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We study the properties of the Bose-Hubbard model for square and cubic superlattices. To this end we
generalize a recently established effective potential Landau theory for a single component to the case of multiple
components and not only find the characteristic incompressible solid phases with fractional filling, but also
obtain the underlying quantum phase diagram in the whole parameter region at zero temperature. A comparison
of our analytic results with corresponding ones from quantum Monte Carlo simulations demonstrates the high
accuracy of the generalized effective-potential Landau theory (GEPLT). Finally, we comment on the advantages
and disadvantages of the GEPLT in view of a direct comparison with a corresponding decoupled mean-field
theory.
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I. INTRODUCTION

Systems of ultracold bosonic gases in optical lattices have
recently become a major field in physics research [1–3].
After their theoretical suggestion [4,5] and first experimental
realization using counterpropagating laser beams [6] it soon
became clear that they establish a versatile bridge between the
field of ultracold quantum matter and correlated condensed
matter systems [7].

One of the most famous examples is the Bose-Hubbard
model [4,5], which undergoes a quantum phase transition
from a Mott insulator to a superfluid phase due to the
competition between the atom-atom on-site interaction and
the hopping amplitude. This transition can be demonstrated
experimentally by time-of-flight absorption pictures [6] or
by measuring the collective excitation spectra via Bragg
spectroscopy [8,9]. Recent research efforts have targeted more
complex systems, which include long-range interactions (e.g.,
from dipolar bosons [10,11]), mixtures of several components
[12,13], and more interesting lattice geometries, such as
frustrated or superlattice structures [14–18]. Accordingly,
the corresponding phase diagrams become richer and more
complex, including the possibility of phases with periodic
density modulations or supersolidity. A crystalline density-
wave phase, for instance, generally occurs at fractional filling,
and it has been proposed that the corresponding commensurate
density modulation could be detected by measuring corre-
lations with time-of-flight and noise-correlation techniques
[19]. Furthermore, recent experimental progress in achieving
single-site addressability in optical-lattice structures [20–26]
nourishes the prospect of direct observation of density-wave
modulations in the near future.

Such density modulations may emerge from interactions via
spontaneous symmetry breaking, but a a simpler way to create
them is with a superlattice generated from commensurate
lasers; see, for instance, Refs. [14–18] for further experimental
details. Thus, then, the potential depth is slightly different
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on one sublattice, while the interaction strength and hopping
amplitude will remain almost uniform. The corresponding
Bose-Hubbard model Hamiltonian on a square or cubic lattice
is given by [27]

ĤSL = −t
∑

〈j∈A,j ′∈B〉
(â†

j âj ′ + âj â
†
j ′ )

+ U

2

∑
j∈A,B

n̂j (n̂j − 1) − (μ + �μ)
∑
j∈A

n̂j − μ
∑
j∈B

n̂j ,

(1)

where �μ stands for a small additional chemical potential on
sublattice A compared to sublattice B, as illustrated in Fig. 1.
As we will show, this model exhibits an interesting competition
between Mott and density-wave phases.

From a theoretical point of view the study of interacting
bosons and quantum phase transitions is far from trivial [28].
The possible phases in different kinds of optical superlattices
have so far been analyzed by numerical approaches [29–31],
decoupled mean-field theory [19,27,32,33], multisite mean-
field theory [34–37], and the cell strong-coupling expansion
method [38,39]. The last method yields excellent results
for one-dimensional (1D) systems when compared to the
powerful numerical method of Ref. [36]. However, it is
known that mean-field theory can have significant deviations
from unbiased high-precision numerical results [40] and the
strong-coupling expansion is not very accurate when applied
to higher-dimensional systems. The purpose of this paper is,
therefore, to present a reliable quantitative method to deter-
mine nontrivial phases of high-dimensional multicomponent
boson systems. To this end we profit from recent advances to
use a systematic Landau theory with an effective potential that
can be estimated quantitatively from the microscopic model,
e.g., by diagrammatic methods [41–46]. Whereas the first
hopping order of the effective-potential Landau theory leads
to similar results as mean-field theory [4], higher hopping
orders have recently been evaluated via the process-chain
approach [47–51], which determines the location of the
quantum phase transition for the single-component Hubbard
model for cubic as well as triangular and hexagonal optical
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FIG. 1. (Color online) Schematic illustration for a square super-
lattice in two dimensions. The square drawn with solid lines represents
one type of unit cell. The solid curve (green) shows the optical
potential in the x direction. Lattice sites A are deeper by �μ than
lattice sites B.

lattices to a similar precision as demanding quantum Monte
Carlo simulations [52,53]. Thus, it becomes even possible to
calculate the critical exponents of the corresponding quantum
phase transition [54,55]. We now present a generalized
effective-potential Landau theory (GEPLT), which extends
those concepts to multicomponent systems and to phases
with nontrivial crystalline order parameters. In particular, for
the model in Eq. (1) the GEPLT approach gives excellent
quantitative estimates for the location of the phase boundaries
compared to unbiased quantum Monte Carlo simulations.

First, we briefly review the effective-potential Landau
theory for the single-component Bose-Hubbard model in
Sec. II. Then we extend this method step by step from one
component to the general superlattice case in Sec. III. After
that, we apply this GEPLT method to the simple superlattice
model in Eq. (1) and determine the resulting quantum phase
diagram at zero temperature in the whole parameter region in
Sec. IV. Both the advantages and disadvantages of GEPLT are
revealed by comparing it with a decoupled mean-field theory in
Sec. V. Finally, Sec. VI provides the conclusions and sketches
related problems in an outlook.

II. EFFECTIVE-POTENTIAL LANDAU THEORY

Let us first consider the Bose-Hubbard model in Eq. (1)
for the well-studied case of �μ = 0 [4,5]. The second-order
quantum phase transition between the Mott insulator, which
occurs for t/U � 1, and the superfluid, which is realized for
t/U � 1, is intimately connected with a spontaneous breaking
of the underlying U(1) symmetry of the Bose-Hubbard
model (1). To describe this theoretically, we transfer the usual
field-theoretic approach for thermal phase transitions [56,57]
to quantum phase transitions and couple the creation and
annihilation operators to external source fields with uniform
strength J and J ∗ within a Landau theory [42,43]:

ĤBH(J,J ∗) = ĤBH +
∑

j

(J â
†
j + J ∗âj ). (2)

The transition from the Mott insulator to the superfluid phase is
described by the emergence of a nonvanishing order parameter
which is defined due to homogeneity according to ψ = 〈âi〉,
ψ∗ = 〈â†

i 〉. The free energy corresponding to (2),

F (J,J ∗) = − 1

β
ln[Tr e−βĤBH(J,J ∗),] (3)

allows determination of this order parameter via

ψ = 1

Ns

∂F (J,J ∗)

∂J ∗ , ψ∗ = 1

Ns

∂F (J,J ∗)

∂J
, (4)

where Ns denotes the number of lattice sites. Equation (4)
motivates the idea that it is possible to formally perform a
Legendre transformation from the free energy F (J,J ∗) in order
to arrive at an effective potential �(ψ,ψ∗) that is useful in a
quantitative Landau theory,

�(ψ,ψ∗) = F/Ns − ψ∗J − ψJ ∗. (5)

Due to Legendre identities the external sources can be
reobtained from derivatives of the effective potential

∂�

∂ψ∗ = −J,
∂�

∂ψ
= −J ∗. (6)

The original Bose-Hubbard Hamiltonian (1) is restored
from (2) for vanishing currents, i.e., by setting J = J ∗ =
0. In this limit we conclude from (5) that the effective
potential reduces to the free energy. Furthermore, Eq. (6) then
implies that the order parameter ψ,ψ∗ of the system follows
from extremizing the effective potential. A trivial extremum
ψ = 0 corresponds to the Mott-insulator phase, whereas a
nonvanishing extremum ψ 	= 0 occurs in the superfluid phase.

The free energy (2) reduces at zero temperature to the
ground-state energy, which can be calculated in a power series
of both the hopping parameter t and the source terms J,J ∗ by
using the Rayleigh-Schrödinger perturbation theory [41–51].
Due to the underlying U(1) symmetry of the Bose-Hubbard
Hamiltonian (1) the expansion is only a power series in terms
of |J |2,

F (J,J ∗,t) = Ns

⎛
⎝F0(t) +

∞∑
p=1

c2p(t) |J |2p

⎞
⎠ , (7)

where the respective expansion coefficients are accessible via
a hopping expansion

c2p(t) =
∞∑

n=0

(−t)nα(n)
2p . (8)

From Eqs. (4), (6), and (7) we then obtain the effective po-
tential of the Bose-Hubbard Hamiltonian (1) in the following
perturbative form:

�(ψ,ψ∗,t) = F0(t) − 1

c2(t)
|ψ |2 + c4(t)

c2(t)4
|ψ |4 + · · · . (9)

According to the Landau theory for second-order phase
transitions, the critical line between the Mott insulator and
the superfluid phase follows from finding the zero of the
second-order coefficient in (9). In order to solve the resulting
equation 1/c2(tc) = 0, we expand it in a power series of the
hopping parameter t ,

1

c2(t)
= 1

α
(0)
2

{
1 + α

(1)
2

α
(0)
2

t +
[(

α
(1)
2

α
(0)
2

)2

− α
(2)
2

α
(0)
2

]
t2 + · · ·

}
.

(10)
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Thus this gives us an algebraic equation for tc, whose degree
depends on the respective hopping order which is taken into
account. The number of the roots is the same as the order
of t , but only the smallest real positive root is identified as
an appropriate approximation for the location of the quantum
phase transition.

As mentioned in the Introduction, the effective-potential
Landau theory was quite successful in calculating the quantum
phase boundary for the single-component system [41–51].
However, it cannot be used to treat a superlattice system, since
more than one order parameter appears. Therefore, we will
work out in the next section a corresponding extension to
multiple components which overcomes this problem.

III. GENERALIZED EFFECTIVE-POTENTIAL
LANDAU THEORY

In order to describe a superlattice or a multicomponent
system, we have to introduce several sites or degrees of
freedom at each lattice point. In other words, we introduce a
larger unit cell at each lattice point, labeled by j , together with
a basis of size m, labeled by l = 1, . . . ,m. The generalized
Bose-Hubbard Hamiltonian with m bosonic species in each
unit cell is therefore given by

ĤBH = −
∑
j,j ′

m∑
l,l′=1

[tj (l),j ′(l′)â
†
j (l)âj ′(l′) + H.c.]

+
∑

j

m∑
l=1

[
U(l)

2
n̂j (l)(n̂j (l) − 1) − μ(l)n̂j (l)

]
, (11)

where âj (l) denotes the boson annihilation operator at lattice
point j with basis index (l). Hopping tj (l),j ′(l′) can occur
between any basis and lattice position, while the repulsion U(l)

acts for now only between bosons of the same lattice point and
basis index. The chemical potential μ(l) depends on the basis
index, which is analogous to sublattices A and B in Eq. (1).

We now model the symmetry breaking by introducing the
source vectors �J = (J1, . . . ,Jm)T,�J † = (J ∗

1 , . . . ,J ∗
m) accord-

ing to

ĤBH(�J ,�J †) = ĤBH +
∑

j

m∑
l=1

(Jl â
†
j (l) + J ∗

l âj (l)). (12)

By generalizing the procedure from a single component to
multiple components, we use perturbation theory in order
to determine the free energy at zero temperature in a power
series of both the hopping parameters tj (l),j ′(l′) and the source
vectors �J ,�J †. In principle, we need an expansion in terms
of all relevant hopping parameters tj (l),j ′(l′), but to illustrate
the process we consider here the case that only one hopping
element t dominates (e.g., between nearest neighbors) and all
others are neglected:

F (�J ,�J †,t) = Ns[F0(t) + �J †C2(t)�J + · · ·]. (13)

The matrix elements c2ll′ (t) of C2(t) are then given by a
hopping expansion of the form

c2ll′ (t) =
∞∑

n=0

(−t)n α
(n)
2ll′ . (14)

The order-parameter vectors give different values for each
basis index, but are independent of the lattice points �� =
(ψ1, . . . ,ψm)T, ��† = (ψ∗

1 , . . . ,ψ∗
m) according to

�� = (〈â1〉, . . . ,〈âm〉)T ,
(15)��† = (〈â†

1〉, . . . ,〈â†
m〉),

and we observe

ψi = 1

Ns

∂F

∂J ∗
i

, ψ∗
i = 1

Ns

∂F

∂Ji

. (16)

Again this motivates us to perform the Legendre transforma-
tion of the free energy. The generalized effective potential then
depends on the order-parameter vectors ��, ��†:

�( ��, ��†,t) = F/Ns − �J † �� − ��† �J . (17)

Legendre identities allow the external sources to be written as
derivatives of the effective potential,

∂�

∂ψi

= −J ∗
i ,

∂�

∂ψ∗
i

= −Ji, (18)

so the order-parameter vector is determined by extremizing
� in the physical limit that the external source vectors �J ,�J †

vanish.
Due to Eqs. (13), (16), and (17) the effective potential of

the system is of the form

�( ��, ��†,t) = F0(t) + ��†A2(t) �� + · · · . (19)

The resulting relation between the matrices A2 and C2 can be
deduced in the following way. By inserting (19) into (18), we
get

A2.ij = ∂2�

∂ψ∗
i ∂ψj

= − ∂Ji

∂ψj

. (20)

Combining this with (13) and (16), we read off

−δij = A2,ik

∂ψk

∂Jj

= 1

Ns

A2,ik

∂2F

∂J ∗
k ∂Jj

= (A2C2)ij . (21)

Thus, the matrix A2 turns out to be the inverse of −C2. As all
matrix elements of C2 are given by a hopping expansion of the
form (14), we get a corresponding hopping expansion for each
element of A2. In matrix form the first terms of this hopping
expansion read

C−1
2 = (

α
(0)
2

)−1{
1 + α

(1)
2

(
α

(0)
2

)−1
t + [

α
(1)
2

(
α

(0)
2

)−1
α

(1)
2

(
α

(0)
2

)−1

+α
(2)
2

(
α

(0)
2

)−1]
t2 + · · · }, (22)

which reduces for a single component to (10). The critical
line, where the order-parameter vector �� changes from
zero to nonzero, follows then from extremizing the effective
potential (19). When all components of the order-parameter
vector �� are nonzero, we obtain

Det A2 = 0. (23)

But it could also happen that only a subset of components
of the order-parameter vector �� is nonvanishing, which
yields the condition that the determinant of the corresponding
submatrix of A2 vanishes. The physically realized quantum
phase boundary corresponds then to the smallest value of the
hopping parameter t , which follows from all these conditions.
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In the next section we will study along these lines the simplest
case of a superlattice system which is provided by bosons on
a square or cubic superlattice given in Eq. (1).

IV. SQUARE AND CUBIC SUPERLATTICE

Similar to the continuous translational symmetry breaking
artificially introduced by the optical lattice to mimic a
real crystal, the optical superlattice can break the discrete
translational symmetry to study the multicomponents system.
In addition, it also can be used as a platform for disorder [58]
and topological-order [59,60] problems. Here, we apply the
GEPLT to the simple square and cubic case.

A. Application of effective potential theory

Following the GEPLT from the previous section for the
model in Eq. (1) we need to use for the two sublattices two
independent source terms �J = (JA,JB)T, yielding

ĤSL(�J ,�J †) = ĤSL +
∑
j∈A

(JAâ
†
j + J ∗

Aâj )

+
∑
j∈B

(JBâ
†
j + J ∗

Bâj ). (24)

The free energy of the system can then be written as (13), where
C2(t) represents a 2 × 2 matrix with the following hopping
expansion:(

c2AA c2AB

c2BA c2BB

)
=

∞∑
n=0

(−t)n
(

α
(n)
2AA α

(n)
2AB

α
(n)
2BA α

(n)
2BB

)
, (25)

where the symmetry c2AB = c2BA holds. Then, after the Legen-
dre transformation (17), we obtain the effective potential (19),
where we have �� = (〈âA〉,〈âB〉)T and A2 is the inverse of
−C2 according to Eq. (21). When the second-order quantum
phase transition occurs, the vanishing order-parameter vector
�� = (0,0)T changes from stable to unstable. It turns out
that the smallest critical hopping parameter results from the

condition (23) that the determinant of A2 vanishes. With this
we obtain in second order of t the following equation for the
location of the quantum phase boundary:

(β(0))2 − β(0)β(1)t − β(2)t2

2
= 0, (26)

where the abbreviations β(0) =
√

α
(0)
2AAα

(0)
2BB , β(1) = α

(1)
2AB , and

β(2) = α
(2)
2AAα

(0)
2BB + α

(0)
2AAα

(2)
2BB − 2(α(1)

2AB)2 have been intro-
duced. Taking into account the smallest root then yields

tc = β(0)[−β(1) +
√

(β(1))2 + 2β(2) ]

β(2)
. (27)

Thus, the problem of finding the quantum phase boundary has
been reduced to the calculation of the perturbative coefficients
α

(n)
2ll′ in the respective hopping order. According to the

Appendix this perturbative calculation can be systematically
performed by using a suitable diagrammatic representation.
We use the unperturbed energies

E(0) (nA,nB) = U

2
nA (nA − 1) + U

2
nB (nB − 1)

− (μ + �μ) nA − μnB (28)

to define the energy differences between different particle-
number sectors,

λ
±(p)
A = [E(0)(nA,nB ) − E(0)(nA ± p,nB)]/Ns,

(29)
λ

±(p)
B = [E(0)(nA,nB ) − E(0)(nA,nB ± p)]/Ns.

For p = ±1 the short notation λ±
A = λ

±(1)
A , λ±

B = λ
±(1)
B is used.

In zeroth and first hopping order we obtain the following results
for the respective coefficients α

(n)
2ll′ :

α
(0)
2AA(BB) = nA(B) + 1

λ+
A(B)

+ nA(B)

λ−
A(B)

, (30)

α
(1)
2AB = α

(1)
2BA = zα

(0)
2AAα

(0)
2BB, (31)

whereas in second hopping order we get

α
(2)
2AA = z(z − 1)

(
α

(0)
2AA

)2
α

(0)
2BB + z

[
n2

AnB

(λ−
A)2λ−

B

+ nAnB(1 + nA)

λ−
A(λ+

A + λ−
B )

(
2

λ−
B

− 1

λ+
A + λ−

B

− 1

λ−
A

)

+ nA(1 + nA)(1 + nB)

λ+
A(λ−

A + λ+
B )

(
2

λ+
B

− 1

λ−
A + λ+

B

− 1

λ+
A

)
+ nB(nA + 1)2

λ+
A + λ−

B

(
λ+

A − λ−
B

λ+
Aλ−

B (λ+
A + λ−

B )
− 1

(λ+
A)2

)

+ n2
A (1 + nB)

λ−
A + λ+

B

(
λ−

A − λ+
B

λ−
Aλ+

B (λ−
A + λ+

B )
− 1

(λ−
A)2

)
+ (1 + nA)(2 + nA)nB

λ
+(2)
A + λ−

B

(
1

λ+
A

+ 1

λ+
A + λ−

B

)2

+ (nA − 1) (1 + nB) nA

λ
−(2)
A + λ+

B

(
1

λ−
A

+ 1

λ−
A + λ+

B

)2

+ (1 + nA)2 (1 + nB)

(λ+
A)2λ+

B

]
(32)

and analogously for α
(2)
2BB with the indices A and B inter-

changed.
B. Quantum phase diagram

In order to got the whole quantum phase diagram, we study
first the t = 0 contribution of the effective potential in Eq. (19),
i.e., F0(t = 0) = NsE

(0) (nA,nB) with Eq. (28). We assume

�μ to be in the region of [0,U ). As in the normal Bose-
Hubbard model, there exist Mott-insulator phases (Mott-n),
which are characterized by the uniform filling nA = nB = n.
However, due to the local offset �μ, this happens only in the
regions

Mott-n: U (n − 1) < μ < Un − �μ. (33)
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FIG. 2. (Color online) The quantum phase diagram of a bosonic
2D square superlattice in the whole parameter region from first-
hopping-order GEPLT, and the phase diagram projected in the
t-μ plane comparing the quantum Monte Carlo simulation (dotted
line), the first-order (dashed line) and the second-order (solid line)
analytical results at �μ/U = 0.5.

On the other hand the density-wave phases (DW-n) break the
translational order as they have the property nB = nA − 1,
nA = n, yielding the filling factor n + 1/2, and minimize the
free energy in the other regions:

DW-n: (n − 1)U − �μ < μ < (n − 1)U. (34)

Hence, depending on the chemical potential offset �μ, we find
a natural competition between Mott phases and density-wave
phases.

On turning on the hopping processes, the quantum fluctua-
tions will melt the different insulating phases, and the critical
lines are determined in second hopping order by Eq. (27) after
substituting the respective strong-coupling coefficients α

(n)
2ll′

from Eqs. (30)–(32). The resulting quantum phase diagrams
for square and cubic superlattices are shown in Figs. 2 and 3,
respectively.

From the GEPLT calculation we find for the special case
�μ = 0 that the Mott-I lobe coincides with the results of
the single-component method from Ref. [42] as expected. In
addition, when �μ is larger than zero, the DW phase appears,
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FIG. 3. (Color online) The quantum phase boundaries of a
bosonic 3D cubic superlattice at �μ/U = 0.5 which is obtained by
first-order (dashed line) and second-order (solid line) generalized
effective-potential Landau theory, and a quantum Monte Carlo
simulation (dotted line) in the thermodynamic limit. Inset: Finite-size
scaling of the critical points of DW-I at t/U = 0.041 25.
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FIG. 4. (Color online) Maxima of Mott-n and DW-n lobes as
functions of �μ for a 3D cubic superlattice.

and its region increases with increasing �μ, whereas the
region of the Mott phase decreases correspondingly. This is
a direct consequence of the translational symmetry breaking
due to the superlattice structure. Furthermore, this observation
is confirmed by a direct comparison of the lobe maxima
according to Fig. 4, where the tips of the Mott lobes decrease
with increasing �μ, whereas the tips of the DW lobes increase.

Comparing the quantum phase diagram in different dimen-
sions, we notice that not only the lobes of the Mott insulators
but also the DW phases are smaller in three than in two
dimensions, which indicates that the dimensionality has a
similar effect on both incompressible phases. In addition, in
order to check the accuracy of GEPLT, we have developed a
quantum Monte Carlo algorithm on the basis of a stochastic
series expansion [40,61–66] and performed high-precision
simulations for different superlattice systems. After finite-size
scaling up to 144 sites in 2D and 1000 sites in 3D shown in the
inset of Fig. 3, we obtained the corresponding quantum phase
diagrams in the thermodynamic limit. Their good match with
GEPLT indicates the efficiency of our algorithm.

In principle, it would also be quite interesting to investigate
in detail the question of which critical exponents occur for
the lobes of the Mott insulators and DW phases. To this end
we refer first of all to the usual Bose-Hubbard model where,
concerning the static critical exponents, it does not matter at
which point the lobe is crossed, while the dynamic critical
exponent depends on whether the crossing occurs at the tip
of the lobe or somewhere else [4]. Furthermore, the critical
exponents are trivial in 3D as they coincide with mean-field
values, whereas they are nontrivial in 2D as they deviate
from the results of mean-field theory [4]. It would be quite
challenging to transfer the techniques of Refs. [54,55] for
determining critical exponents from the normal lattice systems
to superlattices, but we consider this topic to be more suitable
for a future research work.

Note that the Bose-Hubbard model in the superlattice
system can also be analyzed by using decoupled mean-field
theory [19,27,32,33], where the quantum phase boundary turns
out to agree with our first-order hopping result. Therefore, we
compare in the next section the advantages and disadvantages
of GEPLT with this decoupled mean-field theory.
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V. COMPARISON WITH DECOUPLED
MEAN-FIELD THEORY

In order to treat a superlattice system with decoupled
mean-field theory, the operators â

†
i (âi) are decomposed into

the mean fields ψ∗
i (ψi), which are identified with the order

parameters, and the remaining operators δâ
†
i (δâi), which

describe the quantum fluctuations around the mean fields.
Then, after neglecting second-order terms of the quantum
fluctuations and assuming due to homogeneity that the order
parameters are equal in the same subsystem, the Bose-Hubbard
Hamiltonian (1) decouples into a mean-field Hamiltonian on
two subsystems [19,27,32,33]:

ĤMF = Ĥ0 + tz(ψ∗
AψB + ψ∗

BψA

− â
†
AψB − â

†
BψA − âAψ∗

B − âBψ∗
A), (35)

with Ĥ0 from (A3). Because the order parameters are tiny
near the boundary of the second-order phase transition, the
corresponding free energy can be Taylor expanded with respect
to both order parameters,

FMF = f0 + f2A |ψA|2 + f2B |ψB |2 + f2ABψAψ∗
B

+ f2BAψBψ∗
A + · · · , (36)

where the leading term f0 is equal to the leading term
F0(t) of GEPLT at t = 0. Thus, from the previous analysis
of F0(t = 0) = NsE

(0) (nA,nB) with Eq. (28), we obtain the
restrictions (33) and (34) for the chemical potential in the
Mott-insulator and density-wave phases, respectively. As we
only consider the system at zero temperature, the free energy is
equivalent to the ground-state energy, which can be calculated
perturbatively in the occupation-number representation. With
this we get the second-order coefficients

f2A = t2z2

[
nB

U (nB − 1) − μ
+ nB + 1

μ − UnB

]
,

f2B = t2z2

[
nA

U (nA − 1) − μ − �μ
+ nA + 1

μ + �μ − UnA

]
.

(37)

With the conditions (33) and (34) we find for both second-order
derivatives the inequalities

∂2FMF

∂ψA∂ψ∗
A

∣∣∣∣
ψA,ψB=0

= f2A < 0,

(38)
∂2FMF

∂ψB∂ψ∗
B

∣∣∣∣
ψA,ψB=0

= f2B < 0.

This contradicts the minimum condition which requires that
both second-order derivatives are positive at ψA = ψB = 0.
We consider this to be a general problem of the multicom-
ponent decoupled mean-field theory, because it also happens
in other systems such as kagome and triangular systems. Note
that it can be shown that a single-component mean-field theory
does not have this minimum problem.

In order to prove that the GEPLT does not suffer from such
a problem, we conclude first from Eq. (25) that∣∣∣∣∣ a2AA a2AB

a2BA a2BB

∣∣∣∣∣ = 1∣∣∣∣−c2AA −c2AB

−c2BA −c2BB

∣∣∣∣
= 1

(
√

c2AAc2BB + c2AB)(
√

c2AAc2BB − c2AB)
.

(39)

Considering, for instance, the first-order result, we have in the
Mott lobe c

(1)
2AB = −tzα

(0)
2AAα

(0)
2BB < 0, c

(0)
2AA = α

(0)
2AA < 0,

c
(0)
2BB = α

(0)
2BB < 0, so we get up to first order√

c2AAc2BB − c2AB > 0. Considering that
√

c2AAc2BB +
c2AB = 0 is the phase boundary and t is decreasing from the
superfluid phase to the insulator phase, the denominator of
Eq. (39) is positive in the insulator lobe, which means that∣∣∣∣∣ a2AA a2AB

a2BA a2BB

∣∣∣∣∣ > 0 (40)

and

a2AA = −c2BB∣∣∣∣−c2AA −c2AB

−c2BA −c2BB

∣∣∣∣
> 0. (41)

For the same reason, a2BB is also positive. Thus, the effective
potential is really a local minimum at the zero point. Thus, in
comparison with the decoupled mean-field approach GEPLT
has the decisive advantage of being consistent for superlattice
systems.

Another advantage of our method is its higher accuracy. In
comparison with quantum Monte Carlo simulations, the error
of the GEPLT is less than 3% in second hopping order. And,
according to our knowledge, such high accuracy is hard to
reach by using other analytic methods. It can be surpassed
only by higher hopping orders which could be evaluated via
the process-chain approach of Refs. [47–51].

However, the GEPLT also has its disadvantages. For the
two-dimensional square superlattice system we cannot get
the full lobe of the phase boundary of the DW-I phase in
the parameter range �μ < 0.35U in second hopping order,
because the radicand of the square root in the phase boundary
Eq. (27) becomes negative in second hopping order. We suspect
that this is an artifact of truncating the hopping expansion
at second order and expect that this could be corrected by
obtaining higher hopping orders.

VI. CONCLUSION AND OUTLOOK

In this paper, we extended the single-component effective-
potential Landau theory to the general case of a multicom-
ponent GEPLT method. In order to include several order
parameters, we introduced the source vectors into the general
multicomponent Bose-Hubbard Hamiltonian. After perform-
ing a Legendre transformation of the free energy, we obtained
a generalized effective potential, which can be determined
in an expansion in hopping matrix elements. This method
can be applied to the bosonic square and cubic superlattice
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systems, yielding high-accuracy results for the phase diagrams
in second-order hopping compared to quantum Monte Carlo
simulations. Apart from the Mott-insulator phases, we also
found competing DW phases with fractional filling factors
which are induced by the translational symmetry breaking
of the superlattice system. The dimensionality has a similar
effect on the Mott-insulator and the DW phases. Compared
with the decoupled mean-field theory, the GEPLT has a higher
accuracy and does not suffer from the local minimum problem.
However, GEPLT also has a problem in calculating the whole
quantum phase diagram for the DW-I phase which should be
solved by considering higher-order hopping corrections.

As the GEPLT turned out to be a general method for
detecting second-order quantum phase transitions in a system
with multiple order parameters, we think it is also suitable for
frustrated superlattice systems, such as the triangular and the
kagome lattice. Since the supersolid-solid phase transition for
hard-core bosons is found to be of second order in the triangular
lattice [66], the GEPLT introduces a promising way to detect
the quantum phase transition in both positive and negative
hopping process regions. Furthermore, extending this work for
finite temperatures and investigating the universal properties
near the quantum phase boundary are certainly worth more
detailed studies in the future.

ACKNOWLEDGMENTS

X.F.Z. acknowledges inspiring discussions with Y. C. Wen
on numerical simulations and the physical understanding of
the superlattice system. T.W. thanks the Chinese Scholarship
Council (CSC) for financial support. This work is also
supported by the German Research Foundation (DFG) via the
Collaborative Research Center SFB/TR49.

APPENDIX: STRONG-COUPLING
PETURBATION THEORY

The perturbative coefficients α
(n)
2ll′ follow at zero

temperature from applying Rayleigh-Schrödinger perturbation
theory using a suitable diagrammatic representation [42].
By denoting the creation (annihilation) operator with an
arrow line pointing into (out of) the site, each perturbative
contribution of α

(n)
2ll′ can be sketched as an arrow-line diagram

which is composed of n oriented internal lines connecting
the vertices and two external arrow lines. The vertices in the
diagram correspond to the respective lattice sites, oriented
internal lines stand for the hopping process between sites,
and the two external arrow lines represent creation and
annihilation operators, respectively. Table I presents all
nonvanishing arrow-line diagrams as well as the associated
multiplicities α

(n)
2ll′ up to the second hopping order.

Note that the arrow-line diagrams depict only the possible
hopping processes. In order to determine each nonzero
perturbative term α

(n)
2ll′ , we also invoke a line-dot diagrammatic

representation which has been worked out for a single-
component method in Ref. [42]. To this end we consider the
general situation that a Hamiltonian Ĥ decomposes into an
unperturbed term Ĥ0 and two perturbation terms V̂ ,Ŵ , i.e.,

Ĥ = Ĥ0 + λV̂ + δŴ , (A1)

TABLE I. Diagrammatic arrow-line expressions of the nonvan-
ishing elements α

(n)
2ll′ including their multiplicities for a square and a

cubic superlattice up to second hopping order. The coordinate number
z is 2d for a d-dimensional hypercubic lattice.

α
(0)
2AA α

(0)
2BB

α
(1)
2AB z α

(1)
2BA z

α
(2)
2AA z + z(z − 1)

α
(2)
2BB z + z(z − 1)

B

where λ and δ are small parameters. We then calculate the zero-
temperature free energy by using perturbation theory. Each
term is related to several line-dot diagrams which stem from
the following rules:

(a) The dots labeled by 1 and 2 represent the perturbative
terms V̂ and Ŵ , respectively.

(b) The internal lines connecting two adjacent dots are
associated with the factor∑

m	=n

1(
E

(0)
n − E

(0)
m

)p

∣∣�(0)
m

〉〈
�(0)

m

∣∣,
where the ground state of Ĥ0 is |�(0)

n 〉 with the energy E(0)
n =

〈�(0)
n |Ĥ0|�(0)

n 〉 and |�(0)
m 〉 represents an excited state with the

energy E(0)
m , whereas p denotes the number of lines connecting

two given consecutive dots.
(c) 〈�(0)

n | and |�(0)
n 〉 are denoted by left external and

right external lines, respectively, so in the diagrammatic
representation of E(i)

n there are some graphs which consist
of s disconnected parts. The weight of these graphs has to be
multiplied by the sign (−1)s−1.

With these rules, we obtain within the line-dot representa-
tion the perturbative expansion

En = E(0)
n + λ

1
+ δ

2
+ λδ

1

+
1

+ λ2 11
+ δ2 2 2

(A2)

+λ2δ
1 1

+
1 1

+
1 1

+ 2 + 2 + 2

⎞
⎠ + · · · .
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In our concrete case of the square and cubic superlattice with
the Hamiltonian in Eq. (1), the unperturbed Hamiltonian is
given by

Ĥ0 = U

2
n̂A (n̂A − 1) + U

2
n̂B (n̂B − 1)

− (μ + �μ)n̂A − μn̂B , (A3)

yielding the unperturbed energies (28), whereas both the
hopping and current terms are treated as perturbations. Thus
this leads to the arrow diagrams within the coefficient α

(n)
2ll′ ,

which can now be represented in terms of the corresponding
line-dot diagrams. Note that each term α

(n)
2ll′ consists of exactly

one creation operator (associated with Ji), one annihilation

operator (associated with J ∗
i ), and n hopping operators

(associated with tn). For each arrow-line diagram we have to
draw all possible topologically different line-dot diagrams. The
sum of all these line-dot diagrams then gives the corresponding
result. For example, the equation

i
1 2

=
1

+
1

, (A4)

where i inside the dot stands for a particular sublattice,
expresses as an example how to transfer an arrow-line diagram
into its line-dot representation. Following these steps, one
obtains for the respective coefficients α

(n)
2ll′ the results (30)–

(32), where the abbreviations (28) and (29) are used.
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