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Abstract. The object of the present research is to study generalized η-Ricci soliton on trans-Sasakian
manifolds. It shows that a trans-Sasakian manifold admitting the generalized gradient Ricci soliton, is
necessarily Einstein manifold.
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1. Introduction

Theory of Ricci solitons are the fixed points of the Ricci flow projected from the space of metrics
onto its quotient modulo diffeomorphisms and scaling, and often arise as blow-up limits for the
Ricci flow on compact manifolds. Theoretical physicists have also been looking into the equation
of Ricci soliton in relation with string theory. The initial contribution in this direction is due to
D. Friedan who discusses some aspects of it in [11].

In 1982, R. S. Hamilton [12] introduced that the Ricci solitons move under the Ricci flow simply
by diffeomorphisms of the initial metric that is they are stationary points of the Ricci flow is given
by

∂g

∂t
= −2Ric(g). (1.1)

Definition 1.1. A Ricci soliton (g, V, λ) on a Riemannian manifold is defined by

LV g + 2S + 2λg = 0, (1.2)

where S is the Ricci tensor,  LV is the Lie derivative along the vector field V on M and λ is a real
scalar. Ricci soliton is said to be shrinking, steady or expanding according as λ < 0, λ = 0 and
λ > 0, respectively.

If the vector field V is the gradient of a potential function -ψ , then g is called a gradient Ricci
soliton and equation (1.2) assumes the form Hessψ = S + λg.

On the other hand, the roots of contact geometry lie in differential equations as in 1872 Sophus
Lie introduced the notion of contact transformation as a geometric tool to study systems of differ-
ential equations. This subject has manifold connections with the other fields of pure mathematics,
and substantial applications in applied areas such as mechanics, optics, phase space of dynamical
system, thermodynamics and control theory. The important of Ricci soliton comes from the fact
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that they are corresponding to self-similar solutions of the Ricci flow and at the same time they
are natural generalizations of Einstein metrics. Some generalizations like gradient Ricci solitons
[7], quasi Einstein manifolds [8] and generalized quasi Einstein manifolds [9] play an important
role in solutions of geometric flows and described the local structure of certain manifolds. In 2016,
P. Nurowski and M. Randall [20] introduced the notion of generalized Ricci soliton as a class of
overdetermined system of equations

LXg + 2a1X
] ⊗X] − 2a2S − 2λg = 0 (1.3)

where LXg and X] denotes the Lie derivative of the metric g in the directions of vector field X
and the canonical 1-form associated to X, and some real constants a1, a2 and λ .
It is a well known fact that, if the potential vector field ψ is zero or Killing then the Ricci soliton is
an Einstein real hypersurfaces on non-flat complex space forms [6]. Motivated by this concept in
2009, J.T. Cho and M. Kimura [4] introduced the notion of η-Ricci solitons and gave a classification
of real hypersurfaces in non-flat complex space forms admitting η-Ricci solitons.

Definition 1.2. An η-Ricci soliton (g, V, λ, µ) on a Riemannian manifold is defined by

LXg + 2S + 2λg + 2µη ⊗ η = 0, (1.4)

where S is the Ricci tensor, LX is the Lie derivative along the vector field X on M and λ is a real
scalar. In particular µ = 0 then the data (g, ξ, λ) is a Ricci soliton and it is said to be shrinking,
steady or expanding according as λ < 0, λ = 0 and λ > 0, respectively.

Now, in the present paper, author is introducing the notion of generalized η-Ricci solitons.
Perturbing the equation (1.3) that define, this type of soliton by the multiple of a ceratin (0, 2)-
tensor field η ⊗ η, we obtain more general notion, namely generalized η-Ricci soliton. Therefore,
from the equations (1.3) and (1.4) we can extensively study the generalized Ricci solitons. The
generalized η-Ricci soliton is given by the following equation, which is the association of above
equations (1.2), (1.3) and (1.4),

LXg + 2a1X
] ⊗X] − 2a2S − 2λg − 2µη ⊗ η = 0 (1.5)

where LXg and X] denotes the Lie derivative of the metric g in the directions of vector field X
and the canonical 1-form associated to X, and some real constants a1, a2 ,λ and µ.

In 1985, J. A. Oubina [22] introduced a new class of almost contact metric manifolds known
as trans-Sasakian manifolds. This class consists of both Sasakian and Kenmotsu structures. The
above manifolds are studied by several authors like D. E. Blair and J.C. Marrero ([1], [18]) K. Ken-
motsu [16]. In 1925, Levy [17] obtained the necessary and sufficient conditions for the existence
of such tensors. later, R. Sharma [24] initiated the study of Ricci solitons in contact Riemannian
geometry . Followed by M. M. Tripathi [28], G. Nagaraja et.al. [21] and M. C. Turan and others
[27] extensively studied Ricci solitons in almost contact metric manifolds.

η-Ricci soliton is the generalization of Ricci solitons. In [2] A. M. Blaga studied η-Ricci solitons
on para-Kenmotsu manifolds and η-Ricci solitons on Lorentzian para Sasakian manifolds [3]. Later,
D. G. Parakasha and B. S. Hadimani studied η-Ricci solitons on para-Sasakian manifolds [23]. In
2017, K. Venu and G. Nagaraja [30] study the η-Ricci solitons in trans Saskian manifolds. Also
in 2017 M. A. Mekki and A. M. Cherif study the generalized Ricci solitons on Sasakian manifolds
[19]. Recently, M. D. Siddiqi (see, [25], [26]) also, study some properties of solitons space which
is closely related to this topic. Therefore, motivated by these studies in the present paper author
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introduces the notion of generalized η-Ricci soliton in trans-Sasakian manifolds. Trans-Sasakian
manifolds arose in a natural way from the classification of almost contact metric structures by
Chinae and Gonzales [10], and they appear as a natural generalization of both Sasakian and Ken-
motsu manifolds.

2. Preliminaries

Let a differentiable manifold M is said to be an almost contact metric manifold equipped with
almost contact metric structure (φ, ξ, η, g) consisting of a (1, 1) tensor field φ, a vector field ξ, a
1-form η and an indefinite metric g such that

φ2X = −X + η(X)ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0, (2.1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ). (2.2)

for all X,Y ∈M , ξ ∈ Γ(TM) and 1-form η ∈ Γ(T̄M).

In [29], Tano classified the connected almost contact metric manifold. For such a manifold the
sectional curvature of the plane section containing ξ is constant, say c. He showed that they can
be divided into three classes. (1) homogeneous normal contact Riemannian manifolds with c > 0.
Other two classes can be seen in Tano [29].

In [13], Grey and Harvella was introduced the classification of almost Hermitian manifolds,
there appears a class W4 of Hermitian manifolds which are closely related to the conformal Kaehler
manifolds. The class C6⊕C5 [13] coincides with the class of trans-Sasakian structure of type (α, β).
In fact, the local nature of the two sub classes, namely C6 and C5 of trans-Sasakian structures are
characterized completely.

An almost contact metric structure on M is called a trans-Sasakian (see [13], [16]) if (M ×
R, J,G) belongs to the class W4, where J is the almost complex structure on M ×R defined by

J

(
X, f

d

dt

)
=

(
φ(X)− fξ, η(X)

d

dt

)
for all vector fields X on M and smooth functions f on M × R and G is the product metric on
M ×R. This may be expressed by the condition

(∇Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX) (2.3)

where α and β are some scalar functions. We note that trans Sasakian structure of type (0, 0), (α, 0)
and (0, β) are the cosymplectic, α-Sasakian and β-Kenmotsu manifold respectively. In particular,
if α = 1, β = 0 and α = 0, β = 1, then a trans-Sasakian manifold reduces to a Sasakian and
Kenmotsu manifolds respectively. From (2.3), it follows that

∇Xξ = −αφX + β[X − η(X)ξ], (2.4)

and
(∇Xη)Y = −αg(φX, Y ) + β[g(X,Y )− η(X)η(Y )]. (2.5)

for any vector fields X and Y on M , ∇ denotes the Levi-Civita connection with respect to g, α and
β are smooth functions on M . The existence of condition (2.3) is ensured by the above discussion.
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The Riemannian curvature tensor R with respect to Levi-Civita connection ∇ and the Ricci
tensor S of a Riemannian manifold M are defined by:

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, (2.6)

S(X,Y ) =

2n+1∑
i=1

g(R(X, ei)ei, Y ) (2.7)

for X,Y, Z ∈ Γ(TM), where ∇ is with respect to the Riemannian metric g and {e1, e2, .....ei},
where 1 ≤ i ≤ 2n+ 1 is the orthonormal frame.

Given a smooth function ψ on M , the gradient of ψ is defined by:

g(gradψ,X) = X(ψ), (2.8)

and the Hessian of ψ is defined by:

(Hessψ)(X,Y ) = g(∇Xgradψ, Y ), (2.9)

where X,Y ∈ Γ(TM). For X ∈ Γ(TM), we defined X] ∈ Γ(T̄M) by:

X](Y ) = g(X,Y ). (2.10)

The generalized η-Ricci soliton equation in Riemannian manifold M is defined by:

LXg = −2a1X
] �X] + 2a2S + 2λg + 2µη ⊗ η, (2.11)

where X ∈ Γ(TM) and LXg is the Lie-derivative of g along X given by:

(LXg)(Y,Z) = g(∇YX,Z) + g(∇ZX,Y ) (2.12)

for all Y,Z ∈ Γ(TM), and a1, a2, λ ∈ R. Equation (2.11), is a generalization of

(i) Killing’s equation(a1 = a2 = λ = 0),

(ii) Equation for homotheties (a1 = a2 = 0),

(iii) Ricci soliton (a1 = 0, a2 = −1)’

(iv) Case of Einstein-Weyl (a1 = 1, a2 = −1
n−2 ),

(v) Metric projective structures with skew-symmetric Ricci tensor in projective class (a1 =
1, a2 = −1

n−2 , λ = 0),

(vi) Vacuum near-horizon geometry equation (a1 = 1, a2 = 1
2 ), (see [5], [14], [15]).

Equation (2.11), is also a generalization of Einstein manifolds [9]. Note that, if X = gradψ, where
ψ ∈ C∞(M), the generalized η-Ricci soliton equation is given by:

Hessψ = −a1dψ � dψ + a2S + λg + µη ⊗ η. (2.13)
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3. Generalized η-Ricci solitons on (M2n+1, φ, ξ, η, g)

In a (2n+ 1)-dimensional trans Sasakian manifold M , we have the following relations:

R(X,Y )ξ = (α2 − β2)[η(Y )X − η(X)Y ] + 2αβ[η(Y )φX − η(X)φY ] (3.1)

+[(Y α)φX − (Xα)φY + (Y β)φ2X − (Xβ)φ2Y ]

S(X, ξ) = [(2n)(α2 − β2)− (ξβ)]η(X)− ((φX)α)− (2n− 1)(Xβ), (3.2)

Qξ = ((2n)(α2 − β2)− (ξβ))ξ + φ(gradα)− 2n(gradβ), (3.3)

where R is curvature tensor, while Q is the Ricci operator given by S(X,Y ) = g(QX,Y ).
Further in an trans Sasakian manifold , we have

φ(gradα) = 2n(gradβ), (3.4)

and
2αβ + (ξα) = 0. (3.5)

Using (3.4) and (3.5), for constants α and β , we have

R(ξ,X)Y = (α2 − β2)[g(X,Y )ξ − η(Y )X] (3.6)

R(X,Y )ξ = (α2 − β2)[η(Y )X − η(X)Y ] (3.7)

η(R(X,Y )Z) = (α2 − β2)[g(Y,Z)η(X)− g(X,Z)η(Y )] (3.8)

S(X, ξ) = [2n(α2 − β2)]η(X) (3.9)

Qξ = [2n(α2 − β2)]ξ. (3.10)

An important consequence of (2.4) is that ξ is a geodesic vector field, i.e., :

∇ξξ = 0. (3.11)

For arbitrary vector field X, we have that

dη(ξ,X) = 0. (3.12)

The ξ-sectional curvature Kξ of M is the sectional curvature of the plane spanned by ξ and a unit
vector field X. From (3.7) we have

Kξ = g(R(ξ,X), ξ,X) = (α2 − β2). (3.13)

It follows from (3.13) that ξ-sectional curvature does not depend on X.

Now, we are interested to prove the following theorem, which is the main result of this paper.

Theorem 3.1. Let M be a trans-Sasakian manifold of dimension (2n + 1). If the generalized η-
Ricci soliton satisfies (2.13) with the condition a1[λ+ µ+ 2na2(α2 − β2)] 6= −(α2 − β2), then ψ is
a constant function. Furthermore, if a2 6= 0, then M is an Einstein manifold.

From Theorem 3.1, we have the following remarks:



Mohd Danish Siddiqi 112

Remark 3.2. If M is a trans-Sasakian manifold and the gradient Ricci soliton satisfies equation
of Hessψ = −S + λg, then ψ is a constant function and M is an Einstein manifold.

Remark 3.3. In a trans-Sasakian manifold M , there is no non-constant smooth function ψ, such
that Hessψ = λg, for some constant λ.

For the proof of the Theorem 3.1, first we need to prove the following lemmas.

Lemma 3.4. Let M be a trans-Sasakian manifold. Then we have

(Lξ(LXg))(Y, ξ) = (α2 − β2)g(X,Y ) + g(∇ξ∇ξX,Y ) + Y g(∇ξX, ξ), (3.14)

where X,Y ∈ Γ(TM) and Y is orthogonal to ξ.

Proof. From the property of Lie-derivative we note that

(Lξ(LXg))(Y, ξ) = ξ((LXg)(Y, ξ))− (LXg)(LξY, ξ)− (LXg)(Y,Lξξ), (3.15)

since LξY = [ξ, Y ], Lξξ = [ξ, ξ], by using (2.12) and (3.15), we have

(Lξ(LXg))(Y, ξ) = ξg(∇YX, ξ) + ξg(∇ξX,Y )− g(∇[ξ,Y ]X, ξ) (3.16)

−g(∇ξX, [ξ, Y ])

= g(∇ξ∇YX, ξ) + g(∇YX,∇ξξ) + g(∇ξ∇ξX,Y )

+g(∇ξX,∇ξY )− g(∇ξX,∇ξY )− g(∇[ξ,Y ]X, ξ) + g(∇ξX,∇Y ξ),

from (2.4), we get ∇ξξ = −α(φξ) = 0, so that we get

(Lξ(LXg))(Y, ξ) = g(∇ξ∇YX, ξ) + g(∇ξ∇ξX,Y )− g(∇[ξ,Y ]X, ξ) (3.17)

+Y g(∇ξX, ξ)− g(∇Y∇ξX, ξ),

using (2.6) and (3.17), we obtain

(Lξ(LXg))(Y, ξ) = g(R(ξ, Y )X, ξ) + g(∇ξ∇ξX,Y ) + Y g(∇ξX, ξ). (3.18)

Now from (3.6), with g(Y, ξ) = 0, we get

g(R(ξ, Y )X, ξ) = g(R(X, ξ)ξ, Y ) = (α2 − β2)g(X,Y ). (3.19)

The Lemma follows from (3.18) and (3.19).

Now, we have another useful lemma

Lemma 3.5. Let M be a Riemannian manifold, and let ψ ∈ C∞(M). Then we have

(Lξ(dψ � dψ))(Y, ξ) = Y (ξ(ψ))ξ(ψ) + Y (ψ)ξ(ξ(ψ)), (3.20)

where ξ, Y ∈ Γ(TM).
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Proof. We calculate:

(Lξ(dψ � dψ))(Y, ξ) = ξ(Y (ψ)ξ(ψ)− [ξ, Y ](ψ)ξ(ψ)− Y (ψ)[ξ, ξ](ψ)

= ξ(Y (ψ))ξ(ψ) + Y (ψ)ξ(ξ(ψ))− [ξ, Y ](ψ)ξ(ψ),

since [ξ, Y ](ψ) = ξ(Y (ψ))− Y (ξ(ψ)), we get

(Lξ(dψ � dψ))(Y, ξ) = [ξ, Y ](ψ)ξ(ψ) + Y (ξ(ψ))ξ(ψ) + Y (ψ)ξ(ξ(ψ))− [ξ, Y ](ψ)ξ(ψ)

= Y (ξ(ψ))ξ(ψ) + Y (ψ)ξ(ξ(ψ)).

Lemma 3.6. Let M be a trans-Sasakian manifold of dimension (2n + 1), and the generalized
η-Ricci soliton satisfies equation (2.13). Then we have

∇ξ gradψ = [λ+ µ+ 2na2(α2 − β2)]ξ − a1ξ(ψ)gradψ. (3.21)

Proof. Let Y ∈ Γ(TM), from the definition of Ricci curvature S (2.7) , and the curvature
condition (3.7), we have

S(ξ, Y ) = g(R(ξ, ei)ei, Y )

= g(R(ei, Y )ξ, ei)

= (α2 − β2)[η(Y )g(ei, ei)− η(ei)g(Y, ei)]

= (α2 − β2)[(2n+ 1)η(Y )− η(Y )]

= 2n(α2 − β2)η(Y )

= 2n(α2 − β2)g(ξ, Y ),

where {e1, e2, ....ei} , and 1 ≤ i ≤ 2n+ 1 is an orthonormal frame on M , implies that:

λg(ξ, Y ) + µg(ξ, Y ) + a2S(ξ, Y ) = λg(ξ, Y ) + µg(ξ, Y ) + a22n(α2 − β2)g(ξ, Y ) (3.22)

= [λ+ µ+ 2na2(α2 − β2)]g(ξ, Y ).

From (2.13) and (3.22), we obtain

(Hessψ)(ξ, Y ) = −a1ξ(ψ)(Y )(ψ) + [λ+ µ+ 2na2(α2 − β2)]g(ξ, Y ) (3.23)

= −a1ξ(ψ)g(gradψ, Y ) + [λ+ µ+ 2na2(α2 − β2)]g(ξ, Y ),

the Lemma follows from equation (3.23) and the definition of Hessian (2.9).

Now, with help of Lemma 3.4 , Lemma 3.5 and Lemma 3.6 we can prove the Theorem 3.1 .

Proof. Theorem 3.1. Let Y ∈ Γ(TM), such that g(ξ, Y ) = 0, from Lemma 3.4, with X =
grad ψ, we have

2(Lξ(Hessψ))(Y, ξ) = (α2 − β2)Y (ψ) + g(∇ξ∇ξ gradψ, Y ) + Y g(∇ξ gradψ, ξ), (3.24)

from Lemma 3.6, and equation (3.24), we get

2(Lξ(Hessψ))(Y, ξ) = (α2−β2)Y (ψ)+[λ+µ+2na2(α2−β2)]g(∇ξξ, Y )−a1g(∇ξ(ξ(ψ)grad ψ), Y )
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+[λ+ µ+ 2na2(α2 − β2)]Y g(ξ, ξ)− a1Y (ξ(ψ)2), (3.25)

since ∇ξξ = 0 and g(ξ, ξ) = 1, from equation (3.25), we obtain:

2(Lξ(Hessψ))(Y, ξ) = (α2 − β2)Y (ψ)− a1ξ(ξ(ψ))Y (ψ)− a1ξ(ψ)g(∇ξ gradψ, Y ) (3.26)

−2a1ξ(ψ)Y (ξ(ψ)).

From Lemma 3.6, equation (3.26), and since g(ξ, Y ) = 0, we have

2(Lξ(Hessψ))(Y, ξ) = (α2 − β2)Y (ψ)− a1ξ(ξ(ψ))Y (ψ) + a21ξ(ψ)2Y (ψ) (3.27)

−2a1ξ(ψ)Y (ξ(ψ)).

Note that, from (2.4) and (2.5), we have Lξg = 0, which is a Killing vector field, implies that
LξS = 0, taking the Lie derivative of the generalized η-Ricci soliton equation (2.13) yields

(α2 − β2)Y (ψ)− a1ξ(ξ(ψ))Y (ψ) + a21ξ(ψ)2Y (ψ)− 2a1ξ(ψ)Y (ξ(ψ)) (3.28)

= −2a1Y (ξ(ψ))ξ(ψ)− 2a1Y (ψ)ξ(ξ(ψ)),

is equivalent to
Y (ψ)[(α2 − β2) + a1ξ(ξ(ψ)) + a21ξ(ψ)2] = 0, (3.29)

according to Lemma 3.6, we have

a1ξ(ξ(ψ)) = a1ξg(ξ, grad ψ) (3.30)

= a1g(ξ,∇ξ gradψ)

= a1[λ+ µ+ 2na2(α2 − β2)]− a21ξ(ψ)2,

by equations (3.29) and (3.30), we obtain

Y (ψ)[(α2 − β2) + a1(λ+ µ+ 2na2(α2 − β2))] = 0, (3.31)

since a1[λ+ µ+ 2na2(α2 − β2)] 6= −(α2 − β2), we find that Y (ψ) = 0, i.e., gradψ is parallel to ξ.
Hence grad ψ = 0 as D = kerη is not integrable any where, which means ψ is a constant function.

Now, for particular values of α and β we have following cases:
For α = 0 or (β = 1), we can state:

Corollary 3.7. Let M be a β-Kenmotsu (or Kenmotsu) manifold of dimension n, and the gener-
alized η-Ricci soliton satisfies (2.13) with condition a1[λ+ µ− 2na2β

2)] 6= β2 (or 1). Then ψ is a
constant function. Furthermore, if a2 6= 0, then M is an Einstein manifold.

For β = 0, or (α = 1) we can state the following:

Corollary 3.8. Let M be a α-Sasakian (or Sasakian) manifold of dimension n, and the generalized
η-Ricci soliton satisfies (2.13) with condition a1[λ + µ + 2na2α

2)] 6= −α2 (or −1). Then ψ is a
constant function. Furthermore, if a2 6= 0, then M is an Einstein manifold.
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