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1. Introduction 

During the recent years, there is substantial interest in the 

econometric models with qualitative and censored dependent variables. 

The important contributions on these topics by Amemiya [1973J, 

McFadden [1973J and Heckman [1974J among others stimulate the recent 

development and empirical applications. The sp~cifications of t~e 

econometric models with censored dependent variables are based on the 

norma.l distributions, see, for example, Amemiya [1973,1974J, Heckman 

[1976,1979J and Lee et al. [1980J. For the development of qualitative 

response models, normal distributions play an important but limited 

role. The qualitative response models have attractive theoretical 

properties, see Hausman and Vlise [1978J, but are computationally com­

plicated and almost intractib1e for po1ychotomous responses with many 

categories. For the complexity and the limitations in the empirical 

implementation of the multinomial probit models, one can consult the 

reports in Lerman and Manski [1980J and Daganzo [1979J. The condi­

tional logit models of McFadden [1973J based on extreme value distri-

butions are apparently much easier to be implemented and are the widely 

used models for multiple responses. 

The normality assumption in the censored regression models 

may not be appropriate theoretically for some cases. For example, when 
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the dependent variables take only positive values, Poirier [1978J 

recommends the Box-Cox transformation to transform the dependent 

variables and then specify normality for the transformed variable. 

Olsen [1979J and Goldberger [1980J investigate the misspecification of 

the normal distribution assumption on various estimation methods. Models 

with nonnormal marginal distributions are of interest and need to be 

developed. 

In Lee [1979J and Duncan [1980J, among others, econometric 

models with both continuous and discrete variables are formulated. 

These models unified the censored regression models and discrete choice 

models. These model~ formulated with normal distributions are restricted 

for computational tractibility to binary choice. Many economics problems, 

such as immigration and occupational choice, do involve multiple choice 

and censored dependent variables. Computationally tractible and theoreti­

cal sound economic models need to be developed for the multiple choice 

problems with mixed discrete and continuous dependent variables. Some 

recent attempts to model these cases can be found in Dubin and McFadden 

[1980]. 

In this article, we will suggest some approaches to formulate 

models with given marginal distributions and models with multiple 

discrete choice and censored dependent variables. Our generalized 

models have tractible likelihood functions and can be computationally 

implemented. Two-stage estimation methods similar to the two-stage 

methods in Amemiya [1974J, Heckman [1976J, and Lee [1976J can also be 

derived for some of our generalized models. This article is organized 



3 

as follows. In section 2, we suggest some methods to formulate selecti~ity 

models with specified marginal distributions. In section 3, we consider 

the two-stage estimation procedure and provide the proper asymptotic 

covariance matrix for the estimators. In section 4, multiple-choice 

models with mixed discrete and censored continuous dependent variables 

are specified and analyzed. Finally, we make our conclusions. 

2. Abnormal Selectivity Models 

Consider the simple two equations censored regression model 

Yl = xS + u 

y* = zy - e: (2.2~ 

where x and z are exogenous variables, E(ulx,z) = 0, E(e:lx,z) = 0 and 

var (e:lx,z) = 1. The disturbances u and e: conditional on x and z have 

absolutely continuous distribution functions G(u) and Fle:) , which are 

specified except for some unknown finite dimensional vectors of parame­

ters which are suppressed in our notations for simplicity. The 

dependent variable y* is unobservable but has a dichotomous observable 

realization I which is related to y* as follows: 

I = if and only if y* ~ 0, 

1=0 if and only if y* < O. 
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The dependent variable Yl conditional on x and z has well-defined 

marginal distribution but Y1 is not observed un1essy* ~ 0. The observed 

samples y's of Yl are thus censored and 

Y = xS + u if and only if zy ~ s. 

For the model in eauations (2.1) and (2.2), the distributions 

u and s are allowed to be correlated. Since only the marginal 

disturbances of u and E are specified but not the joint bivariate distri­

butions of u and s, the formulation of the complete model is to suggest 

some interesting proper bivariate distributions which have the specified 

marginal distributions. 

Any joint bivariate distribution that will be of interest should 

allow unrestricted correlation between the disturbances u and s. For 

any bivariate distribution H(u,s) with marginal distributions G(u) and 

F(s), it is known that, as given by Frechet, 

where H
1

(u,s) =min{G(u},F(s)J and H_
1

(u,e:) =max{G(u) + F(e:)-l,OL The 

boundary distributions Hl(u,s) and H_l(u,s) are two distribution func-

. tions with the marginal distribution functions F(s) and G(u). u and 

s are perfect positive dependent when they give Hl ; perfect negative 

dependence when they give H_
1

. The proof of the above inequalities 

are straightforward and is omitted here. Interested readers can find 

the proofs in Mardia [1970J, page 31. It is true that there may exist 

~any families of bivariate distributions which have the specified 
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marginal distributions and contain the boundary distributions as special 

cases. However, the following bivariate distribution of (U,E) is of 

particular interest. 

Let ~(.) be the standard normal distribution function and 

B(o,o;p) be the bivariate normal distribution N(O,O,l,l,p) with zero 

means, unit variances and correlation coefficient p. With the completely 

specified marginal distributions G(u) and F(E) of u and E, respectively, 

each of them can be transformed into a standard normal random variable 

N(O,l). Let 

(2.3) 

and 

(2.4) 

Both the transformed random variables u* and E* are standard normal 

variables with zero means and unit variances. A bivariate distribu­

tion having the marginal distributions F(E) and G(u) can be specified as 

(2.5) 

Thus this bivariate distribution of (E,U) is derived by assuming that 

the transformed variables u* and E* are jointly normally distributed 

with zero means, unit variances and correlation coefficient p. Let 

f(E) and g(u) be the corresponding density functions of E and u respec­

tively. The joint density function corresponding to the distrubtion 

H is 
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This class contains the Frechet's boundary distributions. Specifically, 

H(E,u;l) = Hl(E,u) and H(E,u;-l) = H_l(E,u). When p = 0, it corresponds 

to statistical independence of u and E. When the marginal distributions 

of u and E are normally distributed, the above bivariate distribution 

will be a bivariate normal distribution. 

With this specification, one can easily derive the likelihood 

function for the censored regression model in (2.1) and (2.2). Let 

~(y,l Ix,z) = f::h(E,y-XS)dE (2.7) 

be the mixed continuous-discrete density function of y and I = 1. It 

foll ows 

~(y,llx,Z) = ;u H(E,U;p)lu=y_XS 

E=Zy 

g(u) 

• <p(J 2( u)) u=y-xS 

IE=ZY 

where ¢(.) is the standard normal density function. Since 

aB(t,s;p) 1 = ¢((t _ os) Ij 2) 
as ¢TST Yv 1 - 0 
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i/J(y,llx,z) = 4>((J1(ZY) - pJ 2 (y - X(3)y~ • g(y - xS) 

(2.8) 

Let (y.,x.,z.,I.), i = 1, ... , N be the given random samples. The 
1 1 1 1 

log likelihood function based on this specification is 

N 
= L {r. 9.n g(y. - x.S) + I. £n 4>((J1 (z.y) 

i =1 1 1 l' . 1 

- pJ2(Yi - xis)yF-7 ) 

+(1-1.) , £n (1 - F(Z.Y))~ 
1 ) 

where 9
1 

and 9
2 

are the unknown parameters in F(£) and G(u), respec­

tively. Maximum likelihood method can be applied to this likelihood 

function. 

(2.9) 

Another class of bivariate distribution with specified marginal 

distributions which may be of interest is known as the contingency type 

distributions. Given marginal distributions F(£) and G(u), a contin­

gency-typ~ distribution with margins F and G is 

(2.10) 
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where S = 1 + (F(E) + G~»(~ - 1). As ~ tends to 1, Hc converges to 

F(E)F(u); ~ tends to 0, H tends to max (0, F(E) + G(u) -1) and A teres 
c 

to 00, Hc tends to min (F(E), G(u)~ Thus this class also contains the 

Frechet boundary distributions and the distribution corresponding to 

independent random variables. For the detail~ one can see Mardia [197JJ. 

The joint density function of (E,U) corresponding to Hc is 

= Af(dg(u)[(A - 1 )(F(d + G(u) - 2F(E)G(u)) 

+ lJ/[S2 - 4A(A -l)F(E)G(u)J
3

/
2 

(2.11) 

Let KC(Elu) be the conditional distribution function of E given u. As 

it follows that 

aH (E,U;A) 
c = ----::--:;::--

aG 

1 1 2 
KC(Elu) = "2 + "2 [(A + l)F(E) - (A -1 )G(u) -1]/[S 

- 4A (A - 1 ) F (E) G ( u) ] 1/2 (2.12) 
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Under this bivariate distribution (2.10), the mixed probability 

density function ~c of y and I = 1 for the censored regression model 

is 

~c(y,l Ix,z) = Kc(zyly - xB) g(y - xB) (2.13) 

It follows that the corresponding log likelihood function is 

= I {I. Q,n g(y. - X·B) + I. Q,n K (z·yly· - x.B) 
i=l 1 1 1 1 C 1 1 1 

(2. 1.!.) 

From the above derivations, one can see that both approaches 

give tractible analytical likelihood functions and are attractive 

approaches for the modelingof selectivity models. As will be shown in 

in the subsequent sections, simple consistent estimation methods can be 

derived for some important models based on the first approach. Further-

more, when both the marginal distributions are normal, the bivariate 

distribution derived from the first approach is bivariate normal but 

the bivariate distribution from the second approach is not. Based on 

these reasons, the first approach may be preferred over the second 

approach. 

3. Two-Stage Estimation Method 

Whether simple consistent estimation methods rather than the 

maximum likelihood method can be derived are apparently depended on the 
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specific marginal distributions and the bivariate distribution. In 

this section, we will consider the possibility of generalizing the 

two-stage estimation methods in Amemiya [1974J, Heckman [1976J, and 

Lee [1976J to some of our models. 

Consider the models where the marginal distribution of u is 

normally distributed N(0,o2) and the marginal distribution of E can 

be arbitrary. The bivariate distribution of (U,E) with the given 

margins is specified by the translation method as in (2.5). As 

g(u) = <P(J
2

(u))dJ
2
(U) /du and g(u) is a normal density function of 

2 N(O,o ), J
2

(u) = u/o and g(u) = <p(u/o)/o. The corresponding mixed den-

sity of y, I = 1 in (2.8) becomes 

(3.1) 

It follows from the above equation that, as shown in Lee [1976J, 

(3.2) 

and 

Hence, conditional on I = " the censored regression equation can be 

rewritten as 

y = xS - (ap)¢(J,(zy))/F(zy) + n (3.4) 
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where E(nII=l,x,z) = a and 

var hi 1=1 ,x,z) 2 = (J -

+ ¢ ( J 1 (zy)) / F ( zy ) ] ~ (J 1 ( zy ) ) / F ( zy ) 

(3.5) 

since F(z'() = ~(Jl(Z'!·)). The above expressions are the familiar ex­

press ions in tr.e cited 1 i tera ture wi th the term zy rep 1 aced by J 1 (zy) 

throughout the truncated mean and vari ance. Thus the two-stage 

estimation ~e:~od s~ggested in Heckman [1976J and Lee [1976J can be 

extended to our generalized abnormal selectivity models. In the first 

step, we esti~ate the parameter y from the log likelihood function for 

any specified :robability model where, without loss of generality, the 

only unknown ~arameter vector is assumed to be y, 

N j 1 
)' 1. 2n F(z.y) + (1 - I.) 2.n (1 - F(z.y)h 
.~ll 1 1 1 1 ) 1= , 

Let 9 denote the derived maximum likelihood estimate of y. The second 

stage estimation is to estimate the equation 

y. = x ~ - aD 6(J
l

(Zl· 9))/F(z,.9) + n,· 
- 1 i ..... (3.6) 

with the observed sa~ples on Yl by the ordinary least square. If the 

choice equation is a probit equation, this two-stage-r.ethod is exactly 

the same one i~ the literature. When the choice equation is a logit 

equation, our -ethcd becomes a logit-OLS two-stage ~ethod. Our two-stage 
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method is thus quite flexible and can be applied to any binary choice 

models. 

As pointed out in Heckman [1979J, Lee et a1. [1980J, the OLS 

step does not provide the correct asymptotic covariance ~atrix since 

the disturbances ni are heteroscedastic and autocorre1ated. It is 

also true for our generalized models, the conventicna1 OLS variance 

matrix with heteroscedastic errors corrected will underestimate the 

correct asymptotic covariances of the two-stage estiGates. The detail 

arguments follow almost exactly those in Lee et a1. [1980J with minor 

modifications. 

For the sake of completeness, we write down explicitly the 

correct asymptotic variance matrix for our generalized models. For a 

given sample with size N, suppose there are N1 «N) observed non­

censored subsamples of Y1' Without loss of generality, the observa­

tions are rearranged such that the first Nl observations are non­

censored. Let 

XI = 
1 

Xl 
1 

Xl 
2 

and D, = [d" ... , d
ril 

J where di = -ap [J1 (z;,d + :(J 1 (ziY) )/F(ziY) ] 

(f(z.y)/F(z.y))z .. Furthermore, let I\. be an NxN diagonal matrix; , , , 

A = Diag [f
2(z.y)/(F(z.y)(1 - F(Z,.y)))] 

1 , 
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and Vl be an NlxNl diagonal matrix constructed from the first Nl obser­

vations, 

The correct asymptotic covariance of our two-stage estimates is 

This expression becomes the same asymptotic 

covariance of the probit-OLS two-stage estimation when the choice 

equation is a probit equation. Slight differences occur as there is c 

nonlinear transformation Jl(ZY) involved in the generalized model. 

Our approach based on the translation method does generalize 

the traditional selectivity Godel. The similarity of the two-stage 

estimation methods can be easily understood from the following viewpoir.t 

when the choice is binary. From the model specification in (2.1) and 

(2.2), I = 1 if and only if Zy ~ E. Given any absolutely continuous 

-1 
distribution function F(£), the transformation J l = ~o F is a strictly 

increasing function. Therefore, we have I = 1 if and only if 

* Defi ne £ = J l.( s). * It follows that £ is a standard 

normal random variable. The censored regression model with given nor~al 

marginal distribution G(u) of u, arbitrary marginal distribution F(E) of 

£ and the bivariate distribution in (2.5) is statistically equivalent 

to the model with 
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y, = xS + u (3.8) 

y** = Jl(ZY) - E* (3.9) 

where i.J and E* are bivariate normally distributed N(O,O,a
2

, 1 ,p). Thus, 

the results derived can be regarded as standard results of the normal 

selectivity model in (3.8) and (3.9). 

The transformation J
l 

involves the inverse of the standard 

normal distribution function ¢. Computationally simple and accurate 

methods involving the use of approximate function can be found in 

Appendix II, C, in Bock and Jones [1968J and Hildebrand [1956J. Errors 

of approximation for those methods are less than 3x10-4. 

4. Multiple-Choice Selectivity Models 

The approaches introduced in section 2 provide frameworks for 

modeling multiple-choice problems with mixed continuous and discrete 

dependent variables. Consider the following multiple-choice model with 

M categories and M regression equations: 

Ys = x S + u s s s 

s=l, ... ,M (4.1) 

where all the variables xs,zs are exogenous, E(uslxl,· .. ,xM,· .. ,zM) = 0 

and E(nslxl, ... ,xM,zl , ... zM) = o. All the distributions Us are assumed 

to have specified absolutely continuous marginal distributions and the 

joint distribution of (nl, ... ,n
M

) has also been specified. The dependent 
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variable or outcome Ys is observed if and only if the category s is 

being chosen. Category s is chosen if and only if 

y* > max y'l; 
s ·-1 u J J - , ••• ,1'1 

jrs 

Let I be a polychotomous variable with values 1 to M and denote I = s if 

category s is chosen. Equivalently, 

I = s if and on ly if z y > E 
S S S 

(4.2) 

where 

* ES = max Yj - ns 
j=l, ... ,M 

(4.3) 

jrs 

For each pair (US,ES)' suppose the specified marginal distribution of Us 

is Gs(u) and the implied marginal distribution of E is F (E). Consider 
. s s 

the bivariate distribution of (US,E
S

) specified by the translation method 

as in (2.5), 

(4.4) 

where J
ls 

= ~~lFs and J 2s = ~~lGs. With these specified bivariate dis­

tributions for all s = 1, ... , M, the likelihood function for this 

multiple-choice model can be easilty derived. The mixed density function 

of ys and I = s is 
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where 9s (·) is the density function of Gs (·). Define dummy variables 

Js ' s=l, ... , M such that 

0=1 
s 

if and only if ... = s 

The log likelihood function for this mult~Jle choice model with random 

samples of size N is 

R-n L = I I {o ; 1n ajy .; - x .;3 ) 
i=l s=l Sl -~ S, S1 S 

(4.5) 

The 1 i kel i hood function depends on the de:.si ty functi ons gs' s=l, ... , M 

and the transformations J ls ' J
2s

' s=l, ... ,H. Whether this likelihood 

function is computationally simple or not, depends on the density func-

tions and the transformations. 

In the econometrics literature, one of the well-known and most 

widely used multiple-choice model is the :cnditional multinomial logit 

nodel of McFadden [1973J. 

Y* = z Y + n s s s 

In this model, y; are stochastic utility func­

= Yr, i n (4. 1), 1. e. , 
'I 

s=l, ... ,M (4.6) 

~here Zu ~ 0 is used as a normalization rule. The stochastic parts of 
" 

t'1e utility functions, n
s

' s=l, ... , r~ are assumed to be independent and 

i:enticaily Gumbel distributed, i.e., the jistribution function of ns is 
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Q(n ) = exp (- exp (- n )) 
s s 

As shown in Domencich and McFadden [1975], 

max 
j=l, ..• ,M 
jjis 

y~ 
J 

is also Gumbel distributed with parameter 

and 

M 
I exp 

j=l 
j;is 

= Prob ~ m~x yj - ~s 1 < J J-l, ... ,t~ 
Hs 

= 
ex~ (E:) 

M 
exp (E) + I exp (ZjY) 

j::= 1 
j;is 

(4.7) 

Hence the distribution function of £s in (4.3) is the function Fs in 

(4.7) and J
1s

(£) = ~-l(Fs(£))' For this multiple-choice model, the 

likelihood function in (4.5) will be computational tractib1e as long as-

the marginal density functions gs are not extrem2ly complicated. 

Maximum likelihood method can then be applied. 

When the marginal distributions of Us are normal distributed 

2 
N(O,os)' two-stage method can be used to estimate the equations 
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s=l, ... ,M 

(4.8) 

Thus, if the multiple-choice model is multinomial logit model and the 

marginal distributions of the potential outcome functions yare normal, 
s 

we have a multinomial logit-OLS two-stage estimation method. The 

conditional multinomial logit model will be estimated by the method of 

maximul likelihood. The likelihood function for the multinomial logit 

model is 

N M M 
tn L = I I D .(z .y - tn I exp (ZJ'l'y )) (4.9) 

1 i=l s=l Sl Sl j=l 

Let y be the multinomial logit maximum likelihood estimate of y. The 

second stage estimation is to estimate the following equations for the 

observed noncensored samples by OLS, 

i=l, ... ,N
s 

(4.10) 

The correct asymptotic covariance matrix of this multinomial logit-OLS 

two-state estimates has similar expression as in (3.7) with appropriate. 

modifications. Let 

M 
z. = I F (z.y)z . 

1 s=l s 1 S1 

As shown in McFadden [1973J, the asymptotic covariance matrix of y is 
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-1 

var ('y) = rr I {z. -z.)'F (z .y){z. -Zl·~ 
G=l s=l Sl 1 s Sl Sl J 

Corresponding to the observations in the sth regime, let ~s' Ds and Vs 

be the matrices constructed as in the equation (3.7). The correct 

'" asymptotic covariance matrix of the two-stage estimates Ss' asps of ~s 

and asps is 

var 

(.~.ll) 

The translation approach can be easily extended to the cases 

where there are multiple equations or outcome functions in each regi~e 

with the joint multinomial distribution. Suppose there are L equc:~ons 
s 

in regime s, 

Ysl = x ·S . + u . 
Sl Sl Sl 

YsL = xsL SsL + u L 
s s s s s 

(~.12) 

Suppose the joint distribution of (u l' ... ,usL ) is N(O,L
S

). A joint 
s s 

distribution of (u
s1

' ... ,U L ,E: ) where E: is defined in (4.3) can be 
s s s s 

constructed as 
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r uL ul u2 s 

= B~Sl' O's2' ~ .. , -O'S-L-
S

' 

(4.13) 

2 
where O'sn is the variance of u l' p .. is the correlation coefficient 

)(., . S){., 1 J s 

of u . and u . and B is the standardized multivariate normal distribu-
S1 SJ 

tion function. It follows that the bivariate distribution of (ut,s) is 

Hs(ut,s) = B[(ut/O't)' Jls(s);p]. Furthermore, it implies that 

p.. , i ,j=l, ... , J 
1JS J 

and 

are the specified marginal distributions. Under this specification, 

the likelihood function can be derived and the two-stage method can be 

applied to estimate each equation in each regime as described in the 

previous paragraph. 
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6. Conclusions 

In this article, we have introduced some generalized censored 

regression models where the disturbances are not necessarily normal. 

We have suggested some approaches to construct computationally and 

theoretically tractible models with discrete choice and selectivity. 

Likelihood functions are derived for the models. Simple consistent es­

timation procedures are also derived for some of the models. These 

consistent methods generalize the familiar two-stage methods in the 

limited dependent variables literature with minor modifications and 

are applicable to any binary or multiple choice models. Models with 

both continuous and finite discrete variables are also introduced. 

These models generalize the two regimes switching regession models 

with censored dependent variables to models with any finite number 07 

regimes. If the multiple choice equations are specified as the 

McFadden's conditional multinominal logit model, the generalized swit:~­

ing regression model can be estimated by multinomial logit-OLS two-sta;e 

method. Correct asymptotic covariance matrix is derived. 

University of Minnesota 
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