
Pacific
Journal of
Mathematics

GENERALIZED ELLIPTIC INTEGRALS AND MODULAR
EQUATIONS

G.D. Anderson, S.-L. Qiu, M.K. Vamanamurthy, and M.
Vuorinen

Volume 192 No. 1 January 2000



PACIFIC JOURNAL OF MATHEMATICS
Vol. 192, No. 1, 2000

GENERALIZED ELLIPTIC INTEGRALS AND MODULAR
EQUATIONS

G.D. Anderson, S.-L. Qiu, M.K. Vamanamurthy, and M.
Vuorinen

In geometric function theory, generalized elliptic integrals
and functions arise from the Schwarz-Christoffel transforma-
tion of the upper half-plane onto a parallelogram and are nat-
urally related to Gaussian hypergeometric functions. Certain
combinations of these integrals also occur in analytic num-
ber theory in the study of Ramanujan’s modular equations
and approximations to π. The authors study the monotone-
ity and convexity properties of these quantities and obtain
sharp inequalities for them.

1. Introduction.

In 1995 B. Berndt, S. Bhargava, and F. Garvan published an important pa-
per [BBG] in which they studied generalized modular equations and gave
proofs for numerous statements concerning these equations made by Ra-
manujan in his unpublished notebooks. No record of Ramanujan’s original
proofs has remained. A generalized modular equation with signature 1/a and
order (or degree) p is

F (a, 1−a; 1; 1−s2)
F (a, 1−a; 1; s2)

= p
F (a, 1−a; 1; 1− r2)
F (a, 1−a; 1; r2)

, 0 < r < 1.(1.1)

Here F is the Gaussian hypergeometric function defined in (1.2). The word
generalized alludes to the fact that the parameter a ∈ (0, 1) is arbitrary. In
the classical case, a = 1

2 and p is a positive integer. Modular equations were
studied extensively by Ramanujan, see [BBG], who also gave numerous
algebraic identities for the solutions s of (1.1) for some rational values of a
such as 1

6 ,
1
4 ,

1
3 .

Before proceeding, we introduce some necessary notation. Given complex
numbers a, b, and c with c 6= 0,−1,−2, . . . , the Gaussian hypergeometric
function is the analytic continuation to the slit plane C \ [1,∞) of

F (a, b; c; z)=2F1(a, b; c; z)≡
∞∑

n=0

(a, n)(b, n)
(c, n)

zn

n!
, |z| < 1.(1.2)

1
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Here (a, 0) = 1 for a 6= 0, and (a, n) is the shifted factorial function

(a, n) ≡ a(a+ 1)(a+ 2) · · · (a+ n− 1)

for n ∈ N ≡ {k : k is a positive integer }. It is well known that F (a, b; c; z)
has many important applications, and many classes of special functions in
mathematical physics are particular or limiting cases of this function. For
these, and for properties of F (a, b; c; z) see, for example, [AS, Ask, Be1,
Be2, Be3, R, Var, WW].

To rewrite (1.1) in a slightly shorter form, we use the decreasing homeo-
morphism µa : (0, 1) → (0,∞) defined by

µa(r) ≡
π

2 sin(πa)
F (a, 1− a; 1; 1− r2)
F (a, 1− a; 1; r2)

,(1.3)

for a ∈ (0, 1). We can now write (1.1) as

µa(s) = p µa(r), 0 < r < 1.(1.4)

The solution of (1.4) is then given by

s = ϕa
K(r) ≡ µ−1

a (µa(r)/K), p = 1/K.(1.5)

We call ϕa
K(r) the modular function with signature 1/a and degree p = 1/K.

For the parameter K = 1/p with p a small positive integer, the function
(1.5) satisfies several algebraic identities. The main cases studied in [BBG]
are:

a =
1
6
,
1
4
,
1
3
, p = 2, 3, 5, 7, 11, . . . .

For generalized modular equations we use the Ramanujan notation:

α ≡ r2, β ≡ ϕa
1/p(r)

2.

We next state a few of the numerous identities [BBG] satisfied by ϕa
1/p(r)

for various values of the parameters a and p.

Theorem 1.6 ([BBG, Theorem 7.1]). If β has degree 2 in the theory of
signature 3, then, with a = 1

3 , α = r2, β = ϕa
1/2(r)

2,

(αβ)
1
3 + {(1− α)(1− β)}

1
3 = 1.

Theorem 1.7 ([BBG, Theorem 7.6]). If β has degree 5 then, with a =
1
3 , α = r2, β = ϕa

1/5(r)
2,

(αβ)
1
3 + {(1− α)(1− β)}

1
3 + 3{αβ(1− α)(1− β)}

1
6 = 1.

Theorem 1.8 ([BBG, Theorem 7.8]). If β has degree 11 then, with a =
1
3 , α = r2, β = ϕa

1/11(r)
2,

(αβ)
1
3 + {(1− α)(1− β)}

1
3 + 6{αβ(1− α)(1− β)}

1
6

+ 3
√

3{αβ(1− α)(1− β)}
1
12 {(αβ)

1
6 + {(1− α)(1− β)}

1
6 } = 1.
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Theorems 1.6-1.8 are surprising, because they provide algebraic identities
for the modular function, which itself is defined in terms of the transcen-
dental function µa(r). It is an interesting open problem to determine which
of the modular equations in [BBG] can be solved algebraically, explicitly in
terms of the modular function.

For r ∈ (0, 1), a ∈ (0, 1), and r′ =
√

1− r2, the generalized elliptic inte-
grals (cf. [BB1, Section 5.5]) are defined by

Ka = Ka(r) =
π

2
F (a, 1− a; 1; r2),

K′a = K′a(r) ≡ Ka(r′),

Ka(0) =
π

2
, Ka(1) = ∞,

(1.9)

and 

Ea = Ea(r) ≡
π

2
F (a− 1, 1− a; 1; r2),

E ′a = E ′a(r) ≡ Ea(r′),

Ea(0) =
π

2
, Ea(1) =

sin(πa)
2(1− a)

.

(1.10)

Clearly, Ka is increasing and Ea is decreasing on (0, 1). These functions
satisfy the remarkable identity

K′aEa +KaE ′a −KaK′a =
π sin(πa)
4(1− a)

,(1.11)

which is a special case of Elliott’s formula (see (3.15)). This identity, along
with some other properties of the functions Ea and Ka, is very useful for the
study of the function µa. In the particular case a = 1

2 , the functions Ka(r)
and Ea(r) reduce to K(r) and E(r), respectively, which are the well-known
complete elliptic integrals of the first and second kind, respectively [Bo, BF].
By symmetry of (1.9), unless stated otherwise, we assume that a ∈ (0, 1

2 ].
The purpose of this paper is to study the modular function ϕa

K(r) for
general a ∈ (0, 1

2 ], as well as the related functions µa, Ka, Ea, ma, and ηa
K ,

investigating their dependence on r,K, and a, where

ma(r) ≡
2

π sin(πa)
r′ 2Ka(r)K′a(r), r ∈ (0, 1),(1.12)

ηa
K(x)≡

( s
s′

)2
, s=ϕa

K(r), r=
√

x

x+1
, x,K∈(0,∞).(1.13)

For a = 1
2 these functions reduce to well-known special cases denoted by

ϕK , µ,K, E ,m, ηK , which often occur in geometric function theory [AVV,
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LV], number theory [BB1], and analytic function theory. For example, µ(r)
appears in the classical modular equation of degree p, p > 0 (see [Be3] and
[BB1]), that is, in the particular case a = 1

2 of formula (1.1), while the upper
bound in Schottky’s Theorem is given in terms of µ(r) [Mart, Theorem 1.1].
Numerous properties of µ(r) have been studied (see, for instance, [AVV] and
[LV]). For a = 1

3 , J.M. Borwein and P.B. Borwein [BB2] recently proved
that there exists δ ∈ (0, 1) such that the beautiful identity of Ramanujan,

K′1/3

((
1− r

1 + 2r

)3/2
)

= (1 + 2r)K1/3(r
3/2),

is valid for all r ∈ (0, δ). They used it to derive a cubically convergent
algorithm for the computation of π.

In Section 2 we construct a conformal map of a parallelogram with angles
πa, π(1− a), 0 < a < 1, onto a half-plane. This map is denoted by sna. For
a = 1

2 this map reduces to the well-known Jacobian elliptic function sn [Bo].
In Sections 3 and 4 we summarize some of the basic properties of the

hypergeometric functions, obtaining a new proof for a formula due to Ra-
manujan. We also derive differentiation formulas for Ka, Ea, for applica-
tions in Section 5, in which we generalize several inequalities for Ka, Ea, µa,
proved in [AVV] for a = 1

2 . Our main results, which are based on the work
in Section 5, are proved in Section 6.

We now state some of our main results for the generalized modular func-
tion ϕa

K(r). The first two results show that this function satisfies simple
multiplicative functional inequalities. For the special case a = 1

2 see [AVV,
Lemma 10.7 and Theorem 10.28].

Theorem 1.14. For each a ∈ (0, 1
2 ] and K ∈ (1,∞), the function f(x) ≡

log(1/ϕa
K(e−x)) is increasing and convex on (0,∞), while g(x) ≡

log(1/ϕa
1/K(e−x)) is increasing and concave on (0,∞). In particular,

ϕa
K(r)ϕa

K(t) ≤ (ϕa
K(
√
rt))2,

ϕa
1/K(r)ϕa

1/K(t) ≥ (ϕa
1/K(

√
rt))2.

Theorem 1.15. For each a ∈ (0, 1
2 ],K ∈ (1,∞), and r ∈ (0, 1), the func-

tion f(x) ≡ ϕa
K(rx)/ϕa

K(x) is increasing from (0, 1) onto (r1/K , ϕa
K(r)),

while g(x) ≡ ϕa
1/K(rx)/ϕa

1/K(x) is decreasing from (0, 1) onto (ϕa
1/K(r), rK).

In particular,

ϕa
K(rt) ≤ ϕa

K(r)ϕa
K(t),

ϕa
1/K(rt) ≥ ϕa

1/K(r)ϕa
1/K(t)

for each r, t ∈ (0, 1), with equality if and only if K = 1.

Because the derivative ∂ϕa
K(r)/∂r is unbounded on (0, 1), we now in-

troduce a simple transformation which, when applied to ϕa
K(r), yields a
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function whose derivative has range (1/K,K). Because of its moderating
influence on ϕa

K(r), we refer to this transformation as a linearization.

Theorem 1.16. Let p : (0, 1) → (−∞,∞) and q : (−∞,∞) → (0, 1),
be given by p(x) = 2 log(x/x′) and q(x) = p−1(x) =

√
ex/(ex + 1), and

for a ∈ (0, 1
2 ], K ∈ (1,∞) let g, h : (−∞,∞) → (−∞,∞) be defined by

g = p ◦ ϕa
K ◦ q, h = p ◦ ϕa

1/K ◦ q. Then g and h are increasing, g is convex,
h is concave, and

1
K
≤ g′(x) ≤ K,

1
K
≤ h′(x) ≤ K,

for all real x.

In Section 7 we study the dependence of the functions Ka, Ea, µa, µ
−1
a ,

and ϕa
K on the parameter a.

Throughout this paper the hyperbolic sine, cosine, and tangent functions
and their inverses are denoted by sh, ch, th and arsh, arch, arth, respectively.
Whenever r ∈ (0, 1) we denote r′ =

√
1− r2.

2. Conformal mapping of a half plane onto a parallelogram.

Definition 2.1. For each number a ∈ (0, 1
2 ], r ∈ (0, 1), Im t ≥ 0, let g(t) ≡

t−a(1− t)a−1(1− r2t)−a denote the analytic branch such that the argument
of each of the factors t, 1 − t, and 1 − r2t, is π whenever it is real and
negative. We define the generalized elliptic sine function sna(w) = sna(w, r)
to be the inverse of the function

w = f(z) ≡ sin(πa)
2

∫ z

0
g(t)dt, Im z ≥ 0.

By [Bo, p. 61, Example VI (4)], f is a conformal mapping of the upper
half z-plane onto the interior of a parallelogram with angles πa and π(1−a).
The next result makes this notion more precise.

Theorem 2.2. Let H denote the closed upper half-plane Im z ≥ 0, and
let r ∈ (0, 1). The function f defined above is a homeomorphism of H
onto the parallelogram with vertices f(0) = 0, f(1) = Ka(r), f(1/r2) =
Ka(r)+ei(1−a)πK′a(r), and f(∞) = ei(1−a)πK′a(r), conformal in the interior.

Proof. The function f is a Schwarz-Christoffel mapping of H onto the poly-
gon with interior angles (1 − a)π, aπ, (1 − a)π, and aπ, hence a paral-
lelogram [Mark, §20]. Clearly f(0) = 0 and f(1) = Ka(r). Next, by
[AVV, Theorem 1.19 (2)],

f

(
1
r2

)
=

sin(πa)
2

∫ 1/r2

0
g(t)dt
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=
sin(πa)

2

∫ 1

0
g(t)dt+

sin(πa)
2

∫ 1/r2

1
g(t)dt

= Ka(r) +
sin(πa)

2

∫ 1/r2

1
g(t)dt

= Ka(r) +
sin(πa)

2

∫ 1

0
eiπ(1−a)ua−1(1− u)−a(1− r′ 2u)a−1du

= Ka(r) + eiπ(1−a)K′a(r),

where in the last step we have made the change of variable t = 1/(1− r′ 2u).
Finally, by symmetry, f(∞) = eiπ(1−a)K′a(r). �

Corollary 2.3. Let P be a parallelogram with sides of length L,L′ and an-
gles π(1 − a), πa, 0 < a < 1

2 . Then the conformal modulus of P [LV] is
K′(r)/K(r), where

r = ra ≡ µ−1
a

(
π

2 sin(πa)
L′

L

)
.(2.4)

Proof. Choose r so K′a(r)/Ka(r) = L′/L. Then P is similar to the parallel-
ogram P ′ with vertices 0, Ka(r), Ka(r) + eiπ(1−a)K′a(r), and eiπ(1−a)K′a(r).
Then by (1.3) we have

µa(r) =
π

2 sin(πa)
L′

L
,

implying that r is as in (2.4). By Theorem 2.2, sna maps P ′ conformally onto
the upper half-plane, taking its vertices onto 0, 1, 1/r2, and ∞, respectively.
Since the Jacobian elliptic sine function sn = sn1/2 also maps the rectangle
with vertices 0, K(r), K(r) + iK′(r), and K′(r) conformally onto the upper
half plane, taking its vertices onto 0, 1, 1/r2, and ∞, respectively [Bo], it
follows that the conformal modulus of P is K′(r)/K(r). �

Remark 2.5. Given two parallelograms P and Q with angles π(1 − a),
πa and π(1 − b), πb, and sides of lengths A,A′ and B,B′, respectively, the
extremal quasiconformal mapping with least dilatation K from P onto Q,
is given by

f = ψ ◦ sn−1
b (·, s) ◦ sn(·, s) ◦ g ◦ sn−1(·, r) ◦ sna(·, r) ◦ ϕ,

where ϕ and ψ are similarity mappings and g is an affine mapping. Here

r=µ−1
a

(
π

2 sin(πa)
A′

A

)
, s=µ−1

b

(
π

2 sin(πb)
B′

B

)
, andK=max

{
µ(r)
µ(s)

,
µ(s)
µ(r)

}
.



GENERALIZED ELLIPTIC INTEGRALS 7

3. Properties of F (a, b; c;x)F (a, b; c;x)F (a, b; c;x).

In this section, we study some monotoneity properties of the function
F (a, b; c;x) and certain of its combinations with other functions. We first
recall some well-known properties of this function which will be used in the
sequel.

It is well known that hypergeometric functions are closely related to the
classical gamma function Γ(x), the psi function ψ(x), and the beta function
B(x, y). For Rex > 0, Re y > 0, these functions are defined by

Γ(x) ≡
∞∫
0

e−ttx−1dt, ψ(x) ≡ Γ′(x)
Γ(x)

, B(x, y) ≡ Γ(x)Γ(y)
Γ(x+ y)

,(3.1)

respectively (cf. [WW]). It is well known that the gamma function satisfies
the difference equation [WW, p. 237]

Γ(x+ 1) = xΓ(x),(3.2)

and the reflection property [WW, p. 239]

Γ(x)Γ(1− x) =
π

sinπx
= B(x, 1− x).(3.3)

We shall also need the function

R(a, b)≡−2γ−ψ(a)−ψ(b), R(a)≡R(a, 1−a), R
(

1
2

)
=log 16,(3.4)

where γ is the Euler-Mascheroni constant given by

γ = lim
n→∞

(
n∑

k=1

1
k
− log n

)
= 0.577215 . . . .(3.5)

By [QVu2, Lemma 2.14 (2)], for a ∈ (0, 1
2 ],

R(a) ≡ R(a, 1− a) ≥ A ·
(

1
2
− a

)2

+ log 16,(3.6)

with equality if and only if a = 1
2 , where A = 14 · ζ(3) = 16.82879 . . . , and

where ζ(·) is the Riemann zeta function [WW].
The hypergeometric function (1.2) has the following simple differentiation

formula

d

dx
F (a, b; c;x) =

ab

c
F (a+ 1, b+ 1; c+ 1;x).(3.7)

An important tool for our work is the following classification of the
behavior of the hypergeometric function near x = 1 in the three cases
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a+ b < c, a+ b = c, and a+ b > c:


F (a, b; c; 1) =

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, a+ b < c,

B(a, b)F (a, b; a+ b;x) + log(1− x) = R(a, b) + O((1− x) log(1− x)),

F (a, b; c;x) = (1− x)c−a−bF (c− a, c− b; c;x), c < a+ b.

(3.8)

The above asymptotic formula for the zero-balanced case a+ b = c is due to
Ramanujan (see [Ask], [Be2]). This formula is implied by [AS, 15.3.10].

The asymptotic formula (3.8) gives us a precise description of the behavior
of the function F (a, b; a + b;x) near the logarithmic singularity x = 1. In
the next theorem we show that by an exponential change of variables we
can cancel this singularity and that the transformed function will be nearly
linear.

Theorem 3.9. For a, b > 0, define g(x) = F (a, b; a + b; 1 − e−x), x > 0.
Then g is an increasing and convex function with g′((0,∞)) = (ab/(a+ b),
Γ(a+ b)/(Γ(a)Γ(b))).

Proof. By [AS, 15.3.3] for |z| < 1,

F (a, b; a+ b+ 1; z) = (1− z)F (a+ 1, b+ 1; a+ b+ 1; z).

From this relation and (3.7) we obtain

(a+ b)g′(x)/(ab) = F (a+ 1, b+ 1; a+ b+ 1; 1− e−x)e−x

= F (a, b; a+ b+ 1; 1− e−x),

so that g′ is positive and increasing and has the asserted range, by (3.8). �

Theorem 3.10. Given a, b > 0, and a+ b > c, d ≡ a+ b− c, the function
f(x) = F (a, b; c; 1 − (1 + x)−1/d), x > 0, is increasing and convex, with
f ′((0,∞)) = (ab/(cd),Γ(c)Γ(d)/(Γ(a)Γ(b))).

Proof. By [AS, 15.2.1 and 15.3.3],

f ′(x) =
ab

c
F (a+ 1, b+ 1; c+ 1; 1− (1 + x)−1/d)(1 + x)−1/d−1 1

d

=
ab

cd

((1 + x)−1/d)−d−1

(1 + x)1+1/d
F (c− a, c− b; c+ 1; 1− (1 + x)−1/d)

=
ab

cd
F (c− a, c− b; c+ 1; 1− (1 + x)−1/d),

so that f ′ is increasing and has the asserted range, by (3.8). �



GENERALIZED ELLIPTIC INTEGRALS 9

3.11. Gauss contiguous relations and derivative formula. The six
functions F (a±1, b; c; z), F (a, b±1; c; z), F (a, b; c±1; z) are called contiguous
to F (a, b; c; z). Gauss gave 15 relations between F (a, b; c; z) and pairs of
its contiguous functions [AS, 15.2.10-15.2.27], [R, Section 33]. Using these
relations, we shall write the differentiation formula (3.7) as in Theorem 3.12,
which will be useful in our study. In particular, the differentiation formulas
for the generalized elliptic integrals in Section 4 follow from Theorem 3.12.
We prove this result, since this is not included in [AS] and since we have not
found a proof in the literature. However, parts (1) and (2) of Theorem 3.12
are stated in [Mi, p. 267] in a slightly different form. Part (4) of Theorem
3.12 seems to be new.

Theorem 3.12. For a, b, c > 0, r ∈ (0, 1), let u = u(r) = F (a − 1, b; c; r),
v = v(r) = F (a, b; c; r), u1 = u(1− r), v1 = v(1− r). Then

(1) r
du

dr
= (a− 1)(v − u),

(2) r(1− r)
dv

dr
= (c− a)u+ (a− c+ br)v,

or, equivalently,

(3)
ab

c
r(1− r)F (a+ 1, b+ 1; c+ 1; r) = (c− a)u+ (a− c+ br)v,

(4)

r(1− r)
d

dr

(
uv1 + u1v − vv1

)
=

(1− a− b)
[
(1− r)uv1 − ru1v − (1− 2r)vv1

]
.

Proof. (1) Observing that(
r
d

dr
+ (a− 1)

)
u(r) =

∞∑
n=0

(a− 1 + n)
(a− 1, n)(b, n)

(c, n)n!
rn

= (a− 1)
∞∑

n=0

(a, n)(b, n)
(c, n)n!

rn = (a− 1)v(r),

we have the desired equality.

(2) If we change a− 1 to a in (1), then

dv

dr
=
a

r
(w − v),

where w = F (a + 1, b; c; r). Gauss’ relation for contiguous functions [AS,
15.2.10] yields

w =
1

a(1− r)
((c− a)u+ (2a− c− ar + br)v).
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Thus

dv

dr
=
a

r

(
1

a(1− r)
((c− a)u+ (2a− c− ar + br)v)− v

)
=

(c− a)
r(1− r)

u+
(a− c+ br)
r(1− r)

v,

as desired.
Part (3) follows from (3.7) and part (2). Part (4) follows from (1), (2),

and the product and chain rules. �

We next apply Theorem 3.12 to give a new proof in Corollary 3.13 (3)
for a special case of Ramanujan’s formula for the derivative of the quotient
of two hypergeometric functions (cf. [Be2, p. 88, Corollary]). In Corollary
3.13 (5) we give a generalization of formula (1.11). Both (1.11) and 3.13 (5)
are generalizations of the Legendre relation for elliptic integrals.

Corollary 3.13. For a, b, c > 0, r ∈ (0, 1), let u = u(r) = F (a − 1, b; c; r),
v = v(r) = F (a, b; c; r), u1 = u(1− r), and v1 = v(1− r). Then

(1) −r(1− r)v2 d

dr

(
v1
v

)
= (c− a) (uv1 + u1v) + (b+ 2(a− c)) vv1

and

(2) r
d

dr
[(1− r)vv1] = (c− a) [uv1 − u1v] + [(2b− 1)r − b] vv1.

For n = 0, 1, 2, . . . ,

(3) r
dn+1u

drn+1
= (a− 1)

dnv

drn
− (a+ n− 1)

dnu

drn
,

(4)

r(1−r)d
n+1v

drn+1
= (a−c+br+2nr−n)

dnv

drn
+(n2+n(b−1))

dn−1v

drn−1
+(c−a)d

nu

drn
.

In particular, if a ∈ (0, 1), b = 1− a < c, then

(5) uv1 + u1v − vv1 = u(1) =
Γ(c)2

Γ(c+ a− 1)Γ(c− a+ 1)
.

In addition, if c = 1, then

(6)
d

dr

(v1
v

)
= − sin(πa)

πr(1− r)v2
,

(7) r
d

dr
((1− r)vv1) =

sin(πa)
π

+ v[(1− 2a)rv1 − 2(1− a)u1].
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Proof. Parts (1)-(4) follow from Theorem 3.12 (1) and the Leibnitz Rule for
higher derivatives. Next, let a, b ∈ (0, 1) and b = 1− a < c. Then Theorem
3.12 (4) implies that the function in (5) is constant. If we let r tend to 0 and
make use of (3.7) and (3.8), it follows that this constant has the asserted
value, and (5) follows. If, in addition, c = 1, then (6) and (7) follow from
(1) and (2), respectively. �

3.14. Elliott’s formula. E.B. Elliott [El] (cf. [Ba, p. 85]) proved the
identity

F

(
1
2

+ λ,−1
2
− ν; 1 + λ+ µ; z

)
F

(
1
2
− λ,

1
2

+ ν; 1 + ν + µ; 1− z

)(3.15)

+ F

(
1
2

+ λ,
1
2
− ν; 1 + λ+ µ; z

)
F

(
−1

2
− λ,

1
2

+ ν; 1 + ν + µ; 1− z

)

− F

(
1
2

+ λ,
1
2
− ν; 1 + λ+ µ; z

)
F

(
1
2
− λ,

1
2

+ ν; 1 + ν + µ; 1− z

)

=
Γ(1 + λ+ µ)Γ(1 + ν + µ)

Γ
(
λ+ µ+ ν + 3

2

)
Γ
(

1
2 + µ

) .
If we put λ = ν = 1

2 − a and µ = c+ a− 3
2 in Elliott’s identity, we obtain

the generalized Legendre relation in Corollary 3.13 (5), as was pointed out
to us by B.C. Carlson.

Conjecture 3.16. Let u(a, b, c, r) = F (a − 1, b; c; r), v(a, b, c, r) =
F (a, b; c; r), and let

L(a, b, c, r) = u(a, b, c, r)v(a, b, c, 1− r) + u(a, b, c, 1− r)v(a, b, c, r)

−v(a, b, c, r)v(a, b, c, 1− r)
for r ∈ (0, 1). Note that L(a, a, a, r) ≡ 0 for a > 0. Observe also that by
the generalized Legendre relation in Corollary 3.13 (5), L(a, 1− a, c, r) is a
constant for a ∈ (0, 1), 1 − a < c. For a, b ∈ (0, 1), a + b ≤ 1 (≥ 1), we
conjecture that the function L(a, b, 1, r) is concave (convex) as a function of
r on (0, 1).

4. Derivative formulas.

The following derivative formulas are analogous to those well-known ones
when a = 1

2 . In particular, formulas (1), (2), (3), (4) are analogues of [BF,
710.00, 710.02, 710.05, 710.04], respectively, while (4), (5), (6), (7), (8), (9),
(10), (11) generalize formulas (9), (19), (22), (23), (24), (18), (25), (26),
respectively, in [AVV, Appendix E].
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Theorem 4.1. For each a ∈ (0, 1
2 ] the following derivative formulas hold

for r ∈ (0, 1) and x, y,K ∈ (0,∞):

(1)
dKa

dr
=

2(1− a)(Ea − r′ 2Ka)
rr′ 2

.

(2)
dEa

dr
=

2(a− 1)(Ka − Ea)
r

.

(3)
d

dr
(Ka − Ea) =

2(1− a)rEa

r′ 2
.

(4)
d

dr
(Ea − r′ 2Ka) = 2arKa.

(5)
dµa(r)
dr

= − π2

4rr′ 2Ka(r)2
.

(6)
dµ−1

a (y)
dy

= −4rr′ 2Ka(r)2

π2
, where r = µ−1

a (y).

(7)
∂ϕa

K(r)
∂r

=
1
K

ss′ 2Ka(s)2

rr′ 2Ka(r)2
=
ss′ 2Ka(s)K′a(s)
rr′ 2Ka(r)K′a(r)

= K
ss′ 2K′a(s)2

rr′ 2K′a(r)2
,

(8)
∂ϕa

K(r)
∂K

=
4ss′ 2Ka(s)2

π2

µa(r)
K2

,

where s = ϕa
K(r).

(9)
dma(r)
dr

=
2

πr sin(πa)

[
π sin(πa)

2
− 4(1− a)Ka(r)E ′a(r)

+ 2(1− 2a)r2Ka(r)K′a(r)
]
.

(10)
∂ηa

K(x)
∂x

=
1
K

(
r′sKa(s)
rs′Ka(r)

)2

= K

(
r′sK′a(s)
rs′K′a(r)

)2

=
(
r′s

rs′

)2 Ka(s)K′a(s)
Ka(r)K′a(r)

.

(11)
∂ηa

K(x)
∂K

=
8ηa

K(x)µa(r)Ka(s)2

π2K2
.

In (10) and (11), r =
√
x/(x+ 1) and s = ϕa

K(r).
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Proof. Formulas (1) and (2) follow from Theorem 3.12 and the Chain Rule
(see also [BB1, (5.5.5)]), while (3) and (4) follow from (1) and (2). Formula
(5) follows immediately from Corollary 3.13 (1), and (6) follows immediately
from (5).

For (7), we let s = ϕa
K(r). Then µa(s) = (1/K)µa(r). Hence, from (5),

− π2

4ss′ 2Ka(s)2
∂s

∂r
= − 1

K

π2

4rr′ 2Ka(r)2
,

and (7) follows. Similarly, from (5) we obtain

− π2

4ss′ 2Ka(s)2
∂s

∂K
= − 1

K2
µa(r),

which yields (8).

Formula (9) follows from Corollary 3.13 (7) and the Chain Rule.

For (10), since ηa
K(x) = (s/s′)2, where r =

√
x/(x+ 1) and s = ϕa

K(r),
formula (7) gives

∂ηa
K(x)
∂x

= 2
( s
s′

)2
[
1
s

∂s

∂x
+

s

s′ 2
∂s

∂x

]
= 2

( s
s′

)2 1
ss′ 2

1
K

ss′ 2Ka(s)2

rr′ 2Ka(r)2
∂r

∂x

= 2
s2

s′ 2
1
K

Ka(s)2

rr′ 2Ka(r)2
r′ 4

2r
=

1
K

(
r′sKa(s)
rs′Ka(r)

)2

= K

(
r′sK′a(s)
rs′K′a(r)

)2

=
(
r′s

rs′

)2 Ka(s)K′a(s)
Ka(r)K′a(r)

.

Finally, for (11), with ηa
K(x) = (s/s′)2 as in (10), formula (8) yields

∂ηa
K(x)
∂K

= 2
( s
s′

)2
[
1
s

+
s

s′ 2

]
∂s

∂K

= 2ηa
K(x)

1
ss′ 2

4ss′ 2Ka(s)2

π2

µa(r)
K2

=
8

π2K2
ηa

K(x)µa(r)Ka(s)2.

�

4.2. Hypergeometric differential equation. Since the hypergeometric
function y = F (a, b; c;x) satisfies the differential equation

x(1− x)y′′ + [c− (a+ b+ 1)x]y′ − aby = 0

[R, p. 54], it follows from the Chain Rule that y = F (a, b; c; r2) satisfies

rr′ 2
d2y

dr2
+ [(2c− 1)− (2a+ 2b+ 1)r2]

dy

dr
− 4abry = 0.
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For a review of the theory of this differential equation, see [Var]. In partic-
ular, the functions y = Ka(r) (or K′a(r)) and z = Ea(r) (or E ′a(r)) satisfy the
differential equations

rr′ 2
d2y

dr2
+ (1− 3r2)

dy

dr
− 4a(1− a)ry = 0,

rr′ 2
d2z

dr2
+ r′ 2

dz

dr
+ 4(1− a)2rz = 0.

(4.3)

These reduce to the standard differential equations for K (or K′) and E (or
E ′) [BF, 118.02], respectively, when a = 1

2 .

4.4. Particular values. According to [AS, 15.1.26], [BB1, p. 191, Exer-
cise 22], or [R, p. 69, Exercise 3], we have the following formula:

Ka

(
1√
2

)
=

c

4
√
π

sin(πa), c = Γ
(

1− a

2

)
Γ
(a

2

)
,(4.5)

while (4.5) and (1.11) give

Ea

(
1√
2

)
=

4π2 + (1− a)c2 sin(πa)
8
√
π(1− a)c

.(4.6)

4.7. Some identities. It is easy to see that, for each a ∈ (0, 1
2 ], the function

µa in (1.3) and its inverse are strictly decreasing functions and satisfy the
identities

µa(r)µa(r′) =
π2

4 sin2(πa)
(4.8)

and

µ−1
a (x)2 + µ−1

a (y)2 = 1,(4.9)

for r ∈ (0, 1), r′ =
√

1− r2, x, y ∈ (0,∞) with xy = π2/(4 sin2(πa)) (see
the solution of [AVV, Exercise 5.45 (1), p. 364]).

For a = 1
2 the relation (4.8) reduces to a well-known property of the

function µ(r) (cf. [LV, p. 61, (2.7)]). The function ma(r) introduced in
(1.12) is easily seen to satisfy the identities

ma(r) +ma(r′) =
2

π sin(πa)
Ka(r)K′a(r) and r2ma(r) = r′ 2ma(r′).(4.10)

5. Generalized elliptic integrals.

The following monotone form of l’Hôpital’s Rule [AVV, Theorem 1.25] will
be extremely useful in our proofs. We have recently learned from R. Keller-
hals of a similar result due to M. Gromov which is a handy tool for volume
estimation in Riemannian geometry (see [C, p. 124, Lemma 3.1]).
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Lemma 5.1. For −∞ < a < b < ∞, let f, g : [a, b] → R be continuous on
[a, b], and be differentiable on (a, b). Let g′(x) 6= 0 on (a, b). If f ′(x)/g′(x)
is increasing (decreasing) on (a, b), then so are

[f(x)− f(a)]/[g(x)− g(a)] and [f(x)− f(b)]/[g(x)− g(b)].

If f ′(x)/g′(x) is strictly monotone, then the monotoneity in the conclusion
is also strict.

In the next two lemmas and the following theorem we study how these
generalized elliptic integrals Ka and Ea depend upon the variable r. When
a = 1

2 , Lemma 5.2 (1), (3), (4), (10), (12) reduce to Theorem 3.21 (1), Exer-
cise 3.43 (32), (46), and Theorem 3.31 (6), Exercise 3.43 (15), respectively,
in [AVV].

Lemma 5.2. Let a ∈ (0, 1
2 ] be given, and let b = 1 − a, c = (sin(πa))/b.

Then the function

(1) f1(r) ≡ (Ea − r′ 2Ka)/r2 is increasing and convex from (0, 1) onto
(πa/2, c/2).

(2) f2(r) ≡ r′ 2Ka/Ea is decreasing from (0, 1) onto (0, 1).
(3) f3(r) ≡ (Ka − Ea)/(r2Ka) is increasing from (0, 1) onto (b, 1).
(4) f4(r) ≡ (Ea − r′ 2Ka)/(r2Ka) is decreasing from (0, 1) onto (0, a).
(5) f5(r) ≡ (Ea − r′ 2Ka)/(Ka − Ea) is decreasing from (0, 1) onto (0, a/b).
(6) f6(r) ≡ r′ 2(Ka − Ea)/(r2Ea) is decreasing from (0, 1) onto (0, b).
(7) f7(r) ≡ ((π/2)2 − (r′Ka)2)/(Ea − r′ 2Ka) is increasing from (0, 1) onto

(π(a2 + b2)/(2a), π2/(2c)).
(8) f8(r) ≡ (Ka − π/2)/ log(1/r′) is increasing from (0, 1) onto (πab, bc).
(9) f9(r) ≡ (Ea − (1− r)Ka)/r is decreasing from (0, 1) onto (c/2, π/2).

(10) f10(r) ≡ r−2[(Ea − r′ 2Ka)/r2 − πa/2] is increasing and convex from
(0, 1) onto (πa2b/4, (c− πa)/2).

(11) f11(r) ≡ [a(Ka−Ea)−(1−a)(Ea−r′ 2Ka)]/(2 log(1/r′)−r2) is increasing
from (0, 1) onto (πa2b/2, abc/2).

(12) f12(r) ≡ (Ka − Ea)/ log(1/r′) is decreasing from (0, 1) onto (sin(πa),
πb).

(13) f13(r) ≡ (π/2 − r′ 2Ka)/r2 is increasing and convex from (0, 1) onto
(π(a2 + b)/2, π/2).

(14) f14(r) ≡ (π2/4 − r′ 2K2
a)/r

2 is increasing from (0, 1) onto
(π2(a2 + b2)/4, π2/4).

Proof. (1) It follows from (1.2), (1.9), and (1.10) that
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Ea − r′ 2Ka

(5.3)

=
π

2

{ ∞∑
n=0

(a− 1)(a, n− 1)(1− a, n)− (a, n)(1− a, n)
(n!)2

r2n

+
∞∑

n=0

(a, n)(1− a, n)
(n!)2

r2(n+1)

}

=
π

2

∞∑
n=1

n2(1− a, n− 1)(a, n− 1)− (1− a, n)[(1− a)(1, n− 1) + (a, n)]
(n!)2

r2n

=
πa

2

∞∑
n=1

n(a, n− 1)(1− a, n− 1)
(n!)2

r2n

=
πa

2
r2

∞∑
n=0

1
n+ 1

anr
2n,

where an = (a, n)(1− a, n)(n!)−2, and hence the result follows immediately.
(2) This follows from r′ 2Ka/Ea = 1− ((Ea − r′ 2Ka)/Ea), since Ea − r′ 2Ka

is increasing and Ea is decreasing by Theorem 4.1 (4), (2), respectively. The
limiting values are clear, as in (1).

(3) We write f3(r) = g3(r)/h3(r), where g3(r) = Ka − Ea and h3(r) =
r2Ka. Then g3(0) = h3(0) = 0 and

g′3(r)
h′3(r)

=
2(1− a)rEa

r′ 2 [2rKa + 2(1− a)r(Ea − r′ 2Ka)/r′ 2]

=
(1− a)Ea

(1− a)Ea + ar′ 2Ka
=

1− a

1− a+ ar′ 2Ka/Ea
,

which is increasing by (2). Clearly f3(1−) = 1, while f3(0+) = 1 − a by
l’Hôpital’s Rule. Hence (3) follows from Lemma 5.1.

(4) This follows from (3), since f4(r) = 1− f3(r).
(5) This follows from (3) and (4).
(6) Since f6(r) = 1− f1(r)/Ea, the result follows from (1).
(7) Write f7(r) = g7(r)/h7(r), where g7(r) = (π2/4)−(r′Ka)2 and h7(r) =

Ea − r′ 2Ka. Then g7(0) = h7(0) = 0 and

g′7(r)
h′7(r)

=
2rK2

a − 4(1− a)Ka(Ea − r′ 2Ka)/r
2arKa

=
Ka

a

[
1− 2(1− a)

Ea − r′ 2Ka

r2Ka

]
,
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which is increasing by (4). By l’Hôpital’s Rule, f7(0+) = π(1 − 2a +
2a2)/(2a), while f7(1−) = π2/(4Ea(1)) = π2(1− a)/(2 sin(πa)).

(8) Write f8(r) = g8(r)/h8(r), where g8(r) = Ka − π/2 and h8(r) =
log(1/r′). Then g8(0) = h8(0) = 0 and g′8(r)/h

′
8(r) = 2(1−a)(Ea−r′ 2Ka)/r2,

which is increasing by (1). Hence f8(r) is increasing by Lemma 5.1. The
limits f8(0+) = a(1 − a)π and f8(1−) = 2(1 − a)Ea(1) = sin(πa) follow by
l’Hôpital’s Rule.

(9) Write f9(r) = g9(r)/h9(r), where g9(r) = Ea−(1−r)Ka and h9(r) = r.
Then g9(0) = h9(0) = 0 and

g′9(r)
h′9(r)

= −2(1− a)
Ka − Ea

r
+Ka −

2(1− a)(Ea − r′ 2Ka)
r(1 + r)

= −(1− 2a)Ka + 2(1− a)
Ea

1 + r
,

which is decreasing. The limit f9(0+) follows from l’Hôpital’s Rule, while
f9(1−) is clear from (1.9). Hence f9 is decreasing by Lemma 5.1.

(10) Since

f10(r) =
πa

2

∞∑
n=1

an

n+ 1
r2(n−1)

by (5.3), the result follows immediately.
(11) Write f11(r) = g11(r)/h11(r), where g11(r) and h11(r) are the nu-

merator and denominator, respectively, of the fraction defining f11(r). Then
g11(0) = h11(0) = 0 and

g′11(r)
h′11(r)

= a(1− a)
Ea − r′ 2Ka

r2
,

which is increasing by (1), with limits πa2(1 − a)/2 and a(sin(πa))/2 at 0
and 1, respectively. Hence the result follows from Lemma 5.1.

(12) Write f12(r) = g12(r)/h12(r), where g12(r) = Ka − Ea and h12(r) =
log(1/r′). Then g12(0) = h12(0) = 0 and g′12(r)/h

′
12(r) = 2(1 − a)Ea, and

the result follows from Lemma 5.1 since Ea is decreasing.
(13) It follows from (1.2) and (1.9) that

f13(r) =
π

2r2

[ ∞∑
n=0

(a, n)(1− a, n)
(n!)2

r2(n+1) −
∞∑

n=1

(a, n)(1− a, n)
(n!)2

r2n

]

=
π

2r2

∞∑
n=1

(a, n− 1)(1− a, n− 1)
(n!)2

(n+ a2 − a)r2n

=
π

2

∞∑
n=0

(a, n)(1− a, n)
[(n+ 1)!]2

(n+ a2 + b)r2n,
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and hence the result follows.
(14) Write f14(r) = g14(r)/h14(r), where g14(r) = π2/4 − r′ 2K2

a and
h14(r) = r2. Then g14(0) = h14(0) = 0, and

g′14(r)
h′14(r)

= K2
a ·
[
1− 2(1− a)(Ea − r′ 2Ka)

r2Ka

]
,

which is increasing, with f14(0+) = π2(1 − 2a + 2a2)/4, by part (4). The
value f14(1−) = π2/4 is clear. Hence, the result follows from Lemma 5.1. �

In the next lemma, when a = 1
2 , parts (1), (2), (4), (5) reduce to Theorem

3.21 (7), (8) and Exercise 3.43 (30), (45), respectively, in [AVV], while part
(3) becomes the monotone property of E .

Lemma 5.4. Let a ∈ (0, 1
2 ]. Then the function

(1) f1(r) ≡ r′ cKa is decreasing if and only if c ≥ 2a(1 − a), in which
case r′ cKa is decreasing from (0, 1) onto (0, π/2). Moreover,

√
r′Ka is

decreasing for each a ∈ (0, 1
2 ].

(2) f2(r) ≡ r′ cEa is increasing if and only if c ≤ −2(1−a)2. In particular,
r′ −2(1−a)2Ea is increasing from (0, 1) onto (π/2,∞). Moreover, Ea/r

′ 2

is increasing for each a ∈ (0, 1
2 ].

(3) f3(r) ≡ Ea + (1 − 2a)(Ea − r′ 2Ka) is decreasing from (0, 1) onto
(sin(πa), π/2).

(4) f4(r) ≡ rKa/arth r is decreasing from (0, 1) onto (sin(πa), π/2).
(5) For b = (sin(πa))/(2(1 − a)) and 0 < c ≤ 2(1 − a + a2), the function

f5,c(r) ≡ (Ea−r′ 2Ka)/(1−r′ c) is decreasing from (0, 1) onto (b, πa/c).
In particular, f5,3/2 is decreasing from (0, 1) onto (b, 2πa/3).

Proof. (1) By Theorem 4.1 (1),

rr′ 2−cf ′1(r) = −cr2Ka + 2(1− a)(Ea − r′ 2Ka),

which is nonpositive if and only if

c ≥ 2(1− a) sup
r

Ea − r′ 2Ka

r2Ka
= 2a(1− a),

by Lemma 5.2 (4) . Finally, we note that since max{2a(1−a) : 0 < a ≤ 1
2} =

1
2 , the function

√
r′Ka will be decreasing for each a ∈ (0, 1

2 ]. The limiting
value at r = 0 is obvious, while that at r = 1 follows from l’Hôpital’s Rule,
Theorem 4.1 (1), and Lemma 5.2 (1).

(2) By Theorem 4.1 (2), we have

rf ′2(r) = −cr′ c−2r2Ea + 2(a− 1)r′ c(Ka − Ea),

which is nonnegative if and only if

−c ≥ 2(1− a) sup
r

r′ 2(Ka − Ea)
r2Ea

= 2(1− a)2,
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by Lemma 5.2 (6). Finally, since max{2(1− a)2 : 0 < a ≤ 1
2} = 2, it follows

that Ea/r
′ 2 will be increasing for each a ∈ (0, 1

2 ]. The limiting values are
clear from (1.9).

For (3) we may write

rf ′3(r) = −2(1− a)(Ka − Ea) + 2a(1− 2a)r2Ka.

Hence, by Lemma 5.2 (4),

f ′3(r)
2rKa

= 2a(1− a)− 1 + (1− a)
Ea − r′ 2Ka

r2Ka
< 3a(1− a)− 1 ≤ −1

4
,

and so f3 is decreasing on (0, 1). The limiting values are clear.
(4) Write f4(r) = g4(r)/h4(r), where g4(r) = rKa and h4(r) = arth r.

Then g4(0) = h4(0) = 0 and g′4(r)/h
′
4(r) = f3(r), hence decreasing by (3).

By l’Hôpital’s Rule, we have f4(0+) = Ka(0) = π/2 and

f4(1−) = lim
r→1−

[2(1− a)(Ea − r′ 2Ka)] = 2(1− a)Ea(1) = sin(πa).

(5) The limit f5,c(1−) is clear by (1) and (1.9). For monotoneity write
f5,c(r) = g5(r)/h5(r), where g5(r) = Ea − r′ 2Ka and h5(r) = 1 − r′ c. Then
g5(0) = h5(0) = 0 and

g′5(r)
h′5(r)

=
2a
c
r′ 2−cKa,

and the monotoneity of f5,c follows from (1) and Lemma 5.1. By l’Hôpital’s
Rule, f5,c(0+) = πa/c. Finally, since 2(1 − a + a2) ≥ 3/2, the result for
f5,3/2 follows. �

When a = 1
2 , parts (1), (2), (3), (4), (6) of the next theorem are contained

in [AVV, Theorems 3.21 (3), 5.13 (2), 3.30 (1), 5.16 (1), (2)], respectively.

Theorem 5.5. For each a ∈ (0, 1
2 ] the function

(1) f1(r) ≡ Ka(r)/ sin(πa) + log r′ is decreasing from (0, 1) onto (R(a)/2,
π/(2 sin(πa))).

(2) f2(r) ≡ µa(r) + log r is decreasing and concave from (0, 1) onto
(0, R(a)/2).

(3) f3(r) ≡ ma(r) + log r is decreasing and concave from (0, 1) onto
(0, R(a)/2).

(4) f4(r) ≡ µa(r)/ log(1/r) is increasing from (0, 1) onto (1,∞).
(5) f5(r) ≡ µa(r)arth r is increasing from (0, 1) onto (0, π2/(4 sin2(πa))).
(6) f6(r) ≡ µa(r)/ log(e(R(a)/2)/r) is decreasing from (0, 1) onto (0, 1).
(7) f7(r) = Ka(r)(µa(r) + log r) is increasing from (0, 1) onto (πR(a)/4,

π2/(4 sin(πa))).
(8) f8(r) = ((arth r)/r)(µa(r) + log r) is increasing from (0, 1) onto

(R(a)/2, π2/(4 sin2(πa))).
(9) f9(r) ≡ [(R(a)/2) − (µa(r) + log r)]/r2 is increasing from (0, 1) onto

((1− 2a+ 2a2)/2, R(a)/2).
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Proof. Part (1) follows from the fact that B(a, b)F (a, b; a+ b; r)+ log(1− r)
is decreasing from (0, 1) onto (R(a, b), B(a, b)) [ABRVV, Theorem 1.3 (2)].
Parts (2), (3), and (6) were obtained in [QVu2, Corollary 3.12], [QVu3,
Theorem 2.29 (1)], and [QVu3, Theorem 1.13 (3)], respectively, while parts
(4) and (5) are implied by [QVu3, Theorem 1.13 (1)] and [QVu2, Theorem
1.28 (2)], respectively.

For (7), we write f7(r) = g7(r)/h7(r), where g7(r) = µa(r) + log r and
h7(r) = 1/Ka(r). Then g7(1−) = h7(1−) = 0 and, after simplification,

g′7(r)
h′7(r)

=

(π
2

)2
− (r′Ka)2

2(1− a)(Ea − r′ 2Ka)
,

which is increasing by Lemma 5.2 (7). Hence, by Lemma 5.1, f7(r) is also
increasing. Finally, f7(0+) = πR(a)/4 follows from (2) and (1.9), while
f7(1−) = π2/(4 sin(πa)), since

Ka(r) log r = (r′ 2Ka(r))
log r
r′ 2

tends to 0 as r tends to 1, by Lemma 5.4 (1) and l’Hôpital’s Rule.
Part (8) follows from (7) and Lemma 5.4 (4).
For (9), f9(r) = g9(r)/h9(r), where g9(r) = (R(a)/2)− (µa(r)+log r) and

h9(r) = r2. Then g9(0) = h9(0) = 0, and

g′9(r)
h′9(r)

=
1
2

1
(r′Ka)2

(π2/4)− (r′Ka)2

r2
,

which is increasing, with f9(0+) = π2(1− 2a+ 2a2)/4, by Lemma 5.2 (14).
The value f9(1−) = R(a)/2 is clear. Hence, the result follows from Lemma
5.1. �

Theorem 5.6. For each a ∈ (0, 1
2), the function f(x) ≡ µa(1/ch x) is

increasing and concave from (0,∞) onto (0,∞). In particular, for r, s ∈
(0, 1),

µa

(
rs

1 + r′s′

)
≤ µa(r) + µa(s) ≤ 2µa

( √
2rs√

1 + rs+ r′s′

)
,

with equality in the second inequality if and only if r = s.

Proof. Let r = 1/ch x and s = 1/ch y. Then

f ′(x) =
π2

4r′Ka(r)2
,

which is positive and increasing in r by Lemma 5.4 (1), hence decreasing in
x. Therefore, f is increasing and concave on (0,∞). In particular, we have
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f((x+ y)/2) ≥ (f(x) + f(y))/2, with equality if and only if x = y. Now

ch2

(
x+ y

2

)
=

1 + rs+ r′s′

2rs
.

Hence
1
2
(f(x) + f(y)) ≤ f

(
x+ y

2

)
gives

µa(r) + µa(s) ≤ 2µa

(√
2rs

1 + rs+ r′s′

)
,

with equality if and only if r = s. Finally, since f(0+) = 0 and since f ′(x)
is decreasing in x, it follows from Lemma 5.1 that f(x)/x is decreasing on
(0,∞). Hence f(x+ y) ≤ f(x) + f(y) by [AVV, Lemma 1.24]. �

Corollary 5.7. For each a ∈ (0, 1
2 ] and r, s ∈ (0, 1), µa(r) + µa(s) ≤

2µa(
√
rs), with equality if and only if r = s.

Proof. Since µa is decreasing,

µa

(√
2rs

1 + rs+ r′s′

)
≤ µa(

√
rs) ⇐⇒ 1 + rs+ r′s′ ≤ 2 ⇐⇒ r′s′ ≤ 1− rs

⇐⇒ 1− r2 − s2 + r2s2 ≤ 1− 2rs+ r2s2 ⇐⇒ (r − s)2 ≥ 0,

with equality at each step if and only if r = s. Hence the result follows from
Theorem 5.6. �

6. Modular functions.

The next lemma gives some basic properties of the functions ϕa
K(r) and

ηa
K(r), generalizing Theorem 10.5 (1) and Exercise 10.65 (13) in [AVV].

Lemma 6.1. For each a ∈ (0, 1/2], K ∈ (0,∞), r ∈ (0, 1), x ∈ (0,∞), we
have

(1) ϕa
K(r)2 + ϕa

1/K(r′)2 = 1,

(2) ηa
K(x)ηa

1/K(1/x) = 1.

Proof. Let s = ϕa
K(r), u = ϕa

1/K(r′). Then µa(s) = µa(r)/K and µa(u) =
Kµa(r′). Hence, by (4.8),

µa(s)µa(u) = µa(r)µa(r′) =
π2

4 sin2(πa)
= µa(s)µa(s′).

Thus s′ = u, so that (1) follows.
(2) Let r =

√
x/(x+ 1). Then, by (1), ηa

K(x) = (s/s′)2 and ηa
1/K(1/x) =

(s′/s)2, so that (2) follows. �
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The next lemma will be needed for the proofs of some of the main results
stated in the Introduction. Parts (1), (2), (3) generalize Lemma 10.7 (3),
(1), (2), respectively, in [AVV].

Lemma 6.2. For each a ∈ (0, 1
2 ],K ∈ (1,∞), r ∈ (0, 1), let s = ϕa

K(r) and
t = ϕa

1/K(r). Then the function

(1) f(r) ≡ Ka(s)/Ka(r) is increasing from (0, 1) onto (1,K),
(2) g(r) ≡ s′Ka(s)2/(r′Ka(r)2) is decreasing from (0, 1) onto (0, 1),
(3) h(r) ≡ sK′a(s)2/(rK′a(r)2) is decreasing from (0, 1) onto (1,∞),
(4) F (r) ≡ Ka(t)/Ka(r) is decreasing from (0, 1) onto (1/K, 1),
(5) G(r) ≡ t′Ka(t)2/(r′Ka(r)2) is increasing from (0, 1) onto (1,∞),
(6) H(r) ≡ tK′a(t)2/(rK′a(r)2) is increasing from (0, 1) onto (0, 1).

Proof. By Theorem 4.1 (1), (7), we have

Ka(r)2f ′(r)

= 2(1− a)
[
Ka(r)

Ea(s)− s′ 2Ka(s)
ss′ 2

ds

dr
−Ka(s)

Ea(r)− r′ 2Ka(r)
rr′ 2

]

=
2(1− a)Ka(s)
rr′ 2K′a(r)

[
K′a(s)(Ea(s)− s′ 2Ka(s))

−K′a(r)(Ea(r)− r′ 2Ka(r))
]
.

Thus f ′(r) is positive since s > r and

K′a(x)(Ea(x)− x′ 2Ka(x)) = (x2K′a(x))
Ea(x)− x′ 2Ka(x)

x2

is increasing in x by Lemmas 5.4 (1) and 5.2 (1). Hence f is increasing. The
limiting values are clear.

Next, g′(r) is negative if and only if

K′a(s)[s2Ka(s)− 4(1− a)(Ea(s)− s′ 2Ka(s))]

−K′a(r)[r2Ka(r)− 4(1− a)(Ea(r)− r′ 2Ka(r))]

is positive. This is true if

g1(r) ≡ K′a(r)[r2Ka(r)− 4(1− a)(Ea(r)− r′ 2Ka(r))]

is increasing. Now,

g1(r) = r2Ka(r)K′a(r)
[
1− 4(1− a)

Ea(r)− r′ 2Ka(r)
r2Ka(r)

]
,

which is positive and increasing, by Lemmas 5.2 (4) and 5.4 (1).
(3) Since h(r) = 1/g(s′), F (r) = 1/f(t), G(r) = 1/g(t), and H(r) =

1/h(t), parts (3)-(6) follow from parts (1) and (2). �
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6.3. Proof of Theorem 1.14. Let r = e−x and s = ϕa
K(r). Then

f ′(x) =
1
K

(
s′Ka(s)
r′Ka(r)

)2

,

which is positive and increasing in x, by Lemma 6.2 (1), (2). Hence f is
strictly increasing and convex. Thus f((x+y)/2) ≤ (f(x)+f(y))/2, so that

1/ϕa
K(e−(x+y)/2) ≤ 1/(ϕa

K(e−x)ϕa
K(e−y))1/2.

Now putting r = e−x and t = e−y gives the result. The proof for g(x) is
similar. �

6.4. Proof of Theorem 1.15. Let t = rx, u = ϕa
K(t), and s = ϕa

K(x).
Then

f ′(x)
f(x)

=
1
u

1
K

ruu′ 2Ka(u)2

tt′ 2Ka(t)2
− 1
s

1
K

ss′ 2Ka(s)2

xx′ 2Ka(x)2

=
1
Kx

[(
u′Ka(u)
t′Ka(t)

)2

−
(
s′Ka(s)
x′Ka(x)

)2
]
,

which is positive by Lemma 6.2 (1), (2) since t < x. The proof for g(x) is
similar. �

The following inequalities generalize identities satisfied by the functions
µ and ϕK(r) (cf. [LV, pp. 60, 61], [AVV, Theorem 10.5 (3), (7)]).

Theorem 6.5. For a ∈ (0, 1
2 ], r ∈ (0, 1), K ∈ (0,∞),

1
2
µa(r) ≤ µa

(
2
√
r

1 + r

)
≤ µa(r).(1)

µa(r′) ≤ µa

(
1− r

1 + r

)
≤ 2µa(r′).(2)

ϕa
K(r) ≤ ϕa

K

(
2
√
r

1 + r

)
≤ ϕa

2K(r).(3)

ϕK/2(r
′) ≤ ϕa

K

(
1− r

1 + r

)
≤ ϕa

K(r′).(4)

Proof. Inequalities (1) and (2) were obtained in [QVu2, Theorem 1.14 (1)],
and (3), (4) follow from (1), (2), respectively if we divide by K and apply
µ−1

a . �

Theorem 6.6. For each a ∈ (0, 1
2 ], r ∈ (0, 1), let f : (0,∞) → R be defined

by

f(K) ≡
K log r − logϕa

1/K(r)

K − 1
.
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Then f is increasing, with f(0+) = 0,

lim
K→1

f(K) = log r +ma(r), and lim
K→∞

f(K) = log r + µa(r).

In particular, for K ∈ (1,∞), r ∈ (0, 1), a ∈ (0, 1
2 ],

(1) 1 < e(K−1)(ma(r)+log r) <
rK

ϕa
1/K(r)

< e(K−1)(µa(r)+log r) < e(K−1)R(a)/2

and

(2) 1 <
ϕa

K(r)
r1/K

< e(1−1/K)(log r+ma(r)) < e(1−1/K)R(a)/2.

Proof. Since µ−1
a (0+) = 1, it is clear that f(0+) = 0. Now let t = ϕa

1/K(r),
and write f(K) = g(K)/h(K), where g(K) = K log r − logϕa

1/K(r) and
h(K) = K − 1. Then g(1) = h(1) = 0, and

g′(K)
h′(K)

= log r +
4
π2

(t′Ka(t))2µa(r),

which is increasing in K on (0,∞) by Lemma 5.4 (1) and the fact that t is
decreasing in K. Hence f is increasing, by Lemma 5.1.

Next, by l’Hôpital’s Rule,

lim
K→1

f(K) = log r +
2

π sin(πa)
r′ 2KaK′a = log r +ma(r),

while

lim
K→∞

f(K) = log r +
4
π2
Ka(0)2µa(r) = log r + µa(r).

Inequalities (1), (2) follow from the above argument and Theorems 5.5 (3),
(2). �

The next theorem is a generalization of a result due to Hübner and He
(cf. [AVV, Theorem 10.9 (1)]).

Theorem 6.7. For each a ∈ (0, 1
2 ] and K ∈ (1,∞), let f, g be defined on

(0, 1] by
f(r) = r−1/Kϕa

K(r) and g(r) = r−Kϕa
1/K(r).

Then f is decreasing and g is increasing, with f((0, 1]) = [1, e(1−1/K)R(a)/2)
and g((0, 1]) = (e(1−K)R(a)/2, 1].

Proof. First, let s = ϕa
K(r). Then

f ′(r)
f(r)

=
1
Kr

((
s′Ka(s)
r′Ka(r)

)2

− 1

)
,
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which is negative by Lemma 6.2 (1), (2). Clearly f(1) = 1, while

lim
r→0

log(r−1/Ks) = lim
r→0

[
(µa(s) + log s)− 1

K
(µa(r) + log r)

]
=
R(a)

2

(
1− 1

K

)
,

by (1.5) and Theorem 5.5 (2).

Next, let t = ϕa
1/K(r). Then r = ϕa

K(t). Hence g(r) = (t−1/Kϕa
K(t))−K ,

so that the assertion about g(r) follows from the properties of f(r) already
proved. �

Theorem 6.8. For each a ∈ (0, 1
2 ] and K ∈ (1,∞), the function f(r) ≡

ϕa
K(r) is increasing and concave from (0, 1) onto (0, 1), and g(r) ≡ ϕa

1/K(r)
is increasing and convex from (0, 1) onto (0, 1).

Proof. By Theorem 4.1 (7), f ′(r) = (1/K)ss′ 2Ka(s)2/(rr′ 2Ka(r)2), which is
positive and decreasing by Theorem 6.6 and Lemma 6.2 (1), (2). The proof
for g(r) is similar. �

Corollary 6.9. For each a ∈ (0, 1
2 ], K ∈ (1,∞),

(1) lim
r→0+

∂ϕa
K(r)
∂r

= ∞, lim
r→0+

∂ϕa
1/K(r)

∂r
= 0,

(2) lim
r→1−

∂ϕa
K(r)
∂r

= 0, lim
r→1−

∂ϕa
1/K(r)

∂r
= ∞.

Proof. Let s = ϕa
K(r). From Theorems 4.1 (7) and 6.7 we have

lim
r→0+

∂ϕa
K(r)
∂r

=
1
K

lim
r→0+

s

r1/K
lim

r→0+
r−1+1/K = ∞

and

lim
r→1−

∂ϕa
K(r)
∂r

= K lim
r→1−

(
s′

r′K

)2

lim
r→1−

r′ 2(K−1) = 0.

The proof for ϕa
1/K(r) is similar. �

6.10. Proof of Theorem 1.16. Let y = g(x) = p(ϕa
K(q(x))) = p(s), where

s = ϕa
K(r), r = q(x). Then q(y) = s, so that q′(y)dy/dx = ds/dx =

(ds/dr)(dr/dx). Thus

q′(y)g′(x) =
1
K

ss′ 2Ka(s)2

rr′ 2Ka(r)2
dr

dx

by Theorem 4.1 (7). Now

r2 = q(x)2 =
ex

ex + 1
= 1− 1

ex + 1
,
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giving

2r
dr

dx
= r2r′ 2.

Thus q′(x) = rr′ 2/2 and q′(y) = ss′ 2/2. Hence, we get

g′(x) =
1
K

Ka(s)2

Ka(r)2
,

which increases from 1/K to K, by Lemma 6.2 (1). The proof for h(x) is
similar. �

Remark 6.11. Let p, q, g, h be the functions defined in Theorem 1.16, and
let s = ϕa

K(1/
√

2). Then, by Theorem 1.16 and integration, we obtain
x

K
+ 2 log

s

s′
≤ g(x) ≤ Kx+ 2 log

s

s′
,

x

K
− 2 log

s

s′
≤ h(x) ≤ Kx− 2 log

s

s′
.

In the next result we obtain further bounds for the functions g and h.

Theorem 6.12. Let p : (0, 1) → (−∞,∞) and q : (−∞,∞) → (0, 1) be
given by p(x) = 2 log(x/x′) and q(x) = p−1(x) =

√
ex/(ex + 1), respectively,

and for a ∈ (0, 1
2 ], K ∈ (1,∞), let g, h : (−∞,∞) → (−∞,∞) be defined by

g(x) = p(ϕa
K(q(x))) and h(x) = p(ϕa

1/K(q(x))). Then

g(x) ≥

Kx, x ≥ 0,
x

K
, x < 0,

and h(x) ≤


x

K
, x ≥ 0,

Kx, x < 0.

Proof. We only give the proof for g, since the proof for h is similar. First, if
x > 0, then

g(x) ≥ Kx⇔ ϕa
K(q(x)) ≥ q(Kx)

⇔ µ−1
a

(
1
K
µa

(√
ex

ex + 1

))
≥

√
eKx

eKx + 1

⇔ µa

(√
ex

ex + 1

)
≤ Kµa

√ eKx

eKx + 1

 .

This will be true if f(K) ≡ Kµa(
√
eKx/(eKx + 1)) is increasing on [1,∞).

Now, with r =
√
eKx/(eKx + 1), r2 = eKx/(eKx + 1), r′ 2 = 1/(eKx + 1),

we have

2r
dr

dK
=

xeKx

(eKx + 1)2
= xr2r′ 2,

dr

dK
=
xrr′ 2

2
.



GENERALIZED ELLIPTIC INTEGRALS 27

-10 -5 5 10

-15

-10

-5

5

10

15

y = g(x)
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y = x/K

y = h(x)

Figure 1. The graphs of the functions g, h, and those of the lines
Kx, x/K, in Theorem 6.12, where a = 0.25 and K = 1.5.

Hence

f ′(K) = µa(r)−
Kπ2

4rr′ 2Ka(r)2
dr

dK

= µa(r)−
π2Kx

8Ka(r)2
=
π

2

[
K′a(r)

Ka(r) sin(πa)
− πKx

4Ka(r)2

]
,

and
π

2Ka(r)2 sin(πa)
[Ka(r)K′a(r)−

π

4
Kx sin(πa)] > 0

⇔ Ka(r)K′a(r) >
π

4
(Kx) sin(πa)

⇔ Ka(r)K′a(r) >
π

2

(
log

r

r′

)
sin(πa),

for r ∈ (1/
√

2, 1). Now from (4.9) and Theorem 5.5 (3),

Ka(r)K′a(r) =
π

2
(ma(r) +ma(r′)) sin(πa)

>
π

2

(
log

1
rr′

)
sin(πa) >

π

2

(
log

r

r′

)
sin(πa),

which proves the first inequality for g(x).
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Next, g(−x) ≥ −x/K, x > 0

⇔ ϕa
K

(√
e−x

e−x + 1

)
≥

√
e−x/K

e−x/K + 1
, x > 0

⇔ µ−1
a

(
1
K
µa

(√
1

ex + 1

))
≥
√

1
ex/K + 1

⇔ µa

(
1√

ex + 1

)
≤ Kµa

(√
1

ex/K + 1

)
.

This will be true if F (K) ≡ Kµa(1/
√
ex/K + 1) is increasing on [1,∞). Let

1/
√
ex/K + 1 = t, so that t ∈ (0, 1/

√
2). Now t2 = 1/(ex/K + 1), t′ 2 =

ex/K/(ex/K + 1), and

F ′(K) = µa(t)−
Kπ2

4tt′ 2Ka(t)
dt

dK

=
π

2 sin(πa)
K′a(t)
Ka(t)

− Kπ2

4tt′ 2Ka(t)2
dt

dK
.

Now

2t
dt

dK
=

x

K2

ex/K

(ex/K + 1)2
=

x

K2
t2t′ 2,

dt

dK
=

x

K2

tt′ 2

2
.

Hence

F ′(K) =
π

2 sin(πa)
K′a(t)
Ka(t)

− π2x

8KKa(t)2

=
π

2(sin(πa))Ka(t)2

[
Ka(t)K′a(t)−

π(sin(πa))x
4K

]

=
π

2(sin(πa))Ka(t)2

[
Ka(t)K′a(t)−

π

2

(
log

t′

t

)
sin(πa)

]
.

Hence F ′(K) > 0 if and only if Ka(t)K′a(t) > (π/2)(sin(πa)) log(t′/t).
Now, by (4.9) and Theorem 5.5 (3), we have

Ka(t)K′a(t) =
π sin(πa)

2
(ma(t) +ma(t′))

>
π

2

(
log

1
tt′

)
sin(πa) >

π

2

(
log

t′

t

)
sin(πa).

�
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Theorem 6.13. For each a ∈ (0, 1
2 ], K ∈ (1,∞), let f and g be defined on

(0, 1) by

f(r) =
arcsin (ϕa

K(r))
arcsin (r1/K)

, g(r) =
arcsin (ϕa

1/K(r))

arcsin (rK)
.

Then f is decreasing and g is increasing, with f((0, 1]) = [1, e(1−1/K)R(a)/2)
and g((0, 1]) = (e(1−K)R(a)/2, 1].

Proof. To prove the monotoneity for f , let s = ϕa
K(r) and f(r) =

f1(r)/f2(r), where f1(r) = arcsin (s) and f2(r) = arcsin (r1/K). Then f1(0)=
f2(0) = 0, and

f ′1(r)
f ′2(r)

=
s

r1/K

(
1− r2/K

1− r2

)1/2
s′Ka(s)2

r′Ka(r)2
,

which is decreasing, by Lemma 6.2 (2) and Theorem 6.7. The limiting values
follow from l’Hôpital’s Rule and Theorem 6.7. The proof for g is similar. �

Theorem 6.14. For each a ∈ (0, 1
2 ], K ∈ (1,∞), let f and g be defined on

(0,∞) by

f(x) = arthϕa
K(th x) and g(x) = arthϕa

1/K(th x).

Then fand g are increasing automorphisms; f is concave and g is convex.
In particular,

f(x+ y) ≤ f(x) + f(y) ≤ 2f
(
x+ y

2

)
,(6.15)

and

g(x+ y) ≥ g(x) + g(y) ≥ 2g
(
x+ y

2

)
,(6.16)

for all x, y ∈ (0,∞).

Proof. For f , let r = thx and s = ϕa
K(r). Then

f ′(x) =
1
s′ 2

K
ss′ 2 K′a(s)2

rr′ 2 K′a(r)2
r′ 2 = K

sK′a(s)2

rK′a(r)2
,

which is positive and decreasing, by Lemma 6.2 (3). Hence f is increasing
and concave, so f(x)/x is decreasing by Lemma 5.1. The double inequality
(6.15) follows from [AVV, Lemma 1.24] and the concavity of f . The proof
for g is similar. �

Remark 6.17 (Cf. [AVV, Theorem 10.12]). The inequalities in Theorem
6.14 can be simplified to

ϕa
K

(
r + s

1 + rs

)
≤

ϕa
K(r) + ϕa

K(s)
1 + ϕa

K(r)ϕa
K(s)
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and
ϕa

K(r) + ϕa
K(s)

1 + ϕa
K(r)ϕa

K(s) + ϕa
1/K(r′)ϕa

1/K(s′)
≤ ϕa

K

(
r + s

1 + rs+ r′s′

)
,

for a ∈ (0, 1
2 ], r, s,∈ (0, 1), and K ∈ (1,∞). The inequalities are reversed if

we replace K by 1/K.

Theorem 6.18. For a ∈ (0, 1
2 ], r ∈ (0, 1), K ∈ (1,∞),

th(K arth r) < ϕa
K(r).

The inequality is reversed if we replace K by 1/K.

Proof. Let s = ϕa
K(r). Then s > r, and it follows from (1.5) and Theorem

5.5 (5) that
1
K
µa(r)arth s = µa(s) arth s > µa(r) arth r,

and the result follows if we solve for s.
The reverse inequality follows if we let ϕa

K(r) = x in the inequality just
proved and solve for r. �

The next result generalizes Theorem 10.24 in [AVV].

Theorem 6.19. For each a ∈ (0, 1
2 ] and K ∈ (1,∞), the function

f(x) ≡
log(ηa

K(x)/ηa
K(1))

log x

is increasing from (0,∞) onto (1/K,K), while

g(x) ≡
log(ηa

1/K(x)/ηa
1/K(1))

log x

is decreasing from (0,∞) onto (1/K,K). In particular,

ηa
K(1)min{xK , x1/K} ≤ ηa

K(x) ≤ ηa
K(1) max{xK , x1/K},

ηa
1/K(1)min{xK , x1/K} ≤ ηa

1/K(x) ≤ ηa
1/K(1)max{xK , x1/K}

for all x ∈ (0,∞), a ∈ (0, 1
2 ], K ∈ [1,∞).

Proof. Let r =
√
x/(x+ 1), s = ϕa

K(r), and f(x) = G(x)/H(x), where
G(x) = log(ηa

K(x)/ηa
K(1)) and H(x) = log x. Then G(1) = H(1) = 0 and

G′(x)
H ′(x)

=
1
K

(
Ka(s)
Ka(r)

)2

,

which is increasing from (0,∞) onto (1/K,K) by Lemma 6.2 (1). Hence
f is increasing by Lemma 5.1, while f(0+) = 1/K and limx→∞ f(x) = K
follow from l’Hôpital’s Rule. The proof for g(x) is similar. �
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Theorem 6.20. For a ∈ (0, 1
2 ], x ∈ (0,∞), K ∈ [1,∞), we have

1 ≤
ηa

K(x)
x1/K(x+ 1)K−1/K

≤ eR(a)(K−1/K),

where R(a) is as in (3.4).

Proof. By (1.13) and Lemma 6.1 (1) we have ηa
K(x) = (ϕa

K(r)/ϕa
1/K(r′))2,

where r =
√
x/(x+ 1) and r′ = 1/

√
x+ 1. Next,

r1/K ≤ ϕa
K(r) ≤ e(1−1/K)R(a)/2 r1/K

and
e(1−K)R(a)/2 r′K ≤ ϕa

1/K(r′) ≤ r′K

by Theorem 6.6. Hence the result follows when we divide and substitute for
r in terms of x. �

Theorem 6.21. For each a ∈ (0, 1
2 ], K ∈ (1,∞), let f, g be defined on

(0, 1) by

f(r) = ϕa
K(r) ch

(
1
K

arch
(

1
r

))
,

and

g(r) = ϕa
1/K(r) ch

(
Karch

(
1
r

))
.

Then f is decreasing and g is increasing, with f((0, 1)) = (1, e(1−1/K)R(a)/4)
and g((0, 1)) = (e(1−K)R(a)/4, 1).

Proof. To prove the assertion for f , we first let s = ϕa
K(r) and 1/t =

ch((1/K) arch (1/r)). Then s′ = ϕa
1/K(r′) and t′ = th((1/K) arth (r′)).

Now, by differentiation and simplification,

Ktrr′f ′(r) = st′
[
s′

t′
s′Ka(s)2

r′Ka(r)2
− 1
]
,

which is negative, by Lemma 6.2 (2) and Theorem 6.18. Hence f is decreas-
ing. The limiting values follow from the expression

ch
(

1
K

arch
(

1
r

))
=

(1 + r′)1/K + (1− r′)1/K

2r1/K
,

and Theorem 6.7. The proof for g is similar. �

Theorem 6.22. Let M be a set with a multiplication operation and let
{fK : K ∈ M} be a collection of increasing functions fK : (0, 1) → (0, 1),
such that fK ◦ fL = fKL and such that fK(x)/x is decreasing (respectively,
increasing). Then

fK(x)fL(y) ≤ fKL(xy),
(respectively, fK(x)fL(y) ≥ fKL(xy)).
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Proof. Let fK(x)/x be decreasing for each K ∈ M. Since xy ≤ x, we have
fK(x)/x ≤ fK(xy)/(xy). Thus fK(x)y ≤ fK(xy). Hence

fK(x)fL(y) ≤ fK(xfL(y)) ≤ fK(fL(xy)) = fKL(xy).

The other case is similar. �

Corollary 6.23. For a ∈ (0, 1
2 ], x, y ∈ (0, 1), K,L ∈ [1,∞),

(1) ϕa
K(x)ϕa

L(y) ≤ ϕa
KL(xy),

(2) ϕa
1/K(x)ϕa

1/L(y) ≥ ϕa
1/(KL)(xy).

7. Dependence on aaa.

In this section we study the generalized elliptic integrals as functions of the
parameter a.

Lemma 7.1. For each nonnegative integer n, the function fn(x) ≡
−(−x, n + 1)(x, n + 1) is positive and increasing on [0, 1

2 ]. The function
gn(x) ≡ (x, n + 1)(1 − x, n + 1) is positive, increasing on [0, 1

2 ] and de-
creasing on [12 , 1]. For n ≥ 1, the function fn is positive and decreasing on
[1/
√

2, 1]. But f0 is positive and increasing on [0, 1].

Proof. We have

fn(x) = x2(1− x2)(22 − x2) · · · (n2 − x2).

On [1/
√

2, 1], x2(1 − x2) is decreasing, hence so is fn if n ≥ 1. Next, on
(0, 1

2),
f ′n(x)
2fn(x)

=
1
x
−

n∑
k=1

x

k2 − x2
,

which is clearly decreasing. Hence

f ′n(x)
2fn(x)

> 2− 2
n∑

k=1

1
4k2 − 1

= 2−
(

1− 1
2n+ 1

)
> 0.

Clearly, f0(x) = x2, which is increasing on [0, 1]. Since gn(x) = gn(1 − x),
we need only prove the second assertion on [0, 1

2 ]. Now

g′n(x)
gn(x)

=
1
x
− 1
n+ 1− x

− 2
n∑

k=1

x

k2 − x2
,

which is clearly decreasing. Thus for x ∈ (0, 1
2),

g′n(x)
gn(x)

> 2− 2
2n+ 1

−
n∑

k=1

4
4k2 − 1

= 0.

�
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Theorem 7.2. For each r ∈ (0, 1), let f , g be defined on [0, 1], by f(a) =
F (a− 1, 1− a; 1; r2) and g(a) = F (a, 1− a; 1; r2).

(1) If 1
2 ≤ a < b ≤ 1, then all coefficients are positive in the Taylor series

for f(b)− f(a) in powers of r2.
(2) If 0 ≤ a < b ≤ 1−1/

√
2, then all coefficients are negative in the Taylor

series for f(b)− f(a)− (b− a)(2− a− b)r2 in powers of r2.
(3) If 0 ≤ a < b ≤ 1

2 (respectively, 1
2 ≤ a < b ≤ 1), then all coefficients are

positive (respectively, negative) in the Taylor series for g(b) − g(a) in
powers of r2.

Proof. (1) In this case,

f(b)− f(a) =
∞∑

n=1

[(1− b, n)(b− 1, n)− (1− a, n)(a− 1, n)]
r2n

(n!)2
.

Now −(1− a, n)(a− 1, n)− (−(1− b, n)(b− 1, n)) > 0, by Lemma 7.1.

(2) In this case, 1 ≥ 1− a > 1− b ≥ 1/
√

2. Hence

(1− b, n)(b− 1, n)− (1− a, n)(a− 1, n) < 0,

for all n ≥ 2, by Lemma 7.1.

(3) We write

g(b)− g(a) =
∞∑

n=1

[(b, n)(1− b, n)− (a, n)(1− a, n)]
r2n

(n!)2
.

Now, (b, n)(1− b, n)− (a, n)(1− a, n) is positive or negative according as
0 ≤ a < b ≤ 1

2 , or 1
2 ≤ a < b ≤ 1, by Lemma 7.1. �

Corollary 7.3. For each r ∈ (0, 1), the function
(1) f(a) ≡ E1−a(r) is decreasing from [0, 1

2 ] onto [E(r), π/2].
(2) g(a) ≡ Ka(r) is increasing from [0, 1

2 ] onto [π/2,K(r)].
(3) h(a) ≡ Ea(r) is increasing from [0, 1

2 ] onto [πr′ 2/2, E(r)].

Proof. Parts (1) and (2) follow from (1.9), (1.10), and Theorem 7.2. Next, by
Theorem 4.1 (4), (d/dr)(Ea(r) − r′ 2Ka(r)) = 2arKa(r), which is increasing
in a by (2). Hence, if 0 < a < b ≤ 1

2 ,∫ r

0

d

dt
(Ea(t)− t′ 2Ka(t))dt <

∫ r

0

d

dt
(Eb(t)− t′ 2Kb(t))dt,

so that
Ea(r)− r′ 2Ka(r) < Eb(r)− r′ 2Kb(r)

by Lemma 5.2 (1). Thus

Ea(r) < Eb(r) + r′ 2(Ka(r)−Kb(r)) < Eb(r)

by (2). �
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Theorem 7.4. (1) For each fixed r ∈ (0, 1), the function f(a, r) ≡ µa(r)
is decreasing in a from (0, 1

2 ] onto [µ(r),∞).
(2) For each fixed x ∈ (0,∞), the function g(a, x) ≡ µ−1

a (x) is decreasing
in a from (0, 1

2 ] onto [µ−1(x), 1).
(3) For each fixed r ∈ (0, 1) and K ∈ (1,∞), the function h(a, r) ≡ ϕa

K(r)
is decreasing in a from (0, 1

2 ] onto [ϕK(r), 1). Moreover, the function
h1(a, r) ≡ ϕa

1/K(r) is increasing in a from (0, 1
2 ] onto (0, ϕ1/K(r)].

Proof. (1) Part (1) was obtained in [QVu2, Theorem 1.22]. However, we
give here a different proof for the monotoneity of f in a. It follows from
Theorem 4.1 (5) and Corollary 7.3 (2) that dµa/dr is increasing in a on
(0, 1

2 ]. Hence, for 0 < a < b ≤ 1
2 ,

µa(1−)− µa(r) =
∫ 1

r

dµa(t)
dt

dt <

∫ 1

r

dµb(t)
dt

dt = µb(1−)− µb(r).

This implies that µa(r) > µb(r), since µa(1−) = 0 = µb(1−).
(2) Let r = g(a, x) = µ−1

a (x). Then x = µa(r) = f(a, r), and

0 =
dx

da
=
∂f

∂a
+
∂f

∂r

dr

da
.

Since ∂f/∂a < 0 by part (1) (see also [QVu2, 3.1]), it follows from Theorem
4.1 (5) that dr/da = −(∂f/∂a)/(∂f/∂r) < 0, and the monotoneity of g in a
follows. Clearly, g(1

2 , x) = µ−1(x). Fix x ∈ (0,∞). Suppose g(0+, x) = r0 ∈
(0, 1). Choose ε > 0 such that (r0 − ε, r0 + ε) ⊂ (0, 1). Then there exists
δ ∈ (0, 1) such that g(a, x) < r0+ε for all a ∈ (0, δ). Hence x = µa(g(a, x)) >
µa(r0 + ε). If we now let a→ 0+, we get x = ∞, a contradiction. Thus,

g(0+, x) = 1.(7.5)

(3) Put s = h(a, r), an = (a, n)(1− a, n), and bn = P (a, n)− P (a, 0) for
n = 0, 1, 2, . . . , where P (a, n) = ψ(a+ n)− ψ(1− a+ n), and let Q(a, r) =
2Ka(r)/π = F (a, 1− a; 1; r2). Then, by (1.3), (1.5), and (1.2),

Q(a, s′)
Q(a, s)

=
1
K

Q(a, r′)
Q(a, r)

,(7.6)

and
∂Q(a, r)
∂r

= 2
∞∑

n=1

nan

(n!)2
r2n−1,

∂Q(a, r)
∂a

=
∞∑

n=1

anbn
(n!)2

r2n.(7.7)

By (7.7), it follows from (7.6) and logarithmic differentiation with respect
to a that

1
Q(a, s′)

[
∂Q(a, s′)

∂a
− s

s′
∂Q(a, s′)
∂s′

ds

da

]
− 1
Q(a, s)

[
∂Q(a, s)
∂a

+
∂Q(a, s)
∂s

ds

da

]
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=
1

Q(a, r′)
∂Q(a, r′)

∂a
− 1
Q(a, r)

∂Q(a, r)
∂a

,

and hence, by simplification,[
s

s′Q(a, s′)
∂Q(a, s′)
∂s′

+
1

Q(a, s)
∂Q(a, s)
∂s

]
ds

da
(7.8)

= [Q1(a, s′)−Q1(a, r′)] + [Q1(a, r)−Q1(a, s)],

where

Q1(a, x) =
1

Q(a, x)
∂Q(a, x)
∂a

=
∑∞

n=1 αnx
2n∑∞

n=0 βnx2n
=
∑∞

n=0 αnx
2n∑∞

n=0 βnx2n
,(7.9)

and where αn = anbn(n!)−2 and βn = an(n!)−2. Since

αn

βn
= bn = ψ(1− a)− ψ(a)− (1− 2a)

∞∑
k=0

1
(a+ n+ k)(1− a+ n+ k)

(cf. [Ah, p. 198]), which is clearly increasing in n, it follows from [PV,
Lemma 2.1] that Q1(a, x) is increasing in x on (0, 1). Since ∂Q(a, x)/∂x > 0
by Theorem 4.1 (1), and since s > r (s < r, respectively) for K > 1 (K < 1,
respectively), the monotoneity properties of h and h1 in a follow from (7.8).

In case K = 1, we have ϕa
K(r) = r for all a ∈ (0, 1). Next, supppose

K > 1. Take 0 < L = ϕ0+
K (r) < 1, and choose ε > 0 such that (L − ε, L +

ε) ⊂ (0, 1). Then there exists δ ∈ (0, 1) such that a ∈ (0, δ) implies that
ϕa

K(r) < L + ε = t, say. Hence, 1/K > µa(t)/µa(r) . If we let a → 0+, we
get 1/K ≥ 1, a contradiction. Hence L = 1. Finally, if 0 < K < 1, then the
assertion follows from the result for the case K > 1 and Lemma 6.1 (1). �
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