistent thresholding rule having the continuity property in the orthogonal

case, with a simple Expectation-Maximization algorithm described for sparse estimation in non-orthogonal cases.

Similarities to Cevher (2009) are very limited and the contributions beyond these are (i) a formal introduction of a

generalized Pareto density thresholded and folded at zero as a shrinkage prior in Bayesian analysis, (ii) the scale

mixture representation of the generalized double Pareto given in Proposition 1 which is central to our work, (iii) its

connection to the Laplace and Normal-Jeffreys’ priors as limiting cases given in Proposition 2, (iv) the resulting fully

conditional posteriors in a linear regression setting along with a simple Gibbs sampling procedure, (v) a discussion on

the hyper-parameters α and η and their treatment along with the incorporation of a griddy sampling scheme into the

Gibbs sampler, (vi) a detailed analysis of the induced penalty by the generalized double Pareto prior and the properties

of the resulting thresholding rule, (vii) an explicit analytic form for the maximum a posteriori estimator in orthogonal

cases, (viii) consistency of the resulting thresholding rule with a diverging number of parameters in orthogonal cases,

(ix) an expectation-maximization procedure to obtain the maximum a posteriori estimate in non-orthogonal cases

using the normal mixture representation given in Section 5.1, and finally (x) the one-step estimator (Zou and Li,

2008) resulting from the Laplace mixture representation and its oracle properties given in Section 5.2 revealing the

connection of the resulting procedure to the adaptive Lasso (Zou, 2006).

2 Generalized Double Pareto Prior

The generalized double Pareto density is given by

f(θ|ξ, α) = 1

2ξ

(

1 +
|θ|
αξ

)−(1+α)

, (1)

where ξ > 0 is a scale parameter and α > 0 is a shape parameter. In contrast to (1), the generalized Pareto density

of Pickands (1975) is parametrized in terms of a location parameter µ ∈ ℜ, a scale parameter ξ > 0, and a shape

parameter α ∈ ℜ as follows,

f(θ | ξ, α, µ) = 1

ξ

(

1 +
θ − µ

αξ

)−(1+α)

, (2)

with θ ≥ µ for α > 0 and µ ≤ θ ≤ µ− ξα for α < 0. The mean and variance for the generalized Pareto distribution is

respectively given by E(θ) = µ+ ξ/(1− 1/α) for α /∈ [0, 1] and Var(θ) = ξ2(1− 1/α)−2(1− 2/α)−1 for α /∈ [0, 2].
If we let µ = 0, (2) becomes an exponential density as α → ∞ with mean ξ and variance ξ2.
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To modify the generalized Pareto density to be appropriate as a shrinkage prior, we let µ = 0 and reflect the

positive part about the origin assuming α > 0. This leads to a density that is symmetric about zero. The mean and

variance for the generalized double Pareto distribution is respectively given by E(θ) = 0 for α > 1 and Var(θ) =
2ξ2α2(α − 1)−1(α − 2)−1 for α > 2. The dispersion is controlled by ξ and α, with α controlling the tail heaviness

and α = 1 corresponding to Cauchy-like tails and no finite moments.

Figure 1 compares density (1) to Cauchy and Laplace densities in the special case in which ξ = α = 1, so

that f(θ) = 1/{2(1 + |θ|)2}. We refer to this form as the standard double Pareto. Near zero the standard double

Pareto resembles the Laplace density, suggesting similar sparse shrinkage properties of small coefficients in maximum

a posteriori estimation. It also has Cauchy-like tails which is appealing in avoiding over-shrinkage away from the

origin. This is illustrated in Figure 1(a). Figure 1(b) illustrates how density (1) changes for different values of ξ and α.

Prior (1) can be represented as a scale mixture of normal distributions leading to computational simplifications. As

shorthand notation, let θ ∼ GDP(ξ, α) denote that θ follows density (1).

Proposition 1. Let θ ∼ N(0, τ), τ ∼ Exp(λ2/2) and λ ∼ Ga(α, η) where α > 0 and η > 0. The resulting marginal

density for θ is GDP(ξ = η/α, α).

Proposition 1 reveals a relationship between prior (1) and the prior of Griffin and Brown (2007), with the difference

being that Griffin and Brown (2007) place a mixing distribution on λ2 leading to a marginal with no simple analytic

form. Proposition 2 shows that prior (1) forms a bridge between Laplace and Normal-Jeffreys’ priors.

Proposition 2. Given the representation in Proposition 1, θ ∼ GDP(ξ = η/α, α) implies

1. f(θ) ∝ 1/|θ| for α = 0 and η = 0,

2. f(θ|λ′) = (λ′/2) exp (−λ′|θ|) for α → ∞, α/η = λ′ and 0 < λ′ < ∞.

Proof. For the first item, setting α = η = 0 implies placing a Jeffreys’ prior on λ, p(λ) ∝ 1/λ. Integration over λ
yields p(τ) ∝ 1/τ which implies the Normal-Jeffreys’ prior on θ. For the second item, notice that p(λ) = δ(λ− λ′),
where δ(.) denotes the Dirac delta function, since limα→∞ limα/η→λ′ E(λ) = λ′ and limα→∞ limα/η→λ′ Var(λ) =

0. Thus,
∫∞
0

(λ/2) exp (−λ|θ|)δ(dλ) = (λ′/2) exp (−λ′|θ|).

3 Bayesian Inference

3.1 Posterior Computation

Consider the linear regression model, y = Xβ + ε, where y is an n-dimensional vector of responses, X is the n× p
design matrix and ε ∼ N

(
0, σ2In

)
. Letting βj |σ ∼ GDP(ξ = ση/α, α) independently for j = 1, . . . , p,

π(β|σ) =
p
∏

j=1

1

2ση/α

(

1 +
1

α

|βj |
ση/α

)−(α+1)

. (3)

From Proposition 1 this prior is equivalent to βj |σ ∼ N(0, σ2τj), with τj ∼ Exp(λ2
j/2) and λj ∼ Ga(α, η). We place

the Jeffreys’ prior on the error variance, π(σ) ∝ 1/σ.

Using the scale mixture of normals representation, we obtain a simple data augmentation Gibbs sampler having

the following conditional posteriors: (β|σ2,T,y) ∼ N{(X′X+T−1)−1X′y, σ2
(
X′X+T−1

)−1}, (σ2|β,T,y) ∼
IG{(n + p)/2, (y − Xβ)′(y − Xβ) + β′T−1β)/2}, (λj |βj , σ

2) ∼ Ga(α + 1, |βj |/σ + η), (τ−1
j |βj , λj , σ

2) ∼
Inv-Gauss{µ = (λ2

jσ
2/β2

j )
1/2, ρ = λ2} where T = diag(τ1, ..., τp) and Inv-Gauss denotes the inverse Gaussian

distribution with location and scale parameters µ and ρ. In our experience, this Gibbs sampler is efficient having fast

rates of convergence and mixing.

3



−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

p
(θ

)

5 6 7 8 9 10

0
.0

0
0

0
.0

1
0

θ

p
(θ

)

(a)

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

p
(θ

)

5 6 7 8 9 10

0
.0

0
0

0
.0

1
5

0
.0

3
0

θ

p
(θ

)

(b)

Figure 1: (a) Probability density functions for standard double Pareto (solid line), standard Cauchy (dashed line) and

Laplace (dot-dash line) (λ = 1) distributions. (b) Probability density functions for the generalized double Pareto with

(ξ, α) values of (1, 1) (solid line), (0.5, 1) (dashed line), (1, 3) (long-dashed line), and (3, 1) (dot-dash line).

3.2 Hyper-prior Specification and Computation

As α grows the density becomes lighter tailed, more peaked and the variance becomes smaller while as η grows the

density becomes flatter and the variance increases. Hence if we increase α, we may cause unwanted bias for large

signals, though causing stronger shrinkage for noise-like signals; if we increase η we may lose the ability to shrink

noise-like signals also causing less bias for large signals; and finally, If we increase α and η at the same rate, the

variance remains constant but the tails become lighter converging to a Laplace density in the limit. This can lead to

over-shrinking of the coefficients that are away from zero. Given that the columns of X are scaled to be of unit length,

as a typical default specification for the hyper-parameters, one can let α = η = 1 (thus ξ = σ) in (3). This choice

leads to Cauchy-like tail behavior, which is well-known to have desirable Bayesian robustness properties.

To further motivate our default choice, we assess the behavior of the prior shrinkage factor κ = 1/(1+ τ) ∈ (0, 1)
where θ ∼ N(0, τ) is the parameter of interest (Carvalho et al., 2010). As κ → 0, the prior does not impose any

shrinkage while as κ → 1 it has a strong pull towards zero. The generalized double Pareto distribution implies a prior

p(κ) on κ upon integration over λ in Proposition 1. For the standard double Pareto, this is given by

p(κ) =
1

2(1− κ)2







√
π exp

{
κ

2(1−κ)

}

Erfc

{
√

κ
2(1−κ)

}

√

2κ(1− κ)
− 1






,

where Erfc(.) denotes the complementary error function. In Figure 2, we compare p(κ) under the standard double
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Figure 2: Prior density of κ implied by the standard double Pareto prior (solid line), Strawderman–Berger prior (dashed

line), horseshoe prior (dot-dash line) and standard Cauchy prior (dotted line).

Pareto, Strawderman-Berger, horseshoe and Cauchy priors. The priors behave similarly for κ ≈ 0, implying similar

tail behavior. The behavior of p(κ) for κ ≈ 1 governs the strength of shrinkage of small signals. As κ → 1, p(κ)
tends towards zero for the Cauchy implying weak shrinkage, while p(κ) is unbounded for the horseshoe suggesting

very strong pull towards zero for small signals. The Strawderman-Berger and standard double Pareto priors are a

compromise between these extremes, with p(κ) being bounded for κ → 1 in both cases. The standard double Pareto

assigns higher density close to one than the Strawderman-Berger prior and has the advantage of a simple analytic form

and a conjugate hierarchy over the Strawderman-Berger and horseshoe priors.

As an alternative we recommend choosing hyper-priors to allow the data to inform about the values of α and η,

with p(α) = 1/(1+α)2 and p(η) = 1/(1+η)2 to correspond to generalized Pareto hyper-priors with location 0, scale

1 and shape 1. The median value of the resulting distribution for α and η is one, centering it at the default choices

suggested earlier while the mean and variance do not exist.

For sampling purposes let a = 1/(1 + α) and e = 1/(1 + η). These transformations suggest a uniform prior on a
and e in (0, 1) given the generalized Pareto priors on α and η. Consequently, the conditional posteriors for a and e are

p(a|β, η) ∝
(
1− a

a

)p p
∏

j=1

(

1 +
|βj |
ση

)−1/a

,

p(e|β, α) ∝
(

e

1− e

)p p
∏

j=1

{

1 + e
|βj |

σ(1− e)

}−(α+1)

.

We propose the following embedded griddy Gibbs (Ritter and Tanner, 1992) sampling scheme:

i. Form a grid of m points a(1), ..., a(m) in the interval (0, 1),

ii. Calculate w(k) = p(a(k)|β, η),

iii. Normalize the weights, w
(k)
N = w(k)/

∑m
k=1 w

(k),
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iv. Draw a sample from the set {a(1), ..., a(m)} with probabilities {w(1)
N , ..., w

(m)
N } and set α = 1/a− 1 to be used

at the current iteration of the Gibbs sampler.

Repeat the same procedure for e and obtain a random draw for η. We also experiment with fixing η as 1 and
√
α+ 1,

explaining the latter choice in the following section. In these cases, the prior variance of β|σ2 is determined by α.

In what follows we establish the ties between the Bayesian approach we have taken and some frequentist regu-

larization approaches. The simple analytic structure of the generalized double Pareto prior allows for the following

analyses while its hierarchical formulation leads to straight-forward computation.

4 Sparse Maximum a Posteriori Estimation

The generalized double Pareto distribution can be used not only as a prior in a Bayesian analysis but also to induce a

sparsity-favoring penalty in regularized least squares,

β̃ = argmin
β







1

2σ2
‖y −Xβ‖2 +

p
∑

j=1

p(|βj |)






, (4)

where X is initially assumed to have orthonormal columns and p(.) denotes the penalty function implied by the prior

on the regression coefficients. Following Fan and Li (2001), let β̂ = X′y and denote the minimization problem in (4)

for a component of β as

β̃j = argmin
βj

{
1

2

(

β̂j − βj

)2

+ σ2p(|βj |)
}

, (5)

with the penalty function implied by (3), p(|βj |) = (α+ 1) log (ση + |βj |).
From Fan and Li (2001), a good penalty function should result in an estimator that is (i) nearly unbiased when the

true unknown parameter is large, (ii) a thresholding rule, which automatically sets small estimated coefficients to zero

to reduce model complexity, and (iii) continuous in data z to avoid instability in model prediction. In the following,

we show that the penalty function induced by prior (3) has these three properties.

4.1 Near-unbiasedness

The first order derivative of (5) with respect to βj is sgn(βj){|βj | + σ2p′(|βj |)} − β̂j = sgn(βj){|βj | + σ2(α +

1)/(ση+ |βj |)}− β̂j , where p′(|βj |) = ∂p(|βj |)/∂|βj | is the term causing bias in estimation. Although it is appealing

to introduce bias in small coefficients to reduce the mean squared error and model complexity, it is also desirable to

limit the shrinkage of large coefficients with p′(|βj |) → 0 as |βj | → ∞. In addition, it is desirable for p′(|βj |) to

approach zero rapidly, implying shrinkage and the associated introduction of bias rapidly decreases as coefficients get

further away from zero. In fact, the rate of convergence of p′(|βj |) to zero is of the same order under generalized

double Pareto and Normal-Jeffreys’ priors, with lim|βj |→∞{(α+ 1)/(ση + |βj |)}/{1/|βj |} = α+ 1. As α controls

the tail heaviness in the generalized double Pareto prior, with lighter tails for larger values of α, convergence of the

ratio to (α+1) is intuitive. In the case of Lasso, the bias, p′(|βj |), remains constant regardless of |βj |, which can also

be observed in Figure 3(b).

4.2 Sparsity

As noted in Fan and Li (2001), a sufficient condition for the resulting estimator to be a thresholding rule is that the

minimum of the function |βj |+ σ2p′(|βj |) is positive.

Proposition 3. Given the formulation in Proposition 1, prior (3) implies a penalty yielding an estimator that is a

thresholding rule if η < 2
√
α+ 1.
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This result is obtained by finding the minimum of |βj |+σ2p′(|βj |) and setting it greater than zero. The thresholding

is a direct consequence of the fact that when |β̂j | < minβj{|βj | + σ2(α + 1)/(ση + |βj |)} – which requires that

minβj{|βj |+ σ2p′(|βj |)} > 0 – the derivative of (5) is positive for all positive βj and negative for all negative βj . In

this case, the penalized least squares estimator is zero. When |β̂j | > minβj
{|βj |+ σ2(α+1)/(ση+ |βj |)}, two roots

may exist, the larger one being the penalized least squares estimator. To elaborate more on this, the root(s) may exist

for sgn(βj){|βj |+ σ2p′(|βj |)} − β̂j = 0 only when |β̂j | > minβj
{|βj |+ σ2p′(|βj |)}. A helpful illustration is given

in Figure 3 of Fan and Li (2001).

4.3 Continuity

Continuity in data is an important property of an estimator to avoid instabilities in prediction. As defined by Breiman

(1996), “a regularization procedure is unstable if a small change in data can make large changes in the regularized

estimator”. Discontinuities in the thresholding rule may result in inclusion or dismissal of a signal with minor changes

in the data used (see Figure 3(b)). Hard-thresholding – or namely the “usual” variable selection – is an unstable

procedure, while ridge or Lasso estimates are considered to be stable. The penalty yielded by the Normal-Jeffreys’

prior (the log penalty) mimics the behavior of the ℓγ penalty as γ → 0 where ℓγ is the γ-norm of a vector for γ > 0.

This close relation can also be observed in Figure 3(b), again by looking at the discontinuities of hard-thresholding

and the Normal-Jeffreys’ prior. This problem is remedied with the use of prior (3).

A necessary and sufficient condition for continuity is that the minimum of the function |βj |+σ2p′(|βj |) is obtained

at zero (Fan and Li, 2001). For our prior, the minimum of this function is obtained at |βj | = σ(
√
α+ 1−η). Therefore

η =
√
α+ 1 will yield an estimator with this property.

Proposition 4. Given the formulation in Proposition 1, a subfamily of prior (1) with η =
√
α+ 1 implies a penalty

function that yields an estimator with the continuity property.

In this particular case, the penalized likelihood estimator is set to zero if |β̂j | < σ
√
α+ 1. When |β̂j | > σ

√
α+ 1,

β̃j =

{
β̂j−σ

√
α+1+{β̂2

j+2β̂jσ
√
α+1−3σ2(α+1)}1/2

2 β̂j > 0,
β̂j+σ

√
α+1−{β̂2

j−2β̂jσ
√
α+1−3σ2(α+1)}1/2

2 β̂j < 0.
(6)

As can be observed in Figure 3(a), ensuring continuity by letting η =
√
α+ 1 in prior (3) creates a trade-off

between sparsity and tail-robustness. As the thresholding region becomes wider, the larger values are penalized further,

yet not nearly at the level of Lasso. To achieve a similar thresholding rule to the Normal-Jeffreys’ prior, we must pick

α = 3, which induces a lighter tailed distribution than a Cauchy distribution. We may reduce α to 1 and make the

tail behavior similar to that of a Cauchy distribution, however, the thresholding region now is reduced to ±
√
2σ.

Choosing similar tail behavior to the Normal-Jeffreys’ prior by letting α → 0, leading to an improper prior, induces a

thresholding region of ±σ.

4.4 Consistency in Estimation

We investigate the estimation consistency of the implied thresholding rule under orthogonal designs with a diverging

number of parameters. Such designs are common in problems such as multiple mean estimation, wavelet smoothing,

and principal component regression. Consider the following model which results in a multiple mean estimation (or

orthogonal X such that x′
jxj = n where xj is the jth column of X) setting.

β̂n = β∗
n +

σ√
n
Zn, (7)

where β̂n, β∗
n are pn dimensional vectors, and Zn is a pn dimensional multivariate standard normally distributed

random variable. Index n denotes sequences that change with n. Here β∗
n denotes the true unknown mean/coefficient

vector and β̂n denotes the maximum likelihood estimator. Here β∗
n is assumed to have only a finite number, r, of

nonzero elements. Hence, we let the number of zero elements grow with n.
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Figure 3: Thresholding functions for (a) generalized double Pareto prior with η =
√
α+ 1, α = {1, 3, 7}, (b) Hard

thresholding, Normal-Jeffreys’ prior, generalized double Pareto prior with η = 2, α = 3 and Lasso with σ = 1.

The maximum a posteriori estimator under prior (3) (with the continuity property) is given by (6) where σ is

replaced by σ/
√
n, and α′

n = αn + 1.

Theorem 1. Let α′
n → ∞, pn → ∞, α′

n/n → 0 and σ < ∞. Given the model in (7) and the estimator β̃ in (6),

E‖β∗
n − β̃n‖2 = O

{

pn
√
α′
n exp(−α′

n/2)

n

}

+O
(√

α′
n

n

)

. (8)

The proof is deferred to the Appendix.

Corollary 1. If pn = n and α′
n = log n, E‖β∗

n − β̃n‖2 = O(
√

log n/n).

Proof. This result is obtained by letting pn = n, equating the two terms on the right-hand side of (8), so that they will

both have the same rate, and then solving for α′
n.

Thus, the threshold for this procedure becomes σ
√
log n. The multiplier of the standard error in the threshold√

log n has a striking similarity to that arising in the so called “universal thresholding”,
√
2 log n.

Remark 1. Here the rate of the estimator is repressed by the bias caused in the non-thresholded elements. Recall that

as α′
n increases, the bias increases as well. Thus, there occurs a trade-off between the rate of the estimator and the

continuity property we attained.

Therefore, using the penalty implied by the generalized double Pareto prior and choosing an appropriate α′
n we

may achieve consistency in estimation with a diverging number of parameters if the true signal has a finite number

of nonzero elements. The result given in Corollary 1 is of particular relevance in wavelet smoothing and principle

component regression. These properties are relevant to readers interested in sparse estimation and show connections

to frequentist approaches.
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5 Maximum a Posteriori Estimation via Expectation-Maximization

5.1 Exploiting the Normal Mixture Representation

We assume a normal likelihood to formulate the procedure for non-orthogonal linear regression. Estimation is carried

out via the Expectation-Maximization algorithm. We first take the expectation of the log-posterior with respect to

the conditional posterior distributions of (τ−1
j |β(k)

j , λj , σ
2(k)) and (λj |β(k)

j , σ2(k)) at the kth step, and then maximize

with respect to βj and σ2 yielding the values for the (k + 1)th step. Removing the terms of the log-posterior that do

not depend on β and σ2, we are left with

−
(
n+ p

2
+ 1

)

log σ2 −
(y −Xβ)

′
(y −Xβ)−∑p

j=1 β
2
j/τj

2σ2
.

• E-step:

−
(
n+ p

2
+ 1

)

log σ2 − (y −Xβ)
′
(y −Xβ)

2σ2
− 1

2σ2

p
∑

j=1

β2
j







(α+ 1)σ2(k)

|β(k)
j |

(

|β(k)
j |+ σ(k)η

)







︸ ︷︷ ︸

d
(k)
j

• M-step: Letting D(k) = diag
(

d
(k)
1 , ..., d

(k)
p

)

, we have

β(k+1) =
(

X′X+D(k)
)−1

X′y, σ2(k+1) =

(

y −Xβ(k)
)′ (

y −Xβ(k)
)

+ β(k)′D(k)β(k)

n+ p+ 2
.

We refer to this estimator as GDP(MAP).

5.2 Exploiting the Laplace Mixture Representation and the One-step Estimator

An intuitive relationship to the adaptive Lasso of Zou (2006) and the one-step sparse estimator of Zou and Li (2008)

can be seen via the Laplace mixture representation of prior (3) implied in Proposition 1. In the proof of Proposition

1, the integration over τ leads to a Laplace mixture representation of the prior. As a computationally fast alternative

to estimating the exact mode via the above EM algorithm, we can obtain a “one-step estimator” and exploit the LARS

algorithm as in Zou and Li (2008). Since the mixing distribution of the Laplace is a known distribution, the required

expectation is obtained with ease resulting in the following step (k + 1) maximization:

β(k+1) = argmin
β







1

2σ2
(y −Xβ)

′
(y −Xβ) +

1

σ

p
∑

j=1

|βj |
(

α+ 1

|β(k)
j |+ ση

)





. (9)

The component-specific multiplier on |βj | is obtained from the expectation of λj with respect to its conditional pos-

terior distribution, p(λj |βj). Similar results to (9) are observed by Candes et al. (2008), Cevher (2009) and Garrigues

(2009). The one-step estimator is then given by

β(1) = argmin
β






(y −Xβ)

′
(y −Xβ) + α†

p
∑

j=1

|βj |
(

|β(0)
j |+ η†

)−1






, (10)

letting α† = 2σ(α+ 1) and η† = ση. This estimator resembles the adaptive Lasso. The LARS algorithm can be used

to obtain β(1) very quickly. We refer to this estimator as GDP(OS).

Assuming the same conditions as in Section 2 of Zou (2006), where X′X/n → C is a positive definite matrix, we

give the following theorem:
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Theorem 2. Let β(1)
n denote the GDP(OS) estimator in (10) indexed by n, A = {j : β∗

nj 6= 0}, An = {j : β
(1)
nj 6= 0}.

Suppose that α†
n → ∞, α†

n/
√
n → 0, and η†n

√
n → c < ∞. Then β(1)

n satisfies the following:

1. Consistency in variable selection: limn→∞ P (An = A) = 1

2. Asymptotic normality:
√
n(β

(1)
nA − β∗

A)
d→N(0, σ2C−1

A ), with β
(1)
nA = {β(1)

nj : j ∈ A} denoting the estimates

of the non-zero coefficients, β∗
nA = {β∗

nj : j ∈ A} denoting the values of the non-zero coefficients and CA
retaining the rows and columns of C indexed by A.

The proof is deferred to the Appendix.

Remark 2. For η† = 0, the GDP(OS) solution path for varying α† is identical to the adaptive Lasso solution path with

γ = 1 (see (4) in Zou (2006)) using identical β(0)
.

Remark 3. GDP(OS) forms a bridge between the Lasso and the adaptive Lasso; as η† → ∞ and α†/η† → λ† < ∞,

GDP(OS) gives the Lasso solution with penalty parameter λ†.

We do not experiment with the results obtained in Sections 4 and 5 with the exception of the procedure given in

Section 5.1. As mentioned earlier, these results are primarily presented to show the close connections between the

Bayesian approach taken and the regularization framework.

6 Experiments

In this section, we compare the proposed estimators to the posterior means obtained under the normal, Laplace and the

horseshoe priors as well as the Bayesian model averaged (BMA) estimator. Although our main focus is the posterior

mean, we also give the performance of the maximum a posteriori (MAP) estimates using the procedure given in Section

5.1 for those who are interested in sparse estimation. GDP(PM) and GDP(MAP) denote the posterior mean and the MAP

estimates respectively under the generalized double Pareto prior. Hyper-parameter values are provided in footnotes of

Tables 1 and 2 when fixed in advance and are otherwise treated as random with the priors specified in Section 3.2.

The MAP estimates of the regression coefficients are obtained by conditioning on the posterior means of the hyper-

parameters when not fixed, i.e we first obtain the posterior means of the hyper-parameters from an initial Bayesian

analysis to use them in the calculation of the MAP estimates.

Simulation 1: We generate n = {50, 400} observations from yi = x′
iβ

∗ + εi, where xij are generated as in-

dependently and identically distributed standard normals, εi ∼ N(0, σ2) and σ = 3. We use the following five β∗

configurations:

Model 1: β∗ = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)′

Model 2: β∗ = (3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)′

Model 3: β∗ = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0)′

Model 4: β∗ = (3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0)′

Model 5: β∗ = (0.85, ..., 0.85)′

These allow for signal-to-noise ratios of 0.745, 2.236, 1.054, 3.162, 1.267 respectively.

Simulation 2: We let Cov(xj , xj′) = 0.5|j−j′|. This setup leads to signal-to-noise ratios of 1.112, 3.335, 1.576,

4.729, 2.120.

In our experiments y and the columns of X are centered and the columns of X scaled to have unit length. For the

calculation of competing estimators we use monomvn (Gramacy, 2010) and BAS (Clyde and Littman, 2005; Clyde

et al., 2010) packages in R. BMA estimator is calculated using the BAS package while the rest of the competing esti-

mators are calculated using the monomvn package. We mainly follow the default settings provided by the packages.

Under the normal prior, the so-called “ridge” parameter is given an inverse Gamma prior with shape and scale param-

eters 10−3. Under the Laplace prior, as a default choice, the package places a Gamma prior on the “Lasso parameter”

λ2 as given in (6) of Park and Casella (2008) with shape and rate parameters 2 and 0.1 respectively. Under the horse-

shoe prior, the package uses the hierarchy given in Section 1.1 of Carvalho et al. (2010). For BMA, we use the default

settings of the BAS package which employs a Zellner-Siow prior given in Section 3.1 of Liang et al. (2008).
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100 data sets are generated for each case. In Tables 1 and 2, we report the median model error. Model error is

calculated as (β∗ − β̂)′C(β∗ − β̂) where C is the variance-covariance matrix that generated X. The values in the

subscripts give the bootstrap standard error of the median model error values obtained. The bootstrap standard error

was calculated by generating 500 bootstrap samples from 100 model error values, finding the median model error for

each case, and then calculating the standard error for it. Under each model, the best three performances are boldfaced

in the tables.

For larger sample sizes BMA outperforms the competing methods in most cases and GDP(MAP) estimator is the

second best. This is not surprising as there indeed exists a true underlying sparse model in most of the scenarios

considered. Except for Model 5, normal and Laplace priors are outperformed by other methods as expected. The

GDP(PM) shows a similar performance to that of horseshoe. Considering that the GDP(PM) and GDP(MAP) calculations

are very straightforward and computationally inexpensive due to the simple normal scale mixture representation used,

it offers great utility. The ability to use a simple Gibbs sampler (especially when α = η = 1) makes the procedure

very attractive for the average user.

Table 1: Model error comparisons for Simulation 1.

n = 50

Method Model 1 Model 2 Model 3 Model 4 Model 5

GDP(PM)a 2.6590.127 2.1700.222 3.9630.163 3.8470.167 5.6620.257

GDP(PM)b 2.7750.153 2.1470.207 4.6290.187 3.8170.178 6.9680.164

GDP(PM)c 2.5920.109 2.3640.249 4.3510.138 4.0010.227 6.5400.169

GDP(PM) 2.7850.145 2.2810.247 4.4030.209 4.4550.244 6.0380.246

GDP(MAP)a 2.8840.164 1.4980.138 5.8540.261 2.8940.157 10.4040.243

GDP(MAP)b 4.0300.273 1.4010.106 7.0990.270 3.0170.184 12.6200.155

GDP(MAP)c 3.5260.168 1.5090.127 6.7110.248 3.0600.165 11.8710.169

GDP(MAP) 3.4360.258 1.9920.292 5.8380.197 4.2690.272 8.7500.364

Normal 3.2360.186 5.7460.264 3.8950.187 5.5150.218 3.9400.189

Laplace 3.2080.114 4.0240.254 5.1090.337 4.8750.279 7.3240.458

Horseshoe 2.7010.128 2.1200.201 4.7890.219 3.7810.223 7.2500.227

BMA 2.7600.121 1.4380.103 4.5490.187 2.4610.179 7.0310.233

n = 400

GDP(PM)a 0.2300.016 0.2170.010 0.3610.018 0.3110.017 0.6430.039

GDP(PM)b 0.2190.015 0.2280.010 0.3650.017 0.3380.014 0.5910.040

GDP(PM)c 0.2370.014 0.2450.009 0.3720.017 0.3440.017 0.6030.039

GDP(PM) 0.2310.013 0.1860.010 0.4200.020 0.3710.016 0.5130.032

GDP(MAP)a 0.1760.014 0.1460.013 0.3130.019 0.2650.017 0.6140.040

GDP(MAP)b 0.1610.010 0.1530.011 0.3130.022 0.2870.016 0.5660.037

GDP(MAP)c 0.1800.014 0.1650.011 0.3200.022 0.2900.015 0.5800.038

GDP(MAP) 0.2090.018 0.1390.013 0.3990.019 0.3860.023 0.4980.030

Normal 0.4150.016 0.4600.024 0.4760.025 0.4720.020 0.4590.027

Laplace 0.3280.013 0.3930.022 0.4400.017 0.4420.020 0.5170.032

Horseshoe 0.2120.015 0.2070.009 0.3800.018 0.3740.015 0.5340.033

BMA 0.1560.012 0.1260.016 0.2460.014 0.2420.016 0.4500.021

a
α = 1, η = 1; bη = 1; cη =

√

α+ 1

7 Discussion

We proposed a hierarchical prior obtained through a particular scale mixture of normals where the resulting marginal

prior has a folded generalized Pareto density thresholded at zero. Although Bayesian model averaging is appealing, it

can be argued that allowing parameters to be arbitrarily close to zero instead of exactly equal to zero is more natural. In
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Table 2: Model error comparisons for Simulation 2.

n = 50

Method Model 1 Model 2 Model 3 Model 4 Model 5

GDP(PM)a 2.1230.116 2.1490.105 3.2050.157 4.2130.267 4.4400.134

GDP(PM)b 1.9440.113 1.9970.103 3.2600.182 4.1760.192 4.6510.127

GDP(PM)c 1.9120.116 2.1540.095 3.1170.153 4.2670.218 4.3290.124

GDP(PM) 1.9480.121 2.1540.125 3.1080.121 4.3900.207 3.9610.149

GDP(MAP)a 2.4780.112 1.5760.118 4.7110.262 3.0700.221 8.6540.263

GDP(MAP)b 2.5940.187 1.4940.124 5.0220.245 3.1980.226 9.1850.231

GDP(MAP)c 2.4660.186 1.5460.104 4.6910.276 3.2330.202 8.8950.227

GDP(MAP) 2.3810.130 1.8690.093 3.7740.191 4.0930.207 5.4820.145

Normal 2.3520.161 4.1650.293 2.7390.069 4.8110.238 3.0400.177

Laplace 2.1000.146 2.7680.171 2.8280.119 4.1660.259 3.4680.154

Horseshoe 1.9830.114 2.0030.099 3.3290.170 4.3450.194 4.5700.138

BMA 2.4080.128 1.3460.121 3.9540.124 3.2010.259 6.2970.205

n = 400

GDP(PM)a 0.2150.010 0.2190.011 0.3210.015 0.2660.013 0.6590.037

GDP(PM)b 0.2050.010 0.2300.014 0.3300.017 0.2870.013 0.5950.034

GDP(PM)c 0.2170.011 0.2360.014 0.3360.017 0.2930.013 0.5950.033

GDP(PM) 0.2080.014 0.1920.010 0.3620.020 0.3400.014 0.4940.030

GDP(MAP)a 0.1550.010 0.1480.012 0.2600.018 0.2270.014 0.6200.039

GDP(MAP)b 0.1500.009 0.1510.011 0.2610.017 0.2480.015 0.5710.033

GDP(MAP)c 0.1510.009 0.1680.010 0.2800.016 0.2500.014 0.5820.034

GDP(MAP) 0.1730.012 0.1460.012 0.3310.017 0.3460.014 0.4780.028

Normal 0.3580.013 0.4410.024 0.4110.019 0.4320.013 0.4330.026

Laplace 0.2730.013 0.3650.019 0.3780.020 0.3930.013 0.4750.028

Horseshoe 0.1980.010 0.2110.012 0.3330.019 0.3320.012 0.5350.031

BMA 0.1430.010 0.1180.013 0.2310.017 0.2030.014 0.6540.040

a
α = 1, η = 1; bη = 1; cη =

√

α+ 1

addition, the proposed methods have substantial computational advantages in relying on simple block-updated Gibbs

sampling, while BMA requires sampling from a model space with 2p models. As p increases, it becomes impossible to

even visit more than a vanishingly small proportion of the models. Given the simple and fast computation and excellent

performance in small sample simulation studies, the generalized double Pareto should be useful as a shrinkage prior

in a broad variety of Bayesian hierarchical models, while also suggesting close relationship to frequentist penalized

likelihood approaches. The proposed prior can be applied outside of normal linear regression to generalized linear

models, shrinkage of basis coefficients in nonparametric regression, and in more complex settings such as factor

analysis and nonparametric Bayes modeling.

Appendix

Proof of Theorem 1. Let
∑pn

j=1 E(β∗
nj− β̂nj)

2 =
∑r

j=1 E(β∗
nj− β̂nj)

2+
∑pn

j=r+1 E(β̂nj)
2 = I1+I2 where β∗

nj 6= 0
for j = 1, ..., r and β∗

nj = 0 for j = r + 1, ..., pn.
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We first analyze the behavior of I2. Given the estimator in (6)

I2 =
σ2

4n

pn∑

j=r+1

E
{

I(|Znj | ≥
√

α′
n)

×
[

znj − sgn (znj)
√

α′
n + sgn (znj)

{

z2nj + sgn (znj)2
√

α′
n − 3α′

n

}1/2
]}2

=
α′
nσ

2

2n

pn∑

j=r+1

∫ ∞

√
α′

n




znj
√
α′
n

− 1 +

{(

znj
√
α′
n

+ 3

)(

znj
√
α′
n

− 1

)}1/2




2

φ(znj)dznj

≤ 2σ2

n

pn∑

j=r+1

∫ ∞

√
α′

n

z2njφ(znj)dznj

=
2σ2(pn − r − 1)

n

{√
α′
n exp(−α′

n/2)√
2π

+Q(
√

α′
n)

}

≤
√
2σ2(pn − r − 1)

√
α′
n exp(−α′

n/2)√
πn

(

1 +
1

α′
n

)

= O
{

pn
√
α′
n exp(−α′

n/2)

n

}

where φ(.) and Q(.) denote the density and the tail probability of a standard normal distribution. In the last inequality

we make use of Q(x) ≤ exp(−x2/2)/(x
√
2π).

I1 =

r∑

j=1

E

{

I

(∣
∣
∣
∣
β∗
nj +

σ√
n
Znj

∣
∣
∣
∣
≥ σ√

n

√

α′
n

)

(β∗
nj − β̂nj)

2

}

+

r∑

j=1

E

{

I

(∣
∣
∣
∣
β∗
nj +

σ√
n
Znj

∣
∣
∣
∣
<

σ√
n

√

α′
n

)

(β∗
nj)

2

}

= J1 + J2.

Let us first analyze J2:

J2 =

r∑

j=1

pr

(∣
∣
∣
∣
β∗
nj +

σ√
n
Znj

∣
∣
∣
∣
<

σ√
n

√

α′
n

)

(β∗
nj)

2

=
r∑

j=1

P

(

−
√

α′
n − β∗

nj

√
n

σ
< Znj <

√

α′
n − β∗

nj

√
n

σ

)

(β∗
nj)

2

≤
r∑

j=1

pr

{

Znj > −
√

α′
n + sgn (β∗

nj)β
∗
nj

√
n

σ

}

(β∗
nj)

2

≤ 1√
2π

r∑

j=1

exp
[

−
{
−
√
α′
n + sgn (β∗

nj)β
∗
nj

√
n/σ

}2
/2
]

−
√
α′
n + sgn (β∗

nj)β
∗
nj

√
n/σ

(β∗
nj)

2

= O







exp

[

−n
2

{

−
√

α′
n/n+ C

}2
]

√
n
{

−
√

α′
n/n+ C

}







,
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where 0 < C < ∞. Let c1 = −
√
α′
n − β∗

nj

√
n/σ and c2 =

√
α′
n − β∗

nj

√
n/σ.

J1 =
r∑

j=1

{∫ c1

−∞

(

β̂nj − β∗
nj

)2

φ(znj)dznj +

∫ ∞

c2

(

β̂nj − β∗
nj

)2

φ(znj)dznj

}

Let us consider the case β∗
nj > 0 for a summand of J1:

J1j = (β∗
nj)

2

(∫ c1

−∞
φ(znj)dznj +

∫ ∞

c2

φ(znj)dznj

)

− 2β∗
nj

∫ c1

−∞
β̂njφ(znj)dznj

−2β∗
nj

∫ ∞

c2

β̂njφ(znj)dznj +

∫ c1

−∞
β̂2
njφ(znj)dznj +

∫ ∞

c2

β̂2
njφ(znj)dznj

≤ (β∗
nj)

2 {Q(−c1) + 1−Q(−c2)} − 2β∗
nj

∫ c1

−∞

(

β∗
nj + znj

σ√
n

)

φ(znj)dznj

−2β∗
nj

∫ ∞

c2

(

β∗
nj + znj

σ√
n
− σ√

n

√

α′
n

)

φ(znj)dznj +

∫ c1

−∞

(

β∗
nj + znj

σ√
n

)2

φ(znj)dznj

+

∫ ∞

c2

(

β∗
nj + znj

σ√
n

)2

φ(znj)dznj

= 2β∗
nj

σ√
n

√

α′
n{1−Q(−c2)}+

σ2

n

{

1 +Q(−c1)−Q(−c2) +
c2e

−c22/2

√
2π

− c1e
−c21/2

√
2π

}

(11)

The slowest term converging to zero in (11) is 2β∗
njσ
√

α′
n/n which is O(

√

α′
n/n). Although the derivation is not

given, β∗
nj < 0 case can be shown to have the same slowest term. Thus J1 = O(

√

α′
n/n), and since J1 converges at

a slower rate than J2,

E‖β∗
n − β̂n‖2 = O

{

pn
√
α′
n exp(−α′

n/2)

n

}

+O
(√

α′
n

n

)

.

This completes the proof.

Proof of Theorem 2. The proof emerges with some modifications to the proof of Theorem 2 in Zou (2006). Here β(0)
n

denotes the least squares estimator. We first prove asymptotic normality. Let β = β∗
n + u/

√
n and

Vn(u) =






y −

p
∑

j=1

xj

(

β∗
nj +

uj√
n

)






2

+ α†
n

p
∑

j=1

|β∗
nj +

uj√
n
|
(

|β(0)
nj |+ η†n

)−1

.

Let ûn = argminVn(u), suggesting ûn =
√
n(β(1)

n − β∗
n).

Vn(u)− Vn(0) = u′
(
1

n
X′X

)

u− 2
ε′X√
n
u+

α†
n√
n

p
∑

j=1

(

|β(0)
nj |+ η†n

)−1 √
n

(∣
∣
∣
∣
β∗
nj +

uj√
n

∣
∣
∣
∣
− |β∗

nj |
)

We know that X′X/n → C and ε′X/
√
n

d→W
d
=N(0, σ2C). Now consider the limiting behavior of the third

term. If β∗
nj 6= 0, then by the continuous mapping theorem {|β(0)

nj | + η†n}−1 p→{|β∗
nj | + η†n}−1 and

√
n(|β∗

nj +

uj/
√
n| − |β∗

nj |) → ujsgn(β∗
nj). By Slutsky’s theorem (α†

n/
√
n){|β(0)

nj | + η†n}−1
√
n(|β∗

nj + uj/
√
n| − |β∗

nj |)
p→ 0.

If β∗
nj = 0, then

√
n(|β∗

nj + uj/
√
n| − |β∗

nj |) = |uj | and α†
n{|β

(0)
nj |+ η†n}−1/

√
n = α†

n/(
√
n|β(0)

nj |+
√
nη†n) where

√
nβ

(0)
nj = Op(1). Again by Slutsky’s theorem

Vn(u)− Vn(0)
d→
{

u′
ACAuA − 2u′

AWA if uj = 0 for all j /∈ A
∞ otherwise.
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Vn(u)−Vn(0) is convex and the unique minimum of the right hand side is (C−1
A WA,0)′. By epiconvergence (Geyer,

1994; Knight and Fu, 2000)

u
(n)
A

d→C−1
A WA, u

(n)
Ac

d→0. (12)

Since WA
d
=N(0, σ2CA), this proves the asymptotic normality.

For all j ∈ A, β
(1)
nj

p→β∗
nj ; thus pr(j ∈ An) → 1. Now we show that for all j′ /∈ A, pr(j′ ∈ An) → 0. Consider

the event j′ ∈ An. By the KKT optimality conditions, 2x′
j′(y − Xβ(1)

n ) = α†
n(|β

(0)
nj′ | + η†n)

−1. We know that

α†
n(|β

(0)
nj′ |+ η†n)

−1/
√
n

p→∞ while

2x′
j′(y −Xβ(1)

n )
√
n

= 2

{

x′
j′X

√
n(β∗

n − β(1)
n )

n
+

x′
j′ε√
n

}

.

By (12) and Slutsky’s theorem, we know that both terms in the brackets converge in distribution to some normal

suggesting

pr (j′ ∈ An) ≤ pr

{

2x′
j′

(

y −Xβ(1)
n

)

= α†
n

(∣
∣
∣β

(0)
nj′

∣
∣
∣+ η†n

)−1
}

→ 0,

which proves the consistency part.
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