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Abstract. The stream function y/ for axisymmetric Stokes flow satisfies the well-
known equation E4y/ = 0. In spheroidal coordinates the equation E2y/ = 0 admits
separable solutions in the form of products of Gegenbauer functions of the first and
second kind, and the general solution is then represented as a series expansion in
terms of these eigenfunctions. Unfortunately, this property of separability is not
preserved when one seeks solutions of the equation E4i// = 0. The nonseparability
of Ea >// = 0 in spheroidal coordinates has impeded considerably the development of
theoretical models involving particle-fluid interactions around spheroidal objects. In
the present work the complete solution for ^ in spheroidal coordinates is obtained
as follows. First, the generalized 0-eigenspace of the operator E2 is investigated
and a complete set of generalized eigenfunctions is given in closed form, in terms of
products of Gegenbauer functions with mixed order. The general Stokes stream func-
tion is then represented as the sum of two functions: one from the 0-eigenspace and
one from the generalized 0-eigenspace of the operator E . A rearrangement of the
complete expansion, in such a way that the angular-type dependence enters through
the Gegenbauer functions of successive order, leads to some kind of semiseparable
solutions, which are given in terms of full series expansions. The proper solution
subspace that provides velocity and vorticity fields, which are regular on the axis,
is given explicitly. Finally, it is shown how these simple and generalized eigenfunc-
tions reduce to the corresponding spherical eigenfunctions as the focal distance of
the spheroidal system tends to zero, in which case the separability is regained. The
usefulness of the method is demonstrated by solving the problem of the flow in a
fluid cell contained between two confocal spheroidal surfaces with Kuwabara-type
boundary conditions.
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1. Introduction. Particle-fluid systems are encountered in many important appli-
cations, such as settling, flow in granular porous media, fluidization, hydraulic or
pneumatic transport, crystallization, filtration, hydrodynamic chromatography, flow
of emulsions, colloids, suspensions of living cells, etc. The particles in these systems
are usually considered as spherical. Still, in many cases the particles (grains, crystals,
agglomerates, macromolecules, bacteria, etc.) can be considered, more appropriately,
as prolate or oblate spheroids. For this reason the family of problems of flow around
spheroids, with diverse boundary conditions, is of considerable practical and theo-
retical interest. Here we are interested in Stokes flows, a condition that is satisfied
in many cases because of the small size of the particles.

The equation of motion for axisymmetric Stokes flow, in terms of the Stokes
stream function ^, is E4y/ — 0, where E4 is the well-known operator [7], This
equation is separable in Cartesian, cylindrical, and spherical coordinates. Further-
more, it is ^-separable in bispherical coordinates (Stimson and Jeffery (1926) [20];
Morse and Feshbach (1953) [14]). Unfortunately, it is not separable in spheroidal
coordinates, a fact that seems to have impeded considerably the development of anal-
yses of particle-fluid interactions involving spheroidal objects, despite the inherent
usefulness that these would have.

Stokes flow around spheroids and ellipsoids attracted the interest of researchers
early. Oberbeck (1876) [15] obtained a solution in Cartesian coordinates for the
Stokes flow caused by the steady translation of an ellipsoid in an unbounded fluid
(see also Lamb (1932) [12]; Happel and Brenner (1965) [9]). To this end, Oberbeck
used an ingenious method, based on Dirichlet's formula for the gravitational potential
of the ellipsoid, assuming unit density.

In an elaborate work Sampson (1891) [19] presented among others an analysis of
Stokes flow around a spheroid translating along its main axis in an unbounded fluid
by employing spheroidal coordinates. Some of the results obtained in the present
work can be found implicitly in Sampson's analysis. However, Sampson did not
discover the existence of the generalized eigenfunctions, and thus his results were
cast in a form that was not very useful for applications. This statement is not meant
as a criticism of Sampson's work. In developing our solution we had the benefit of
modern linear functional analysis, which was developed mainly during the past few
decades.

The solution in spheroidal coordinates of the problem of axisymmetric flow around
a single spheroid translating along its axis in an unbounded fluid was obtained by
Payne and Pell (1960) [16], These authors recognized that their solution could be
obtained by appropriate simplification and change of coordinates from Oberbeck's
(1876) solution for the ellipsoid. Happel and Brenner [9] also obtained the solution
of this problem in spheroidal coordinates, employing an effective ad hoc technique
to overcome the difficulty presented by the fact that the equation E4i// — 0 is not
separable, in its generality, in this system of coordinates.

Here, we derive a complete set of generalized eigenfunctions. Each eigenfunction
is given in closed form, in terms of Gegenbauer functions of mixed order. Graphs
of the streamlines generated by the first few generalized eigenfunctions are given. A
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rearrangement of the complete expansion in such a way that the angular-type depen-
dence enters through the Gegenbauer functions of successive order produces some
kind of semiseparable solution, which is given in terms of a full series expansion.
The semiseparable solution is sufficiently general to handle interior, exterior, and
spheroidal cell problems, with or without prescribed singularities on the axis of sym-
metry.

In order to demonstrate the usefulness of the method of semiseparation of vari-
ables we use it to determine Stokes flow in a spheroid-in-cell, as a model of flow
through a swarm of spheroids. This application is a simple example of a problem
that cannot be solved by an ad hoc technique, but requires use of the complete
semiseparable solution developed here, because the subspace of separable solutions
is too "small" to host the actual solution. This solution is utilized [6] to model flow
through a swarm of spheroids and to obtain such useful engineering properties as the
drag coefficient and the permeability.

Before proceeding with the determination of the generalized eigenfunctions and
the development of the complete semiseparable solution, we should mention that
several problems of Stokes flow around a single spheroid (or other slender body) have
been successfully treated with the method of singularities. Exact solutions of Stokes
flow around slender bodies in unbounded fluids by superposition of hydrodynamic
singularities were developed by Chwang and Wu [2-4] and Chwang [1], Rallison and
Acrivos [ 18] developed the method of boundary integrals of distributed singularities.
Jeffrey and Onishi [ 10] used multipoles and moment matching to obtain a solution
of Stokes flow around two unequal rigid spheres immersed in a rather general flow
field, even when the spheres are virtually in contact.

Recently, singularity methods were developed to deal with cases involving wall
effects. Dabros [5] developed a method of discrete singularity placement that can be
used to account for wall effects. Yoon and Kim [21] used multipoles and a boundary
collocation method to calculate the relative motion of two spheroids moving in Stokes
flow, taking into account the hydrodynamic interaction between the two bodies.

Analyses with the method of hydrodynamic singularities are fundamentally dif-
ferent in approach from the present work. The singularity representation of the
generalized eigenfunctions obtained herein is the subject of current work.

2. Stokes flow. Our goal is to derive a complete representation of the Stokes stream
function in prolate spheroidal coordinates. The solution should be sufficiently general
to solve interior, exterior, and spheroidal shell problems, with or without prescribed
singularities on the axis of symmetry. We assume that the flow is axisymmetric.

For convenience, the basic characteristics of the spheroidal geometry are summa-
rized in Appendix A.

We look for a velocity field in the form

v(t,C) = wt(t,0* + Vt>£)£>

where t, £ denote the meridian unit vectors of the spheroidal system. Here we have
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used the transformation

T - cosh t], S- = y T2 - 1 , 1 < T < 00 ,dr) v dz

C = cos0, = -1 < C < 1- (2)

The components of the velocity field are expressed in terms of the Stokes stream
function y/(x, f) via

' , aygVC)- 0)

'2/ /Tr'° (4)cV^-cV1-:2
For the vorticity field cy, it is readily verified that

w(t,C) = Vxt(t1{) = ^£2^(t,C), (5)

where

£2= 1
c2(t2 - C2)

t 2 , N ^, r2>(t -"i? + (|-C)5? (6)

and hv is the relative metric coelficient. By means of Eqs. (3)-(5) all the important
fields are obtained once the Stokes stream function ^(r, Q is known. The latter
satisfies the equation

e\(t, 0 = 0. (7)
For completeness, in solving boundary value problems for Stokes flows associated
with spheroidal coordinates, we furnish the Cartesian expression of the outward unit
normal vector on the surface of the spheroid r = t0 , which is

°(*o) = —j= = (To\/1 ~ C2eos<p, T0y 1 -C2sin(3, x/ig- If) •
VTo-c2V y

(8)

Note that for any nondegenerate spheroid S , it is in > 1 . Furthermore, |£| < 1 .
0

2 2Hence, the expression (r - £ ) in the denominators of Eqs. (3), (4), (6), and (8) is
always bounded away from zero for all points exterior to ST , as well as on ST .T0 T0

3. The kernel space of E2. Let us represent any function in the kernel of the
operator E in the following separable form

> 0 = T(i)Z(Q. (9)
Then, it is easily shown that for every n — 0, 1,2,... the functions Tn(r) and
Zn(Q satisfy the ordinary differential equations

(1-r2)r;(T) + «(n-l)r„(r) = 0, 1 < t < +oo, (10)

(l-C2)Z;(C) + «(«-l)Zn(C) = 0, -1 <C< 1. (11)
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Consequently, both Tn and Zn satisfy the same Gegenbauer equation [ 14] of degree
(-5), but over different domains, because r > 1 and |£| < 1 .

The basic formulae related to Gegenbauer functions are furnished in Appendix B.
Introducing the eigenfunctions 0^ of the z'th kind (1 = 1,2,3,4) and of order

n (n = 0, 1, 2, ...) via the formulae

e{J\r,0 = Gn(T)Gn(0, (12)
e{'\r,C) = Gn(r)Hn(C), (13)
e[3\r,t:) = Hn(x)Gn(C), (14)

e{*\T,0 = Hn(T)Hn(Q, (15)

the following complete representation of the kernel space of E is obtained. If y/
2belongs to Keri? , then

^.o = EE<eiV<)' (16)
n= 0 ;=1

where A'n are constants.
When one is dealing with flows that are regular on the axis of symmetry, all the

eigenfunctions of even kind and the leading two eigenfunctions of odd kind should
be excluded, as is readily seen from Eqs. (3)-(5). In such cases, the regular-on-the-

2 2axis solutions of E y/ - 0 are restricted to the proper subspace of Kcr£ , which
is spanned by the eigenfunctions of odd kind and of order greater than or equal to
two. A regular-on-the-axis function, then, has the representation

OO

V(t,C) = £ £ 07)
n=2 i'=l ,3

24. Generalized eigenfunctions of E . Every function y/ that belongs to the kernel
space of the operator E is also a solution of Eq. (7). However, these functions do
not form a complete set of solutions of Eq. (7). In order to obtain those solutions of
Eq. (7) that are not members of the space Ker£ , we use the theory of generalized
eigenfunctions. Thus, we seek a complete representation of those functions ij/(r, Q
for which

E2v(t, 0 eKer£2. (18)

In other words, we seek a representation of the preimage, under the map E , of
an arbitrary element of the space Ker£ . Obviously, any function y/ that satisfies

2 2Eq. (18) automatically solves Eq. (7). Since E 1// belongs to KerE , it has the
representation

OO 4

£2^t,o = £E5«0!;V'<:) (19)
n=0 (=1

as it is dictated by Eq. (16).
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Let us assume that ft^(r , £) denotes the preimage of the eigenfunction 0^'(t , Q
under the operator E2, in other words, that ^1"(t , 0 are solutions of the equations

^"(1,0 = 0^,0 (20)
for each i — 1,2,3,4 and n = 0, 1,2,.... The constant c enters Eq. (20) for
notational convenience. The functions are the generalized eigenfunctions of E2
that correspond to the zeroth eigenvalue. By virtue of the linearity of the operator
E , if \j) is a solution of
assumes the representation

2 2E , if \j) is a solution of relation (18) that does not belong to Keris , and if it

= ££^"!;V,c) (2i)
n=0 1=1

in terms of the generalized eigenfunctions , then Eq. (20) implies that

c2£V(t, o = EEfi>2£2fli')(T- o
™°(22)

=EE»i9iw).
n=0 1=1

Consequently, Eq. (20) effects a complete spectral decomposition of the solution
space Ker E4 , once the generalized eigenfunctions are obtained.

Below, we solve the partial differential equations (20) for every i = 1,2,3,4
and every « = 0,1,2,.... The peculiarities of the first two Gegenbauer functions
make it necessary to treat the cases n = 0,1,2 and n = 3 separately. The cases
n > 4 can be investigated collectively.

A particular solution of the inhomogeneous linear partial differential equation

[(r2 - l)3„ + (1 - C2)daMr, C) = fn(r)gJC), (23)
where fn and gm are Gegenbauer functions of the first or second kind and of order
n and m, respectively, with n / m and n + m ^ 1, is provided by the separable
function

w (t C) =   ,24s

for n > 0, m > 0. The proof follows easily from Gegenbauer equations (10) and
2 2(11). The factor (t - £ ) in relation (6) ensures that all products on the right-hand

sides of the differential equations (23) involve polynomials of different order, hence,
the n - m factor in (24) causes no problem in the way the particular solutions are
obtained.

In order to solve Eq. (20) for a particular combination of i and n we write it in
the form

[(T2 - \)dzx + (1 - cXiQi'V, 0 = (T2 - c2)e^(t, 0 (25)
and use relations (B.14)-(B.23) to absorb the r2 and the C2 factors into Gegenbauer
functions of translated order. Then Eq. (24) is used to write down the appropriate

4
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particular solutions. This procedure has to be carried out independently for n =
0, 1,2,3 and, in general, for every n > 4 and, of course, for each i - 1,2,3,4.

As an illustration we show how the generalized eigenfunction , £) is ob-
tained. For i - n — 2 Eq. (25) becomes

[(T2 - l)0tT + (1 - cXM2)(T, o - (T2 - t2)G2(T)H2(0, (26)

where the expression for Q2\t , Q is taken from Eq. (13). From (B.16) and (B.21)
we now conclude that

2-i)att + (i-cX]n«2)(T,o
= iG2(T)G,(C) + IG4(t)H2(Q - $G2(t)H4(Z).

Finally, the linearity of Eq. (27) permits the term-by-term use of Eq. (24) and there-
fore the evaluation of the particular solution

^22)(t, 0 = ^[G2(T)H4(0 + G4(T)H2(0] + l6G2(T)Gl(t:). (28)

Note that all we need from Eq. (25) is just a particular solution, since the general
solution of the corresponding homogeneous equation is a function that belongs to
the space KerE , for which we already have a complete representation.

After some tedious calculations, along the lines of the above example, we have
obtained all the generalized eigenfunctions of E which are given in Appendix C.

Once the generalized eigenfunctions are obtained, any Stokes stream function y/
can be represented as

> o = E EKe«V, o + B'na^\x, o], (29)
n=0 ;=1

2where the sum with the ^-coefficients represents an element of the space Keris ,
whereas the sum with the ^-coefficients stands for a function that is mapped to the
space Ker£2 under the action of the operator E2 .

In view of the formulae (3)-(5), it is easily seen that the demand for solutions hav-
ing velocity and vorticity fields that are regular on the axis restricts the representation
to

oo

v(*-o = EEKe?(^)+fiXi)(i.o]. (30)
n=2 i= 1,3

Expansion (30) represents the solution of the most usual axisymmetric Stokes flow
problems in spheroidal coordinates.

Each eigenfunction 0^ and each generalized eigenfunction corresponds to
a basic Stokes flow field. Equation (29) expresses the fact that any axisymmetric
Stokes flow can be written as an appropriate linear combination of these basic flow
fields. Streamlines of the flow fields represented by , Qq3) , >

, q!,3' , and Q|,4) are given in Figs. 1 to 8 (see pp. 164-167). Streamlines for
Qj1', Qj2) , Q<3), Q|4) are not given separately, in view of Eqs. (C.5)-(C.8).
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1.5

0.5

0.5 1 1.5

Fig. 1. Streamlines of the basic flow field represented by the general-
ized eigenfunction Qq ' for c = 1 . Note also Eq. (C.8).

1.5

0.5

Fig. 2. Streamlines of the basic flow field represented by the general-
ized eigenfunction for c = 1 . Note also Eq. (C.7).
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Fig. 3. Streamlines of the basic flow field represented by the general-
ized eigenfunction Qq3) for c = 1 . Note also Eq. (C.6).

Fig. 4. Streamlines of the basic flow field represented by the general-
ized eigenfunction Qq4' for c = 1 . Note also Eq. (C.5).
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1.5

Fig. 5. Streamlines of the basic flow field represented by the general-
1(,:2ized eigenfunction fll'' for c = 1 .

Fig. 6. Streamlines of the basic flow field represented by the general-
ized eigenfunction f°r c = ' •
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Fig. 7. Streamlines of the basic flow field represented by the general-
ized eigenfunction for c = 1 .

Fig. 8. Streamlines of the basic flow field represented by the general-
ized eigenfunction fil4' for c = 1 .
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5. Semiseparable solutions. The main characteristic of the simple and generalized
eigenfunction expansion (29) is that, although every term of the series solves Eq. (7),
the (-dependence does not enter through the Gegenbauer functions of fixed order.
Instead, every term of the expansion (29) involves a finite number of Gegenbauer
functions of mixed order.

In the interest of solving standard boundary value problems, with or without sin-
gularities along the axis of symmetry, an expansion of the general stream function
in terms of Gegenbauer functions for the (-dependence is needed. This is obtained
by rearranging the terms of Eq. (29) and collecting all of the r-dependent terms as-
sociated with each (-dependent Gegenbauer function. This procedure leads to the
expansion

OO

V(T, 0 = g0(T)G0(O + gj(!)(/,(f) + J>„(t)G„(() + hn(z)Hn(t)l (31)
n=2

The r-dependent functions gn(r) and hn{t) are given, for convenience, in Appendix
D.

It is interesting to note that the individual terms of the expansion (31) are not
solutions of Eq. (7), but the full expansion is. The complicated expressions, through
which the A's and the B's enter the r-functions gn and hn , Appendix D, reflect
the appropriate way in which the individual terms should interweave in order for the
expansion (31) to form a solution of Eq. (7).

We observe that the functions gn(t) are always associated with the £/„(() poly-
nomials, whereas the functions hn(t) are always associated with the Hn(() func-
tions. Since g„(t) and hn(z) do not coincide, it follows that Eq. (7) does not accept
genuinely separable solutions. Nevertheless, expansion (31) exhibits some kind of
separation, which we will refer to as semiseparation to indicate that the solution can
be written as a sum of particular products of functions with t and ( dependence
alone but not in any combination.

Actually, the operator E , as it is given by (6), is the product of an algebraic
and a differential factor. The elements of the space ker E accept a separable form,
since the algebraic factor of E1 is eliminated from the equation E2 y/ = 0. On the
other hand, it is this algebraic factor of E2 that destroys the separability of Eq. (7)

2 2through the composition E o E . Therefore, it seems that the loss of separability
is not of a "very serious" nature and indeed it is not since the generalized solutions
are not constructed out of "new" functions. The generalized solutions are formed
by following a particular weaving pattern with the indices of the same Gegenbauer
functions that were used to construct the separable solution. This is exactly what we
characterize as semiseparation.

For solutions that are regular on the axis, the representations (B.10) and (B. 11)
can be used to write the general solution in terms of the orthogonal Gegenbauer
polynomials {Gn((), n> 2} as

V{t, o=J2 K4n ~ 1)'?o(T) + W1)] Gi„(C)
n= 1

oo

+ E[-(4«+l)?lW + ?2„+l(t)]G2„1K).
n= 1
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The representation (32) for the general, regular-on-the-axis, Stokes stream function is
very useful for particular applications because of the orthogonality relations (B.13).

6. Reduction to the sphere. The spheroidal coordinate system (A.9) reduces to the
spherical coordinate system in the limit, as the semifocal distance c tends to zero.
From (A.9) it is readily obtained that

r = c\Jr2 + £2 - 1, (33)

which, in view of (A. 10), provides the limit

lim cx = r. (34)
c—0+

Consequently, as the prolate spheroid (A. 11) deforms continuously by bringing its
foci close together, the radial spherical coordinate is recovered from the limit of the
product cx, as c —» 0+ , while the form of the angular dependence remains intact.
This implies that the Gegenbauer functions still provide the angular dependence,
whereas the radial dependence is formally obtained from the corresponding Gegen-
bauer functions as follows: first replace t by t/c, then take the limit of cnGn(x/c)
and cx~nHn(x/c) as c —► 0+, and replace t by r.

The expansion

1 , T + 1 ,-] 11 1 ,,c.x In   = coth t = —I 7 H f H  (35)
2 t - 1 x 3T3 5T5

for t > 1 leads to the limit

lim In = -. (36)
c—>o+ 2c t - 1 r K '

2The operator E , given by Eq. (6), in the limit as c —► 0+ , provides

£.2 _ d2 , sin0 d ( 1 d \
dr2 r2 dd (sinfldflj ' ( ^

2which is the form that E assumes in spherical coordinates.
The Gegenbauer functions transform as follows, in the limit as c —► 0+ ,

c°G0(x) -» 1, cGx{x) -r, c2G2(x) -* -\r2,
c*G}(x) ->-^r3, c4G4(t) -+ -fr4 (38)

c"Gn(x) -+ (const)r" , n > 5;

xcH2{x) —► jr, ~pH3(x) —> 15'r2, -pH4(x) —> ,q5 r'3, 1

Hn(x)->^, n> 5. j (39)
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Therefore, in order to recover the spherical form of the Stokes stream function
from the corresponding spheroidal expressions, we need to introduce the following
scaling for the constants:

(i) Aq, Aq, a\, a\ remain the same;
(ii) a \ , Ax, A0 , Aq are multiplied by c;
(iii) for n >2, An, An are multiplied by c" ;
(iv) for n > 2, A3n, A* are multiplied by c'~" ;

and by virtue of (20), which introduces an extra factor of c :
(v) Bq, Bq , 53, B\ are multiplied by c2;
(vi) B\, B2 , Bq , are multiplied by c3;
(vii) for n >2, Bln , B2 are multiplied by cn+2 ;
(viii) for n > 2, 53, B* are multiplied by .
Introducing the above scaling and sending c —> 0+ into the expressions for the

g's and the h's we obtain the following combinations of terms:

s.wcr0+r>"+I^^r+r3»r"+2+r2i' "2°- <40>
and

r

l / \ a1",*2 ^ ,*3 n+2 A 4 1 _ /ai\
W, rn+A«r +An~l^+Anr +An-7^3' (41)c—►u-t- y Y

where T' , A' are constants.n 7 n

If we substitute Eqs. (38) and (39) into the general expansion (31), we arrive at
the well-known representation of a stream function in spherical coordinates (see, e.g.,
[9])-

The same general expansion can be derived if the above scaling is applied to the
expansion (16) of an element in the space KerV}2, as well as to Eq. (20). Then Eq.
(20) is solved with E2 given by Eq. (37).

7. Application. In order to demonstrate the usefulness of the present method,
we use it to solve Stokes flow within a fluid cell contained between two confocal
spheroidal surfaces. The internal spheroidal surface Sa is solid, whereas the external
one Sp is the ficticious boundary of a unit cell (spheroid-in-cell) that can be used to
model flow through a swarm of spheroidal particles. The volume of the fluid cell is
chosen so that the solid volume fraction in the cell equals the solid volume fraction
of the swarm.

For the purposes of the present example, we apply boundary conditions which
are analogous to those of the Kuwabara's [11] sphere-in-cell model. [Application of
boundary conditions analogous to those of Happel's [8] sphere-in-cell model lead to
a somewhat more complicated analysis because of the fourth boundary condition, as
can be seen in a forthcoming publication. We also restrict our attention to prolate
spheroids, since the solution for oblate spheroids can be obtained through a simple
transformation.]

In what follows, all lengths have been rendered dimensionless using the short semi-
axis of the internal spheroid, a, , as characteristic length. The stream function is
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2rendered dimensionless through division by the characteristic value uax , where u is
the approach velocity.

Let a, (= 1) and a} be the short and long (dimensionless) semiaxes of the internal
spheroid, respectively, and bx and b} those of the external one. The two spheroids
are confocal with semifocal length c. The values of t on the internal and external
spheroid are

t = cosh a = — ,a c
b ^

Tp = cosh P — —,

respectively.
We assume that the solid spheroid is stationary and that an axisymmetric flow

is caused in the fluid layer (tq < i < r^) by a uniform approach velocity on the
external spheroid. This approach velocity is assumed to have magnitude u and to be
directed in the positive direction of the x3-axis. Futhermore, the vorticity is assumed
to become nil on the external spheroid.

Assuming Stokes flow conditions, the equation of motion is given by Eq. (7). The
boundary conditions can be expressed as

B.C.I. ^ = 0 onr = ra, (43)

B.C.2. = 0 on t = tq , (44)

B.C.3. ^ = -cV-l)C onr = T)}, (45)

B.C.4. ,2 ,s d2 . n r\ d2(t " V + <1"ni? i// - 0 on t = To. (46)

Equation (7) is to be integrated with the B.C.s given by Eqs. (43)-(46). As a
consequence of the semiseparability, it is actually not possible to satisfy exactly the
equation and the given boundary conditions at the same time. If we consider the
semiseparable form (31) of the solution then we have an infinite number of approxi-
mations for the solution. In order to obtain a unique solution, it will be necessary to
impose an additional limit condition of geometrical nature, namely, that the solution
sought tends asymptotically to the solution for the spherical case (the Kuwabara solu-
tion) as the prolate spheroid tends to become spherical (c —> 0+ , a3 —> 1). Actually,
this geometric condition is equivalent to the assumption of separability imposed by
Happel and Brenner [9], Both conditions restrict the solution space as much as is
needed in order for the problem to secure a unique solution.

Now, the Gegenbauer functions have the following characteristics: Gn(Q are reg-
ular on the .x3-axis; Hn(Q are singular on the x3-axis; Gn{r) are regular in the
interior of the spheroid Sa ; and Hn(x) are regular everywhere (since t > 1), except
on the focal segment (where r = 1). As we demand of our solution to be regular
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on the x3-axis and in the space between Sa and Sp , we use for the representation
of our solution only the terms gn{x)Gn{£) . Furthermore, taking into account the
symmetry of the ^-field on either side of the equatorial plane (£ = 0), we retain
only the even terms of the solution. Thus we obtain

OO

«e(T,C)= £ £„(t)G„( 0, (47)
n=2,4,...

where the sum runs through the even integers. Now, using the expressions (D.3) and
(D.5) for gn(r) we obtain

c2B 00WCt,C)= -T»C1(t)C2(C)+ E K«G„2(t)+^„2//„2(t)]G„(C)
n=2,4,...

CX)

+ E k«g.(t) + ̂ n+2^n (t)]Gb+2(C) (48)
*=2,4,...

CO

+ E tC„G„(t) + D„H„(t)]G„(C),
«=2,4,

where

c2
^+2 2{2n + \)^A"^n A"+2an+2h (49)

' n+2 2«„J. (50)2(2n + 1) n^n "+2 "+2J

Here An, Bn, Cn, and are constants to be determined from the appropriate
B.C.s, whereas the coefficients an and /?n are given by (B.24) and (B.25), respec-
tively.

Using the relations

P (C) — P (C)
G'n{Q = -Pn_x{Q, Gn(0= 2n - ! " ' " = 2>3> (51)

and taking into account that
OO

C = -Gi(C) = £(4« + l)G2n+1(C) (52)
n= 1

[note that (j,(C) is not orthogonal to the other members of the family, Gn(Q,
n > 2], the B.C.s can be written as follows:

B.C.(l) £2(tJ = 0,
B.C.(2) g'2( tj = 0,

B.C.(3) g2( rp) = c2(r2p-\), (53)

B.C.(4) (1_t2)^'(t^) + 2g2{Tfi) = 0 [or & (rfi) = 2c2]
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and for n = 4,6,8,...

B.C.(5) gn(zj = 0,

B.C.(6) g'n(ra) = 0,
(54)

B.C.(7) gn( rfi) = 0,

B.C.(8) + /!(*- 1)^(^ = 0 [or^(T/J) = 0].

We observe that B.C.(l)-(4) are not sufficient to determine the five constants (for
n = 2) in Eq. (48). Therefore, the stream function for this particular problem, in the
system of spheroidal coordinates, is not uniquely determined by the standard B.C.s.
Instead, we have a "rich" space of approximate solutions, and we need to provide an
additional condition in order to determine a unique solution.

Here, we complete the formulation for the problem by imposing the following
additional condition. As c -* 0+, we have a —> oo and xa —> oo (as well as
/? -» oo, Tp —> oo) and both spheroidal surfaces tend to become spherical. Hence, in
the limit as c —> 0+, the solution, Eq. (48), should tend to the Kuwabara solution,
which in spherical coordinates has the form

> 0) — i^r + Br1 + Cr4 + Dr~l) sin2 6. (55)

In order to proceed we need to determine the behavior of the solution sought in the
limit as c —> 0+, following the rules developed in the previous section. The following
scaling is required to ensure that all Gegenbauer functions go to the corresponding
powers of r, as c —> 0+ :

A =c "A„, B — c" lBn,n n ' n n 7

c„ = <r"c„, D =cn~[D„.
(56)

Now, (48) can be written in the form

OO
2!»('.()= E r..oMG.IO + C £ r„ 2(T)G„(0

"=2'4'."oo "=2,4,... (57)
+ S Z r„ 4(T)Gn(o

n=2,4,...

where T- j( r) are functions of r that reduce to sums of powers of r, as c —> 0+ .
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Specifically,

r2,o(T) = ~^cG\(yX) + + C2c2(}2^) + D2 ' (57-1)

r4>0(T) = + y^6G6(t) + C4c4G4(t) + D, (57.2)

r (ts _ ~{n - 3)(n - 2) ^ Hn_2 (n+l){n + 2) -j n+2r . ,
"'° 2(2« — 1)(2« - 3)2 "c"-3 2(2n - \){2n + l)2 " n+1

+ CncnGn(r) + Dn^l, (57.3)
c

r"(t)= -^5^-T75c4c'(r)' <57'4)

r4,2« = _2_
25

rH^x) ^ a2c2G2(t) 2
297 B6^+A6c6G6(t) (57.5)

r (T) =  
n'2 2(2n - 5)(2n - 3)2

«(«-!)
2(2n + 3)(2« + l)2

~D ^n—2^' , ~7 / \
^n-2 cn-3 + ^n-2C Gn_2{x)

Jj Hn+2^ , ~7 c"+2G ft)
n+2 cn+1 + ^«+2C (jn+2VT/ (57.6)

_2BaH±(t)r2,4W = ^^r> (57-7)

r4,4W = 7^B4^-TiLc2C2(t), (57.8)

_ (w + l)(w + 2) - //b+2(t) _ (« - 3)(« - 2) - n-2 . .

",4 2(2rt - l)(2rt+ l)2 " c"+I 2(2« - 1)(2« — 3)2 " "~2
(57.9)

It is obvious, now, that as c —> 0+ the only terms that "survive" in Eq. (57) are those
that are not multiplied by c, namely, {1^ 0(i)Gn(Q; n = 4,6,...}. Let us denote
by i//0(t, C) the expression composed of the aforementioned terms only, that is,



STOKES FLOW IN SPHEROIDAL COORDINATES 175

V0(T> 0= E rn,0(*)G„(O
n=2,4,...

^G,(t) + ^c4G4(t) + C2c2G2(t) + D2

+

+

175 f + + C4c4<34(T) + D4~~T~

~(n - 3)(n - 2) - tf„_2

G2(C)

g4(0 +

2(2/i - 1)(2« - 3)2 "c"-3
(n+ l)(i, +2) ^ ,+2

2(2« — l)(2n + 1) " "+

+ C„c"G„(r) + JD„^ ^(0 +
(58)

Note that if we take the limit, as the focal length vanishes, we obtain

(r, 6)= Uin y/Q(x,Q (59.1)

with

wl(r, 6) = [A2r2 + B2r 1 + C2r4 + D2r]G*2{8)

+ [A/ + B,r~3 + c/ + D,r~l]Gl(d) + ■■■ (59.2)
, r a 2n , n 1—2n , „ 2n+2 , „ 3-2n,„* ,ns ,

+ [A2„r +B2nr 2nr + D2nr ]G2«(0) + ""

where

G*(6) = Gn(0 [e.g., G2{C) = 1(1 - £2) = 1(1 - cos2 6) = \ sin2 6 = <72*(0)],

which is the general solution of Stokes flow in spherical coordinates (where the op-
erator E4 is completely separable).

Now, imposing the B.C.(5-8) on Eq. (58), we obtain

r„,0(T) = °, n = 4,6,8,..., (60)

which implies

\=~Sn = Cn = Dn = 0, " = 4,6,8,.... (61)
Consequently, Eq. (58) is reduced to

<r0(T,o = r2>0(T)G2(C)

^cGj(t) + C2c2G2(t) + ^2c4(?4(t) + d2 G2( 0- (62)
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Now, the solution (48) [or (57)] should agree with Eq. (62) in the limit, that is,

lim 0 = t//0(r, 0- (63)
c-> 0+ u

Since y/Q involves only G2(Q, we concentrate on the r-dependence of (// corre-
sponding to G2(C), namely, g2(z). From Eqs. (47) and (57) we have

g2(Z) = r2,o(T) + ^2,2^) + ^2,4^)

fcGl(r) + C2c2G2(r)+ ) c\(r) (fi4)

+ D2c ^ H2{z) - c2 [^- c2^-)c 3//4(t).

We observe that for c = 0+ the right-hand side of Eq. (64) agrees with the right-hand
side of Eq. (62), as it should, since the two extra terms,

clw/°'{z) and

are proportional to c2. However, there is an important qualitative difference be-
tween these two terms, in that the second one introduces (for infinitesimal values

 i  3 2
of c) a type of dependence, c H4(t)G2(Q ~ r sin 8, which does not appear
in the sphere-in-cell solution, neither should it appear for an infinitesimal perturba-
tion. Accordingly, we set the coefficient ,^4 of H4(t)G2(Q in Eq. (48) equal to nil,
obtaining

= 14 c2B2, or B4 = 14 B2 (^4 = 0). (65)

This is the restriction of the solution space imposed by our geometrical condition.
Equation (65) provides the additional relation required to make the problem "well
posed". The system of Eqs. (48), (53), (54), and (65) can be solved to obtain a
unique solution in the form of a series, Eq. (47).

Determination of g2(r). From Eq. (48), using Eq. (65), we obtain

g2(r) - c2[Ex Gl (t) + E2G2{t) + E3G4(t) + EAH2(t)] , (66)

where

Ex = \B2, E2 = c 2C2, E3 = c V4, E4 = c 2D2. (67)

Applying the B.C.'s (53) we obtain

2

*2W - ^
'5G4(t^)

A2G2(t) + A3 I ^JL-A-G,(t) + G4(t) I +A4H2(t) (68)



STOKES FLOW IN SPHEROIDAL COORDINATES 177

where the constants D, A2, A3, and A4 are given by

(g4(0 + ^g.(t,>) »2<0"
C2(tJ (C4(0 + ic4(i„)) ^<t„) . (69)

,G2(Ts) 6G4(t^) tf2(T/?).

D 2G,(r.)det

A2 = - G'4(Ta)N2(ra) - AG4(t,)[//2(t0) - t.fl'jW]. <70>
V

A3 = G'2(Ta)H2(Ta) - G2(ra)H'2(rj = -\, (71)

A4 = - g;(t„)G4(tJ + f C4(tf)[C2(tJ - (72)
T/>

where the primes denote the first derivatives of the corresponding functions. Equa-
tion (69) can also be written as

D = 2G^)1^2G2( V + 6A3G4(t,) + A4tf2(T,)]. (69')

At this level of approximation the solution is given by

V(t,C)«^2)(t,0 = g2(T)G2(C) (73)

with g2(r) given by Eq. (68); therefore,

A2G2(t)+A3 (5^1Gi(t) + G4(t)J +A4H2(t)1 G2(C). (74)(2)/ n Cr (T, 0 = ^

For convenience we list, here, the expressions for Gl, G2, G4 , and H2 :

Gt(x) = -x,
G2(x) = ±( 1-x2),

G4(x) = i(5x2-l)(l-x2), (75>
2S, X + 1 X

X^7
rr / x l ,, 2X, at 1 Xi/2(x) = i(l -x )In ——r + -,

where x = z or £.
Sample streamlines around a prolate spheroid with a3 = 2 (Oj = 1) for the

case that corresponds to a solid volume fraction y = 0.05 (c = V3, A, « 3.283,
63 « 3.712) are given in Fig. 9 (see p. 178), based on Eq. (74). Numerical calculations
in [6] indicate that i//!2)(t , Q , as given by Eq. (74), contains most of the important
physics of the flow, so long as c is not too large. Sample streamlines around an
oblate spheroid (see Appendix A) with = 0.5 for the case y = 0.05 are given in
Fig. 10 (see p. 178).

Determination of the remaining r-functions of the expansion, namely, gA{z) and
S2m(T) f°r m — 3, is given in Appendix E.
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Fig. 9. Sample streamlines around a prolate spheroid-in-cell. The
inner spheroid has major semiaxis a3 = 2 ; the solid volume fraction
value is y = 0.05 .

3.00

2.00

1.00

0.00

- 1.00

-2.00

-3.00

-i 1 1 r

fl3 = 0.5 Vfo °.0980l95

7 = 0.05 —Jl/ /'39
/ 0.585

/ 0.78
S, 0.975

^1.1

_i i 
— 3.00 -2.00 -1.00 0.00 1.00 2.00 3.00

Fig. 10. Sample streamlines around an oblate spheroid-in-cell. The
inner spheroid has minor semiaxis a3 = 0.5 ; the solid volume frac-
tion value is y = 0.05.
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8. Conclusions.
The complete solution of the equation for Stokes flow in spheroidal coordinates,

, C) = 0, is obtained using the theory of generalized eigenfunctions, and the
stream function is expressed as a sum of two functions—one from the 0-eigenspace,
and one from the generalized 0-eigenspace of the operator E . The former function
is expressed as an expansion in eigenfunctions of E , and the latter as an expansion

2 2in generalized eigenfunctions of E , Eq. (29). The generalized eigenfunctions of E
in spheroidal coordinates are determined here for the first time. Each generalized
eigenfunction is expressed in terms of sums of products of Gegenbauer functions of
mixed order [Eqs. (C.1)-(C.20), Appendix C], Graphs of the streamlines of the basic
flow fields represented by the first few generalized eigenfunctions are provided [Figs.
1-8], A simplified series expansion of the stream function that produces regular, on
the axis, velocity and vorticity fields is given explicitly [Eq. (30)].

Rearrangement of the terms of the expansion in eigenfunctions and generalized
eigenfunctions, in such a way that terms having the same angular-type dependence
(C-dependence) are grouped together, produces an alternative expansion that is useful
for the analysis of boundary-value problems [Eq. (31)]. This expansion is of a novel
and interesting nature. The individual terms of this expansion are not solutions of
E4if/ = 0, but the full expansion is. The r-dependence of Gn(Q in the generic
term of this expansion is different from the r-dependence of Hn{Q , and therefore
the general solution is not separable in the usual sense. Nevertheless, the expansion
exhibits some kind of separation, which we refer to as semiseparation.

The semiseparable solution is sufficiently general to handle interior, exterior, and
spheroidal cell problems, with or without prescribed singularities on the axis of sym-
metry. A simplified version of the expansion that produces regular, on the axis,
velocity and vorticity fields is also given [Eq. (32)]. This expansion is very useful
for particular applications because of the orthogonality of the Gegenbauer functions
of the first kind [Eq. (B.13)]. The form of semiseparable solutions causes problems
with the simultaneous satisfaction of the equation and any generic set of boundary
conditions. Hence, well posedness is not satisfied in the classical sense.

Finally, it is shown that, when the focal distance of the spheroidal system tends
to nil, the semiseparable solution of Stokes flow in spheroidal coordinates, which re-
sulted from the present work, reduces to the well-known separable solution in spher-
ical coordinates.

A first application of the present theory in order to solve Stokes flow in a spheroidal
cell (as a means of modelling flow through a swarm of spheroidal particles) is given
as an example. Further development and utilization of this solution to obtain results
for engineering applications (drag force and permeability) is given in a companion
publication [6]. This application is a simple example of a problem that cannot be
solved by an ad hoc technique but requires full use of the complete semiseparable
solution.
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Appendix A. Spheroidal geometry.
A. 1. Prolate Spheroidal Coordinates. The notation used in this work is consistent

with Moon and Spencer [13] and Happel and Brenner [9],
Given a fixed positive number c > 0, which we consider to be the semifocal

distance of our system, we define the prolate spheroidal coordinates (t], 6, <p) as

x, = c sinh rj sin 6 cos (p,
x2 = c sinh t] sin 0 sin <p , (A.l)
x^ — c cosh t] cos 6,

where

0<t]<+oo, 0 < 6 < 7i, 0<(p<2n. (A.2)

The (rj, 6, <p) system is orthogonal.
To every fixed value of r] e (0, +oo) there corresponds the unique prolate spheroid,

Fig. 11,

Vji±|_ + ̂ L = 1 (a.3)
0 c sinh t]0 c cosh rj0

(p = const.

0 = 71

Fig. 11. System of prolate spheroidal coordinates
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with major semiaxis (on the axis of symmetry) a3(tj) = ccosh rj, minor semiaxis

a^rj) — c sinh >7 and eccentricity s(rj) — ^. (A.4)

In particular, as r\ —> 0+

a3(ri)-+c, a^ij) —► 0, e(ri) -*• 1 (A.5)

and the prolate spheroid S degenerates to the focal line segment

S0: {(0, 0, t): t € [—c, +c]}. (A.6)

On the other hand, as t] -* +oo

e(?7)->0 [a3(f/) -0,(17)] -►0 (A.7)

and the spheroid approaches a sphere located at infinity.
Following [9] we introduce the transformation

r = cosh rj, 1<t<+oo, C = cos0, -1 <£<+!> (A.8)

which, of course, preserves the orthogonality of the system. Then, (A.l) reduces to

x2 (A.9)
= C\jx2 - \ \!\ - C2 costp,

= c\J x2 — 1 \J 1 — C2sin cp,
X3 — ClC ,

where
l<r<+oo, -1<C<+1» 0<(p<2n. (A.10)

The generic spheroid (A.3) has the equation

_x1 + x2_ + -X^ = J
r c (t - 1) c2x2

with semiaxes

^j(t) = ct, ax{t) = c\Jx2 - 1, (A.12)
and eccentricity e(i) = 1/r .

A.2. Oblate Spheroidal Coordinates. For oblate spheroidal coordinates the roles
of sinh r] and cosh t] are interchanged. In this case the focal segment is replaced by
the focal disc, since the axis of rotation is perpendicular to the line connecting the
two focii. The equation of a generic oblate spheroid assumes the form

W+T^V = 1, (A. 13)
c2 cosh2 rj c2 sinh2 rj

where c denotes the semifocal distance of the spheroid. In terms of the variables

A = sinhf/, £ = cos 8 (A. 14)
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the oblate spheroidal coordinates are expressed as

= c\J i + x2\J i - e2 cos <p,
= c\J 1 + X2\J 1 - C2 sin <p, (A. 15)

x3 = ,

where
0<A<+oo, -1<C<+1, 0<(p<2n. (A. 16)

The transformation (A. 15) can also be obtained from Eq. (A.9) via the formal sub-
stitution

i —> iX, c —> -ic. (A. 17)

Therefore, this simple substitution dictates the algorithm that translates results from
the prolate to the oblate system. Note that the very same substitution should also be
used to translate results from the oblate to the prolate system, that is,

X —► ix, c —► —ic, (A. 18)

if the positivity of the expressions cv t2 - 1 and cV 1 + A2 is to be preserved. In the
present work the analysis is done in the framework of prolate spheroidal coordinates.
The foregoing substitution can be used, at any level, to obtain the corresponding
expressions for oblate spheroids.

The metric coefficients in prolate geometry are

hr, = c\Jt2 -C2, hg = c\jx2 -C, h(p = c\jx2 - \ \JI - C2. f A. 19)
Appendix B. Gegenbauer functions. The Gegenbauer functions of the first kind are

polynomials of degree n , furnished by the formulae

<?„(*)= i, (B.1)
G,(x) = -x, (B.2)

and

= T2^T)[F"~i(x) ~
. j«—2 / 2 iX"-1 (B-3)1 a / x - 1 \

{n-\)\dx"~2

for every n > 2, where Pn(x) denotes the corresponding Legendre polynomial.
The Gegenbauer functions of the second kind, with the exception of the zeroth and
the first-order ones, are functions exhibiting logarithmic singularities on the axis of
symmetry. They are given by

HQ(x) = -x = G{{x), (B.4)
Hl(x) = -l = -G0(x), (B.5)
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and

«,W-(2^TT)[e„_2W-G»W]

= 1_ ,rJtotS+KM). W<1> <B'6)
2 " llngr + *,(*). W>1

for every n >2, where

n/2,(n+l)/2 .. ..
K (r\ = - V (2/1 -4fc+ 1)

^ (2k-l){n-k)
j (2k - 1)(« - k)

n(n-l) Gn_2k+i(x), (B.7)

and the summation terminates with the integer n/2 or n + \ , as n runs through
even or odd numbers, respectively. Qn(x) stands for the Legendre function of the
second kind.

The logarithmic factors in Eq. (B.6) can also be expressed in terms of inverse
hyperbolic functions as

^ In | + ^ = tanh-1 x, |x| < 1, (B.8)

^ In X + | = coth~' x, |x| > 1. (B.9)

Noting that the even-order Gegenbauer polynomials are even functions of x , while
the odd-order ones are odd functions of x, the theory of telescopic series can be
used to derive the relations

OO

G0(x) = -Hx{x) = - 1)G2„(x), (B.10)
n= 1

oo

G{(x) = H0(x) = -X)(4 n + 1 )G2n+l(x). (B.ll)
n=1

Indeed, by virtue of Eq. (B.3), both series (B.10) and (B.l 1) are telescopic series that
converge for every x e (—1, +1), since

lim PJx) = 0, x e (-1, +1). (B.12)
n—>oo n

The limit (B.12) is a simple consequence of [17, Theorem 61]. Relations (B.10) and
(B.l 1) imply that the Gegenbauer functions G0, G{, HQ, //, are linearly dependent
on the Gegenbauer functions Gn of order n > 2. The Gegenbauer functions of
order n > 2 are linearly independent. Furthermore, the Gegenbauer polynomials
Gn(x) for n >2 are orthogonal with respect to the inner product

(Gn(x),Gm(x))= rs&z&dx
J-1 l~x (B.13)

= n(n - l)(2n - l)^"m' n~2, m~2,

Snm being the Kronecker delta.
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The inner product (B. 13) becomes singular for the set of functions G0(x), G, (x),
and Hn{x), n >0.

In view of formulae (B.1)-(B.7) it is not hard to prove the following recurrence
relations:

x2G0{x) = G0{x)-2G2{x), (B. 14)

x2Gl(x) = Gl{x) + 2G3{x), (B.15)

x2G2(x) = iG2(x) + iGAx), (B.16)

for n> 4, and

x%(x) = }G3(x) + 1G5(x), (B.17)

x2Gn(x) = anGn_2(x) + ynGn(x) + PnGn+2(x) (B.18)

x2H0(x) =x2G1(x), (B.19)

x2HAx) = -x2GJx), (B.20)

for n > 4, where

1 \ 7 — "OV

x2H2(x) = -±G,(x) + \H2{ x) + lH4(x), (B.21)

x2H3(x) = ±G0(x) + $H3(x) + *Hs(x), (B.22)

x2Hn(x) = anHn_2(x) + ynHn(x) + finHn+2(x) (B.23)

{n - 3)(n - 2)
(2n - 3)(2n - 1) n > 4, (B.24)

B = + l)(w + 2) > 4 /g 25)
P" (2n - 1)(2« + 1) ' ~ {'

n (n — 1) „ 2n2 - 2n - 3 ,
7" ~ (n- 3)a" + (n - 2) n ~ (2n + l)(2/i-3) ' " - ( J

Appendix C. Generalized eigenfunctions of E in spheroidal coordinates. The gen-
eralized eigenfunctions of E2, see Eq. (20), are

Qi,) = -G0(T)G2(C)-G2(T)G0(C), (C.l)

42) = (C.2)
Qo3) = ^G3(r)G0{Q - Gj(t)G2(0, (C.3)

"o4> = 3^.(^)^(0 + jGjWK). (c-4)
n[l) = «i4), (c.5)

"(,2) = -"o3), (C.6)
«(,3) = -"i2), (C.7)

"S4) = "o ), (C.8)
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= l5G2(T)G4(0 + ±G4(T)G2(0, (C.9)
- 15G2(t)H4(0 + %Ga(t)H2(Z) + \G2{z)Gx{Q , (C.10)
= j^H2(t)G4(Q + 3sH4(t)G2(Q + ^,(t)G2(C) , (C.l 1)

= &H2(t)H4{Q + £H4(t)H2(C) + \G{{X)H2( 0 + \H2{x)Gx{ 0, (C.12)
= ^G3(t)G5(C) + ^G5(t)G3(C), (C. 13)

= &G3(t)H5(Q + ±G5(T)H3(0 - ±G3(T)G0(i;), (C.14)

= &H3(t)G5(C) + &H5(t)G3U) - &G0(t)G3(Q, (CAS)
= ±H3{x)H5(0 + ±H5{t)H3(C) - &G0(t)H3(C) - &H3(t)G0(C) (C.l6)

and for n — 4,5,...

+ 2i2^M)[G»«(t)G»K) + °.<T>G.«<™ •

Sl?> =

+

^ - -

+

Q<„4) = -

2(2^3) Vn-lWntt) + Gn^)Hn_2(Q]

2(^Y^Gn+2^)Hn{Q + Gn(T)Hn+2(C)],

2(2^3) t//„_2(T)G„(0 + Hh{x)G„_2{C)]

2(2^TT) 1+ H"^Gn+2(0] ,

2^3) ^-2(^(0 + Hn{x)Hn_2{Q]

+ 2(2n"+ 1) WO + //w(t)//„+2(C)1 ,

(C.l 7)

(C.18)

(C.l 9)

(C.20)

where the coefficients an and fin are given by Eqs. (B.24) and (B.25), respectively.

Appendix D. T-Dependent functions of the expansion (31). The r-dependent func-
tions gn(r) and /?„(t) are summarized as

g0(z) = (AI - A\)G0{t) + - ^)G,(r)

- K + *f)<W + | - B\ - ^ G3(t) - ^H3(t), (EU)

^(t) = (^ - a\)G0(t) + (^ + ̂ I)G.(t)
' 2 r3 B22\ „ ^ 1,„4 „1  (D-2)BQ B j

- \ d4 ,

LJ G2(t) + -fH2(t) - 3(504 + B,V3(t):
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g2(t) = a\G2{t) + a\h2{t) - (Bl0 + Bi)G0(t)

(D.3)

g3(r) - ^Gj(t) + ^(t) + i ^502 - B\ - G0(t)

+ \(< + B\)G,{t) + ± ^ ^ ) G5(t) + ± ^2B> - ?pj H5(x) ,

(D.4)

+ 2(2^3)'!W;.2-^)G,.2W

+ 2(2/1 - 3) _ an^n>^n-2^X) (D-5)

+ 2(2n + 1) ~ an+2^n+l)^n+2^

2(2^)^1-^n+lK+2)Hn+2^+
for « = 4, 5, 6,

A2(t) = a\g2{x) + a\h2(t)

+ ̂ G'(T) + 2l (2/^ - t) g<(t) + Ys (2B1 ~ ̂ f) H*{z)'
(D.6)

hz{x) = A\Gi(x) + A\H^x)

- iG^ + *> M - ^ ) <W + b (2Bi ~ % I H,(x)
and

Bt 1  1 f„4 Bt\ . (D.7)
) y 3 3

2 ~ , s . ,4

+ 2(2„'-3)(^-Zb»-2 - "„»X_2(t)

+ 2(Srr3)(^-A4-2-°»BX-2W (D.8)

+ 2(2ii'+

+ 2(2„'+ i)(^X "
for « = 4, 5, 6, ... .
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Appendix E. Determination of g4(x) and g2m(T) for m> 3.
Determination of g4(x). From Eq. (48), using Eq. (65), we have

g4(r) = s/4G2(t) + s/6G6( t) + &6H6( x) + C4G4(t) + D4H4( x), (E. 1)

where s?4 is already known from the previous step as

_ 2 A3 _ C2"4 C D 2D'= ^ = -^n- (E-2)

Applying the B.C.'s (54) we obtain

g4( r) = sf4G2(x) + -L[A<4)(?6(t) + M<4)//6(t) + A|,4)G4(T) + ^4)//4(T)], (E.3)

where D(4), A24), M^4', Aq4) , are the determinants

DW =

a(4) =J\ 2

<?«(0 G4(ra) H4(Ta)
G'e^a) K(*a) G'^a) H>a)
G6( xp) H6( xp) G4(tp) H4(zp)
30G6(rp) 30H6(xp) 12 G4{xp) \2H4{xp)\

Wa) H^a) C4(ra) H4( Ta) ■
G^a) H'^a) G'4(ra) H'4( Ta)
G2(^) //6(t^) G4(t,) H4(x p)
G2{ rp) 30 H6(rp) \2G4(xp) \2H4(rp).

g;(tj g;(tj (?;(tj
G6(t^) G2{t p) G4{xp) H4(xp)

-30 G6(t,) G2(xp) 12G4(t,) 12J/4(t,)

A(4) = -j/iv0 4

m(4) =JKIq

G6(^) "6(0 G2(^) "4(0 1
06(0 G'2(tJ H'a{ Tj
G6(T/j) //6(T^) G2(T/?) //4(^)
30G6(T/?) 30H6(t^) G2{xp) \2H4{tp)\

GM H^a) G^a) G2 (O
G«(0 ^(Tq)
G(,{tp) p) G4( X p) G2( X p)

L30G6(t ) 30//6(tJ 12G4(t ) G2(xp)

Determination of g2m(x) for m > 3. From Eq. (48) we obtain

#2m(T) = "^2mG2m-2^ + ^2m^2m-2^ ^ S^2m+2G2m+2^

+ ^2m+2^2m+2^ + G2mG2m^ + D2mH2m(T) >

(E.4)

(E.5)

(E.6)

(E.7)

(E.8)

(E.9)
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where srflm and are known from the previous step. Applying the B.C.s (65)
and solving for the unknowns ^m+2 > &2m+2 > ^2m > an(* -®2m we 0btain

m(T) = + ^2m^2m-2^

+ (E.10)

where D(2m), Aj,2m), , Aq2w) , and are the determinants defined as

D{2m)

A<2m)

^2m+2^Xa) ^2m+2^Xa) ^2 m(Ta) ^2 m(T«)

G'2m+2(xa) "LM G'lm(xa) H'lm( tq)
^2m+2^z^ ^2m+2^xp) ^2 H2 m(x p) ' (^-11)
(2m + 2)(2m+l) (2m + 2)(2m + l) 2m(2m — 1) 2m(2m — 1)

'^2m+2^X^ '^2m+2^Xp^> '^2m^X p*> '^2m^X p)

J^2m<^2m-2^XJ + ■^2m^2m-2^TJ ^2m+2^XJ G2m(xa) #2 m(xa)
^2m^m_2(TQ)+^2m//L_2(Tj ^(t.) ^(tj

S^2rrfi2m-2^Xft) ^ ^2m^2m-2^X^2m+2^Xp) ^2m^X^ ^2m^X^
(2m - 2)(2m - 7>)(stf2mG2m_2(xp) (2m + 2)(2m + l) 2m(2m-l) 2m(2m - 1)

+^2m^2m-2^x p^ '^2m+2^x p^> 'G2m(x p) '^2 m(x p)

(E.12)

A/<2m) (E.13)

A(2m) - -y\0 -

and

<m) =

G2m+2(Ta) ^2mG2m-2(Ta) G2m(TJ #2m(TJ
+^2m^2m-2^Xa)

G2m+2(Ta) J*2mG2m-2(XaS) ^2 m(Ta) ^2 m(Ta)

+^2mH2m-2(Xa)
^2m+2^x p) S^2m^2m-2^x p) ^2 m(T p) ^2 m^x p)

+-^2m^2m-2^X p^
(2m + 2)(2m + 1) (2m - 2)(2m - 3) 2m(2m—1) 2m(2m—1)

'^2m+2^Xp^ '^2m^2m-2^X p) '^2 m(X p) '^2m(T^
+^2m^2m-2(Tfi)]

G2m+2(Ta) ^2m+2^Xa) S^2m(^2m-2^X c.) + ■^2m^,2m-2^X J ^2 m(Xa)
G'2m+2(XJ HLM ^2mG'2m-2(XJ+^2m^2m-2(xJ "L(XJ
^2m+2^x p) H2m+2(xp) s^2m^2m-2^x fi) + ^2m^2m-2^x p^> ^2 m(x P*>
(2m + 2)(2m+l) (2m + 2)(2m+l) (2m - 2)(2m - 3)[^mG2m_2(T/5) 2m(2m-l)

'G2m+2(T^) '^2m+2^Xp) +B2mH2m-2^X /?)! '^2m(T/?)

(E.14)

G2m+2(Ta) ^2m+2^xa) ^2 m(Tt>) S^2m(^2m-2^X a) + ^2m^2m+2^X a)

G2m+2(Ta) H2m+2 (xa) G'2m(za) ^2mG'2m_2(Ta) + ^2mH^m+2(ra)
G2m+2(T^) ^2m+2^xpS> G2m(T/?) •fli2mG2m-2(T/j) + ^2m^2m+2^x p)
(2m + 2)(2m+l) (2m + 2)(2m+l) 2m(2m-l) (2m - 2)(2m - 3)[J^mG2m_2(TJ?)

'G2m+2^Xp) '^2m+2^Xp) '&2 m(X p"> +^2mH2m-2^X p)l

(E.15)
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Appendix F. Notation.
Aln constant coefficients, Eq. (16)

An , An constants, and corresponding scaled constants, Eq. (56)
sfn arbitrary constants defined by Eq. (49)
ax minor (major) semiaxis of the prolate (oblate) spheroid
a3 major (minor) semiaxis of the prolate (oblate) spheroid
B'n constant coefficients, Eq. (19)

38n arbitrary constants defined by Eq. (50)
Bn, Bn constants, and corresponding scaled constants, Eq. (56)

b3, bx dimensionless major (minor) semiaxis and minor (major) semiaxis
of the external prolate (oblate) spheroid, respectively

Cn, Cn constants, and corresponding scaled constants, Eq. (56)
c semifocal length of prolate spheroidal coordinates
c semifocal length of oblate spheroidal coordinates

D determinant defined by Eq. (69)
Dn, Dn constants, and corresponding scaled constants, Eq. (56)

D{2m) determinants defined by Eqs. (E.4), (E. 11)
E2 operator, Eq. (6)

Ex, E2, £3, E4 constants
Gn{x) Gegenbauer function of the first kind, of degree (-5)

and of order n
gn(t) functions of t,Eq. (31)

Hn(x) Gegenbauer function of the second kind, of degree (-5)
and of order n

hn(t) functions of t, Eq. (31)
hn, he, hy metric coefficients, Eq. (A. 19)

Kn(x) functions defined by Eq. (B.7)
n outward unit normal vector

Pn{x) Legendre function of the first kind, of order n
Qn(x) Legendre function of the second kind, of order n

Sa surface of the internal (solid) spheroid of the spheroid-in-cell
Sp surface of the external spheroid of the spheroid-in-cell

S , ST spheroidal surface for rj = const., r = const., respectively
r spherical radial coordinate
u dimensional approach velocity; in the spheroid-in-cell model
v dimensionless velocity

vr, i>£ t and C components of v
xx, x2, x3 Cartesian coordinates

Greek Letters.
a parameter defined by Eq. (42)

an coefficient given by Eq. (B.24)
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P parameter defined by Eq. (42)
Pn coefficient given by Eq. (B.25)

constant coefficients, Eq. (40)
r,7(t) functions of r, Eq. (57) and (57.1-9)

y solid volume fraction of the spheroid-in-cell
yn coefficients, Eq. (B.26)

A'n constant coefficients, Eq. (41)
<5 Kronecker deltanm

e eccentricity
C modified spheroidal coordinate, Eq. (A.8)
C unit vector in the direction of the axis C
rj spheroidal coordinate
>7 unit vector in the ^/-direction

0^(t, 0 eigenfunctions of E2, Eqs. (12) to (15)
6 spheroidal coordinate
X modified oblate spheroidal coordinate, Eq. (A. 14)
r modified prolate spheroidal coordinate, Eq. (A.8)
t unit vector in the direction of the axis r
(p spheroidal coordinate
(p unit vector in the direction of the axis <p

<//{x, 0 stream function, Eq. (7)
\j/{t, C) any function that satisfies Eq. (18)

y/{2\t, C) leading term of y/ , Eq. (74)
i//q (r, 6) general solution of Stokes flow in spherical coordinates, Eq. (59.2)

(T> 0 generalized eigenfunctions of E2, defined by Eq. (20) and
given by Eqs. (C. 1)-(C.20)
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