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Generalized Entropy Power Inequalities and
Monotonicity Properties of Information

Mokshay Madiman, Member, IEEE, and Andrew Barron, Senior Member, IEEE

Abstract—New families of Fisher information and entropy
power inequalities for sums of independent random variables are
presented. These inequalities relate the information in the sum
of n independent random variables to the information contained
in sums over subsets of the random variables, for an arbitrary
collection of subsets. As a consequence, a simple proof of the mono-
tonicity of information in central limit theorems is obtained, both
in the setting of independent and identically distributed (i.i.d.)
summands as well as in the more general setting of independent
summands with variance-standardized sums.

Index Terms—Central limit theorem, entropy power, informa-
tion inequalities.

I. INTRODUCTION

LET be independent random variables with
densities and finite variances. Let denote the (differen-

tial) entropy, i.e., if is the probability density function of ,
then . The classical entropy power in-
equality of Shannon [36] and Stam [39] states

(1)

In 2004, Artstein, Ball, Barthe, and Naor [1] (hereafter denoted
by ABBN [1]) proved a new entropy power inequality

(2)

where each term involves the entropy of the sum of of
the variables excluding the th, and presented its implications
for the monotonicity of entropy in the central limit theorem. It
is not hard to see, by repeated application of (2) for a succes-
sion of values of , that (2) in fact implies the inequality (4) and
hence (1). We will present below a generalized entropy power
inequality for subset sums that subsumes both (2) and (1) and
also implies several other interesting inequalities. We provide
simple and easily interpretable proofs of all of these inequal-
ities. In particular, this provides a simplified understanding of
the monotonicity of entropy in central limit theorems. A similar
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independent and contemporaneous development of the mono-
tonicity of entropy is given by Tulino and Verdú [42].

Our generalized entropy power inequality for subset sums
is as follows: if is an arbitrary collection of subsets of

, then

(3)

where is the maximum number of sets in in which any one
index appears. In particular, note the following.

1) Choosing to be the class of all singletons yields
and hence (1).

2) Choosing to be the class of all sets of elements
yields and hence (2).

3) Choosing to be the class of all sets of elements
yields and hence the inequality

(4)

4) Choosing to be the class of all sets of consecutive in-
tegers yields and hence the in-
equality

In general, the inequality (3) clearly yields a whole family of
entropy power inequalities, for arbitrary collections of subsets.
Furthermore, equality holds in any of these inequalities if and
only if the are normally distributed and the collection is
“nice” in a sense that will be made precise later.

These inequalities are relevant for the examination of mono-
tonicity in central limit theorems. Indeed, if and are inde-
pendent and identically distributed (i.i.d.), then (1) is equivalent
to

(5)

by using the scaling . This fact im-

plies that the entropy of the standardized sums
for i.i.d. increases along the powers-of-two subsequence,
i.e., is nondecreasing in . Characterization of the
change in information quantities on doubling of sample size
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was used in proofs of central limit theorems by Shimizu [37],
Brown [8], Barron [4], Carlen and Soffer [10], Johnson and
Barron [21], and ABBN [2]. In particular, Barron [4] showed
that the sequence converges to the entropy of the
normal; this, incidentally, is equivalent to the convergence
to of the relative entropy (Kullback divergence) from a
normal distribution. ABBN [1] showed that is in fact a
nondecreasing sequence for every , solving a long-standing
conjecture. In fact, (2) is equivalent in the i.i.d. case to the
monotonicity property

(6)

Note that the presence of the factor (rather than ) in the
denominator of (2) is crucial for this monotonicity.

Likewise, for sums of independent random variables, the in-
equality (4) is equivalent to “monotonicity on average” proper-
ties for certain standardizations; for instance

A similar monotonicity also holds, as we shall show, for arbi-
trary collections and even when the sums are standardized by
their variances. Here again the factor (rather than the cardi-
nality of the collection) in the denominator of (3) for the
unstandardized version is crucial.

Outline of our development.

We find that the main inequality (3) (and hence all of the
above inequalities) as well as corresponding inequalities for
Fisher information can be proved by simple tools. Two of
these tools, a convolution identity for score functions and the
relationship between Fisher information and entropy (discussed
in Section II), are familiar in past work on information inequal-
ities. An additional trick is needed to obtain the denominator

in (3). This is a simple variance drop inequality for statistics
expressible via sums of functions of subsets of a collection
of variables, particular cases of which are familiar in other
statistical contexts (as we shall discuss).

We recall that for a random variable with differentiable
density , the score function is , the score is
the random variable , and its Fisher information is

.
Suppose for the consideration of Fisher information that the

independent random variables have absolutely con-
tinuous densities. To outline the heart of the matter, the first step
boils down to the geometry of projections (conditional expec-
tations). Let be the score of the total sum and
let be the score of the subset sum . As we recall in
Section II, is the conditional expectation (or projection)
of each of these subset sum scores given the total sum. Conse-
quently, any convex combination also has projec-
tion

and the Fisher information has
the bound

(7)

For nonoverlapping subsets, the independence and zero mean
properties of the scores provide a direct means to express the
right-hand side in terms of the Fisher informations of the subset
sums (yielding the traditional Blachman [7] proof of Stam’s in-
equality for Fisher information). In contrast, the case of over-
lapping subsets requires fresh consideration. Whereas a naive
application of Cauchy–Schwarz would yield a loose bound of

, instead, a variance drop lemma yields that the
right-hand side of (7) is not more than if each
is in at most subsets of . Consequently

(8)

for any weights that add to over all subsets
in . See Sections II and IV for details. Optimizing over
yields an inequality for inverse Fisher information that extends
the Fisher information inequalities of Stam and ABBN:

(9)

Alternatively, using a scaling property of Fisher information
to re-express our core inequality (8), we see that the Fisher in-
formation of the total sum is bounded by a convex combination
of Fisher informations of scaled subset sums:

(10)

This integrates to give an inequality for entropy that is an exten-
sion of the “linear form of the entropy power inequality” devel-
oped by Dembo et al. [15]. Specifically, we obtain

(11)

See Section V for details. Likewise, using the scaling property
of entropy on (11) and optimizing over yields our extension
of the entropy power inequality

(12)

described in Section VI.
To relate this chain of ideas to other recent work, we point

out that ABBN [1] were the first to show the use of a vari-
ance drop lemma for information inequality development (in
the leave-one-out case of the collection ). For that case
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what is new in our presentation is going straight to the projec-
tion inequality (7) followed by the variance drop inequality, by-
passing any need for the elaborate variational characterization
of Fisher information that is an essential ingredient of ABBN
[1]. Moreover, whereas ABBN [1] require that the random vari-
ables have a density for monotonicity of Fisher information,
absolute continuity of the density (as minimally needed to de-
fine the score function) suffices in our approach. Independently
and contemporaneously to our work, Tulino and Verdú [42] also
found a similar simplified proof of monotonicity properties of
entropy and entropy derivative with a clever interpretation (its
relationship to our approach is described in Section III after we
complete the presentation of our development). Furthermore, a
recent preprint of Shlyakhtenko [38] proves an analogue of the
information inequalities in the leave-one-out case for noncom-
mutative or “free” probability theory. In that manuscript, he also
gives a proof for the classical setting assuming finiteness of all
moments, whereas our direct proof requires only finite variance.
Our proof also reveals in a simple manner the cases of equality
in (6), for which an alternative approach in the free probability
setting is in Schultz [35].

While Section III gives a direct proof of the monotonicity of
entropy in the central limit theorem for i.i.d. summands, Sec-
tion VII applies the preceding inequalities to study sums of non-
identically distributed random variables under appropriate scal-
ings. In particular, we show that “entropy is monotone on av-
erage” in the setting of variance-standardized sums.

Our subset sum inequalities are tight (with equality in the
Gaussian case) for balanced collections of subsets, as will be de-
fined in Section II. In Section VIII, we present refined versions
of our inequalities that can even be tight for certain unbalanced
collections.

Section IX concludes with some discussion on potential di-
rections of application of our results and methods. In particular,
beyond the connection with central limit theorems, we also dis-
cuss potential connections of our results with distributed statis-
tical estimation, graph theory and multiuser information theory.

Form of the inequalities.

If represents either the inverse Fisher information or
the entropy power of , then our inequalities above take the
form

(13)

We motivate the form (13) using the following almost trivial
fact.

Fact 1: For arbitrary numbers

(14)

if each index appears in the same number of times .

Indeed

If Fact 1 is thought of as -additivity of the sum function for
real numbers, then (9) and (12) represent the -superadditivity
of inverse Fisher information and entropy power functionals,
respectively, with respect to convolution of the arguments. In the
case of normal random variables, the inverse Fisher information
and the entropy power equal the variance. Thus, in that case (9)
and (12) become Fact 1 with equal to the variance of .

II. SCORE FUNCTIONS AND PROJECTIONS

We use to denote the (almost everywhere de-
fined) score function of the random variable with absolutely
continuous probability density function . The score has
zero mean, and its variance is just the Fisher information .

The first tool we need is a projection property of score func-
tions of sums of independent random variables, which is well
known for smooth densities (cf., Blachman [7]). For complete-
ness, we give the proof. As shown by Johnson and Barron [21],
it is sufficient that the densities are absolutely continuous; see
[21, Appendix I] for an explanation of why this is so.

Lemma 1 (Convolution Identity for Scores): If and are
independent random variables, and has an absolutely contin-
uous density with score , then has the score function

(15)

Proof: Let and be the densities of and
, respectively. Then, either bringing the derivative inside the

integral for the smooth case, or via the more general formalism
in [21]

so that

The second tool we need is a “variance drop lemma,” the his-
tory of which we discuss in remarks after the proof below. The
following conventions are useful.

• is the index set .
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• For any , stands for the collection of random
variables , with the indices taken in their
natural (increasing) order.

• For , we write for a function of for
any , so that , where

are the ordered indices in .
• We say that a function is -additive if it can

be expressed in the form .
The following notions are not required for the inequalities we

present, but help to clarify the cases of equality.
• A collection of subsets of is said to be discriminating

if for any distinct indices and in , there is a set in
that contains but not . Note that all the collections

introduced in Section I were discriminating.
• A collection of subsets of is said to be balanced if

each index in appears in the same number (namely, )
of sets in .

• A function is additive if there exist functions
such that , i.e.,

if it is -additive.

Lemma 2 (Variance Drop): Let

be a -additive function with mean zero components, i.e.,
for each . Then

(16)

where is the maximum number of subsets in which any
index appears. When is a discriminating collection, equality
can hold only if each is an additive function.

Proof: For every subset of , let be the Analysis
of Variance (ANOVA) projection onto the space of functions
of (see Appendix I for details). By performing the ANOVA
decomposition on each , we have

(17)

using the orthogonality of the ANOVA decomposition of in
the last step.

Recall the elementary fact , which
follows from the Cauchy–Schwarz inequality. In order to apply
this observation to the preceding expression, we estimate the
number of terms in the inner sum. The outer summation over
can be restricted to nonempty sets , since has no effect in
the summation due to having zero mean. Thus, any given
in the expression has at least one element, and the sets
in the collection must contain it; so the number of sets over
which the inner sum is taken cannot exceed . Thus, we have

(18)

by rearranging the sums and using the orthogonality of the
ANOVA decomposition again. This proves the inequality.

Now suppose is not additive. This means that for some
set with two elements, . Fix this choice
of . Since is a discriminating collection, not all of the at most

subsets containing one element of can contain the other.
Consequently, the inner sum in the inequality (18) runs over
strictly fewer than subsets , and the inequality (18) must be
strict. Thus, each must be an additive function if equality
holds, i.e., it must be composed only of main effects and no
interactions.

Remark 1: The idea of the variance drop inequality goes
back at least to Hoeffding’s seminal work [18] on -statistics.
Suppose is symmetric in its arguments, and

. Define

(19)

Then Hoeffding [18] showed

(20)

which is implied by Lemma 2 under the symmetry assumptions.
In statistical language, defined in (19) is a -statistic of de-
gree with symmetric, mean zero kernel that is applied to
data of sample size . Thus, (20) quantitatively captures the
reduction of variance of a -statistic when sample size in-
creases. For , this is the trivial fact that the empirical
variance of a function based on i.i.d. samples is the actual vari-
ance scaled by . For , the functions are no
longer independent, nevertheless, the variance of the -statistic
drops by a factor of . Our proof is valid for the more general
nonsymmetric case, and also seems to illuminate the underlying
statistical idea (the ANOVA decomposition) as well as the un-
derlying geometry (Hilbert space projections) better than Ho-
effding’s original combinatorial proof. In [16], Efron and Stein
assert in their Comment 3 that an ANOVA-like decomposition
“yields one-line proofs of Hoeffding’s important theorems 5.1
and 5.2”; presumably our proof of Lemma 2 is a generalization
of what they had in mind. As mentioned before, the application
of such a variance drop lemma to information inequalities was
pioneered by ABBN [1]. They proved and used it in the case

using clear notation that we adapt in developing our
generalization above. A further generalization appears when we
consider refinements of our main inequalities in Section VIII.

The third key tool in our approach to monotonicity is the
well-known link between Fisher information and entropy,
whose origin is the de Bruijn identity first described by Stam
[39]. This identity, which identifies the Fisher information as
the rate of change of the entropy on adding a normal, provides
a standard way of obtaining entropy inequalities from Fisher
information inequalities. An integral form of the de Bruijn
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identity was proved by Barron [4]. We express that integral in
a form suitable for our purpose (cf., ABBN [1] and Verdú and
Guo [43]).

Lemma 3: Let be a random variable with a density and

arbitrary finite variance. Suppose , where is
a standard normal independent of . Then

(21)

Proof: In the case that the variances of and match,
equivalent forms of this identity are given in [3] and [4]. Ap-
plying a change of variables using to [3, eq. (2.23)]
(which is also equivalent to [4, eq. (2.1)] by another change of
variables), one has that

if has variance and has variance . This has the advantage
of positivity of the integrand but the disadvantage that it seems
to depend on . One can use

to re-express it in the form (21), which does not depend on .

III. MONOTONICITY IN THE I.I.D. CASE

For clarity of presentation of ideas, we focus first on the i.i.d.
setting. For i.i.d. summands, inequalities (2) and (4) reduce to
the monotonicity property for , where

(22)

We exhibit below how our approach provides a simple proof
of this monotonicity property, first proved by ABBN [1] using
somewhat more elaborate means. We begin by showing the
monotonicity of the Fisher information.

Proposition 1 (Monotonicity of Fisher Information): If
are i.i.d. random variables, and has an absolutely contin-
uous density, then

(23)

with equality iff is normal or .
Proof: We use the following notation: The (unnormalized)

sum is , and the leave-one-out sum leaving
out is . Setting to be the score of

and to be the score of , we have by Lemma 1 that
for each , and hence

Since the norm of the score is not less than that of its projection
(i.e., by the Cauchy–Schwarz inequality)

Lemma 2 yields

so that

If , then and ;
hence

The inequality implied by Lemma 2 can be tight only if each
, considered as a function of the random variables ,

is additive. However, we already know that is a function of
the sum of these random variables. The only functions that are
both additive and functions of the sum are linear functions of the
sum; hence, the two sides of (23) can be finite and equal only if
each of the scores is linear, i.e., if all the are normal. It is
trivial to check that normal or imply equality.

The monotonicity result for entropy in the i.i.d. case now fol-
lows by combining Proposition 1 and Lemma 3.

Theorem 1 (Monotonicity of Entropy: i.i.d. Case): Suppose
are i.i.d. random variables with densities and finite vari-

ance. If the normalized sum is defined by(22), then

The two sides are finite and equal iff is normal.

After the submission of these results to ISIT 2006 [28], we
became aware of a contemporaneous and independent develop-
ment of the simple proof of the monotonicity fact (Theorem 1)
by Tulino and Verdú [42]. In their work, they take nice advan-
tage of projection properties through minimum mean-squared
error interpretations. It is pertinent to note that the proofs of The-
orem 1 (in [42] and in this paper) share essentials, because of the
following observations.

Consider estimation of a random variable from an obser-
vation in which an independent standard normal
has been added. Then the score function of is related to the
difference between two predictors of (maximum likelihood
and Bayes), i.e.,

(24)
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and hence, the Fisher information is the same
as the mean-square difference , or equiva-
lently, by the Pythagorean identity

(25)

Thus, the Fisher information (entropy derivative) is related to
the minimal mean-squared error. These (and more general)
identities relating differences between predictors to scores and
relating their mean-squared errors to Fisher informations are
developed in statistical decision theory in the work of Stein
and Brown. These developments are described, for instance,
in the point estimation text by Lehmann and Casella [25,
Chs. 4.3 and 5.5], in their study of Bayes risk, admissibility and
minimaxity of conditional means .

Tulino and Verdú [42] emphasize the minimal mean-squared
error property of the entropy derivative and associated pro-
jection properies that (along with the variance drop inequality
which they note in the leave-one-out case) also give Proposi-
tion 1 and Theorem 1. That is a nice idea. Working directly
with the minimal mean-squared error as the entropy deriva-
tive they bypass the use of Fisher information. In the same
manner, Verdú and Guo [43] give an alternative proof of the
Shannon–Stam entropy power inequality. If one takes note
of the above identities one sees that their proofs and ours are
substantially the same, except that the same quantities are given
alternative interpretations in the two works, and that we give
extensions to arbitrary collections of subsets.

IV. FISHER INFORMATION INEQUALITIES

In this section, we demonstrate our core inequality (8).

Proposition 2: Let be independent random variables
with densities and finite variances. Define

and (26)

for each , where is an arbitrary collection of subsets of
. Let be any probability distribution on . If each has

an absolute continuous density, then

(27)

where . When is discriminating, both sides can
be finite and equal only if each is normal.

Proof: Let be the score of . We proceed in accor-
dance with the outline in the Introduction. Indeed, Lemma 1
implies that for each . Taking a convex
combinations of these identities gives, for any such that

(28)

Applying the Cauchy–Schwarz inequality

(29)

Taking the expectation and then applying Lemma 2 in succes-
sion, we get

(30)

(31)

(32)

as desired. The application of Lemma 2 can yield equality only
if each is additive; since the score is already a
function of the sum , it must in fact be a linear function, so
that each must be normal.

Naturally, it is of interest to minimize the upper bound of
Proposition 2 over the weighting distribution , which is easily
done either by an application of Jensen’s inequality for the re-
ciprocal function, or by the method of Lagrange multipliers. Op-
timization of the bound implies that Proposition 2 is equivalent
to the following Fisher information inequalities.

Theorem 2: Let be independent random variables such
that each has an absolutely continuous density. Then

(33)

When is discriminating, the two sides are positive and equal
iff each is normal and is also balanced.

Remark 2: Theorem 2 for the special case of sin-
gleton sets is sometimes known as the “Stam inequality” and
has a long history. Stam [39] was the first to prove Proposition
2 for , and he credited his doctoral advisor de Bruijn with
noticing the equivalence to Theorem 2 for . Subsequently,
several different proofs have appeared: in Blachman [7] using
Lemma 1, in Carlen [9] using another superadditivity property
of the Fisher information, and in Kagan [22] as a consequence
of an inequality for Pitman estimators. On the other hand, the
special case of the leave-one-out sets in Theorem 2
was first proved in ABBN [1]. Zamir [46] used data processing
properties of the Fisher information to prove some different ex-
tensions of the case, including a multivariate version; see also
Liu and Viswanath [27] for some related interpretations. Our re-
sult for arbitrary collections of subsets is new; yet our proof of
this general result is essentially no harder than the elementary
proofs of the original inequality by Stam and Blachman.

Remark 3: While inequality (30) in the proof above uses a
Pythagorean inequality, one may use the associated Pythagorean
identity to characterize the difference as the mean square of

. In the i.i.d. case with and , a dis-
joint pair of subsets of size , this drop in Fisher distance from
the normal played an essential role in the previously mentioned
central limit theorem analyses of [37], [8], [4], [21]. Further-
more, for general , we have from the variance drop analysis
that the gap in inequality (31) is characterized by the nonaddi-
tive ANOVA components of the score functions. We point out
these observations as an encouragement to examination of the
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information drop for collections such as and in re-
fined analysis of central limit theorem rates under more general
conditions.

V. ENTROPY INEQUALITIES

The Fisher information inequality of the previous section
yields a corresponding entropy inequality.

Proposition 3 (Entropy of Sums): Let be independent
random variables with densities. Then, for any probability dis-
tribution on such that for each ,

(34)

where is the discrete entropy of .
When is discriminating, equality can hold only if each is
normal.

Proof: As pointed out in the Introduction, Proposition 2 is
equivalent to

for independent random variables . For application of the
Fisher information inequality to entropy inequalities we also
need for an independent standard normal that

(35)

at least for suitable values of . We will show below that this
holds when for each , and thus

using (35) for the inequality and Lemma 3 for the equalities. By
the scaling property of entropy, this implies

proving the desired result.
The inequality (35) is true though not immediately so (the

naive approach of adding an independent normal to each
does not work to get our desired inequalities when the subsets
have more than one element). What we need is to provide a
collection of independent normal random variables for some
set of indices (possibly many more than of them). For each

in we need an assignment of subset sums of (called say
) which has variance , such that no is in more than of

the subsets . Then by Proposition 2 (applied to the collection
of augmented sets for each in ) we have

from which the desired inequality follows using the fact that
. Assuming that (which will be

sufficient for our needs), we provide such a construction of
and their subset sums in the case of rational weights, say

, where the denominator may be large. Indeed, set
independent mean-zero normals each of variance

. For each , we construct a set that has precisely
normals and each normal is assigned to precisely of these
sets. This may be done systematically by considering the sets

in in some order. We let be the first in-
dices (not more than by assumption), we let be the next

indices (looping back to the first index once we pass )
and so on. This proves the validity of (35) for rational weights;
its validity for general weights follows by continuity.

Remark 4: One may re-express the inequality of Proposition
3 as a statement for the relative entropies with respect to normals
of the same variance. If has density , we write

where has the Gaussian density with the same variance as
. Then, for any probability distribution on a balanced col-

lection

(36)

where is the probability distribution on given by
, and is the (discrete) relative entropy of

with respect to . When is also discriminating, equality holds
iff each is normal. Theorem 1 of Tulino and Verdú [42] is the
special case of inequality (36) for the collection of leave-one-out
sets. Inequality (36) can be further extended to the case where

is not balanced, but in that case is a subprobability distribu-
tion. The conclusions (34) and (36) are equivalent, and as seen in
the next section, are equivalent to our subset sum entropy power
inequality.

Remark 5: It will become evident in the next section that the
condition in Proposition 3 is not needed for the validity
of the conclusions (34) and (36) (see Remark 8).

VI. ENTROPY POWER INEQUALITIES

Proposition 3 is equivalent to a subset sum entropy power
inequality. Recall that the entropy power is the variance
of the normal with the same entropy as . The term entropy
power is also used for the quantity

(37)

even when the constant factor of is excluded.
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Theorem 3: For independent random variables with finite
variances

(38)

When is discriminating, the two sides are equal iff each is
normal and is also balanced.

Proof: Let be the subset sums as defined in (26). Define
as the normalizing constant producing the

weights

(39)

If for some then we trivially have
which is the desired result, so now

assume for all , that is, for each .
Since

Proposition 3 implies for any weighting distribution with
that

(40)

where is the (discrete) relative entropy. Exponentiating
gives

(41)

It remains to optimize the right-hand side over , or equiva-
lently, to minimize over feasible . Since by
assumption, is a feasible choice, yielding the desired in-
equality.

The necessary conditions for equality follow from that for
Proposition 3, and it is easily checked using Fact 1 that this is
also sufficient. The proof is complete.

Remark 6: To understand this result fully, it is useful to note
that if a discriminating collection is not balanced, it can always
be augmented to a new collection that is balanced in such a
way that the inequality (38) for becomes strictly better than
that for . Indeed, if index appears in sets of , one can al-
ways find sets of not containing (since ), and
add to each of these sets. The inequality (38) for is strictly
better since this collection has the same and the subset sum
entropy powers on the right-hand side are higher due to the ad-
dition of independent random variables. While equality in (38)
is impossible for the unbalanced collection , it holds for nor-
mals for the augmented, balanced collection . This illuminates
the conditions for equality in Theorem 3.

Remark 7: The traditional Shannon inequality involving the
entropy powers of the summands [36] as well as the inequality of
ABBN [1] involving the entropy powers of the “leave-one-out”
normalized sums are two special cases of Theorem 3, corre-
sponding to and . Proofs of the former subse-
quent to Shannon’s include those of Stam [39], Blachman [7],
Lieb [26] (using Young’s inequality for convolutions with the
sharp constant), Dembo, Cover, and Thomas [15] (building on

Costa and Cover [13]), and Verdú and Guo [43]. Note that un-
like the previous proofs of these special cases, our proof of the
equivalence between the linear form of Proposition 3 and The-
orem 3 reduces to the nonnegativity of the relative entropy.

Remark 8: To see that (34) (and hence (36)) holds without
any assumption on , simply note that when the assumption is
not satisfied, the entropy power inequality of Theorem 3 implies
trivially that

for defined by (39), and inverting the steps of (40) yields (34).

VII. ENTROPY IS MONOTONE ON AVERAGE

In this section, we consider the behavior of the entropy of
sums of independent but not necessarily identically distributed
(i.n.i.d.) random variables under various scalings.

First we look at sums scaled according to the number of sum-
mands. Fix the collection . For
i.n.i.d. random variables , let

and (42)

for be the scaled sums. Then Proposition 3 applied to
implies

The term on the right-hand indicates that we pay a price for devi-
ations of the weighting distribution from the uniform. In par-
ticular, choosing to be uniform implies that entropy is “mono-
tone on average” with uniform weights for scaled sums of i.n.i.d.
random variables. Applying Theorem 3 to yields a similar
conclusion for entropy power. These observations, which can
also be deduced from the results of ABBN [1], are collected in
Corollary 1.

Corollary 1: Suppose are independent random variables
with densities, and the scaled sums are defined by (42). Then

(43)

Remark 9: It is interesting to contrast Corollary 1 with the
following results of Han [17] and Dembo, Cover, and Thomas
[15]. With no assumptions on except that they
have a joint density, the above authors show that

(44)

and

(45)

where and denote the joint entropy and joint
entropy power of , respectively. These bounds have a form
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very similar to that of Corollary 1. In fact, such an analogy be-
tween inequalities for entropy of sums and joint entropies goes
much deeper (so that all of the entropy power inequalities we
present here have analogues for joint entropy). More details can
be found in Madiman and Tetali [30].

Next, we consider sums of independent random variables
standardized by their variances. This is motivated by the fol-
lowing consideration. Consider a sequence of i.n.i.d. random
variables with zero mean and finite variances,

. The variance of the sum of variables is
denoted , and the standardized sum is

The Lindeberg–Feller central limit theorem gives conditions
under which . Johnson [20] has proved an
entropic version of this classical theorem, showing (under
appropriate conditions) that and hence
the relative entropy from the unit normal tends to . Is there an
analogue of the monotonicity of information in this setting?

We address this question in the following theorem, and give
two proofs. The first proof is based on considering appropri-
ately standardized linear combinations of independent random
variables, and generalizes Theorem 2 of ABBN [1]. The second
proof is outlined in Remark 11.

Theorem 4 (Monotonicity on Average): Suppose
are independent random variables with densities, and

has finite variance . Set and
for sets in the balanced collection . Define the standardized
sums

(46)

and

(47)

Then

(48)

where . Furthermore, if is also discriminating, then
the inequality is strict unless each is normal.

Proof: Let be a collection of nonnegative real

numbers such that . Define

and the weights for . Applying the inequalities
of Theorem 2, Proposition 3, and Theorem 3 to independent
random variables , and utilizing the scaling properties of
the relevant information quantities, one finds that

(49)

where represents either the inverse Fisher information or
the entropy or the entropy power .

The conclusion of Theorem 4 is a particular instance of (49).
Indeed, we can express the random variables of interest as

, so that each has variance . Choose , which

is valid since . Then and
. Thus

and

Now an application of (49) gives the desired result, not just for
but also for and .

Remark 10: Since the collection is balanced, it follows
from Fact 1 that defines a probability distribution on . This
justifies the interpretation of Theorem 4 as displaying “mono-
tonicity on average.” The averaging distribution is tuned to the
random variables of interest, through their variances.

Remark 11: Theorem 4 also follows directly from (36) upon
setting and noting that the definition of is scale
invariant (i.e., for any real number ).

Let us briefly comment on the interpretation of this result.
As discussed before, when the summands are i.i.d., entropic
convergence of to the normal was shown in [4], and ABBN
[1] showed that this sequence of entropies is monotonically
increasing. This completes a long-conjectured intuitive pic-
ture of the central limit theorem: forming normalized sums
that keep the variance constant yields random variables with
increasing entropy, and this sequence of entropies converges
to the maximum entropy possible, which is the entropy of the
normal with that variance. In this sense, the central limit the-
orem is a formulation of the “second law of thermodynamics”
in physics. Theorem 4 above shows that even in the setting
of variance-standardized sums of i.n.i.d. random variables, a
general monotonicity on average property holds with respect
to an arbitrary collection of normalized subset sums. This
strengthens the “second law” interpretation of central limit
theorems.

A similar monotonicity on average property also holds for
appropriate notions of Fisher information in convergence of
sums of discrete random variables to the Poisson and compound
Poisson distributions; details may be found in [29].

VIII. A REFINED INEQUALITY

Various extensions of the basic inequalities presented above
are possible; we present one here. To state it, we find it con-
venient to recall the notion of a fractional packing from dis-
crete mathematics (see, e.g., Chung, Füredi, Garey, and Graham
[11]).

Definition 1: Let be a collection of subsets of . A col-
lection of nonnegative real numbers is called a
fractional packing for if

(50)

for each in .

Note that if the numbers are constrained to only take the
values and , then the condition above entails that not more
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than one set in can contain , i.e., that the sets are
pairwise disjoint, and provide a packing of the set . We may
interpret a fractional packing as a “packing” of using sets in

, each of which contains only a fractional piece (namely, )
of the elements in that set.

We now present a refined version of Lemma 2.

Lemma 4 (Variance Drop: General Version): Suppose
is a -additive function with mean zero com-

ponents, as in Lemma 2. Then

(51)

for any fractional packing .
Proof: As in the proof of Lemma 2, we have

We now proceed to perform a different estimation of this ex-
pression, recalling as in the proof of Lemma 2, that the outer
summation over can be restricted to nonempty sets . By the
Cauchy–Schwarz inequality

Since any of interest has at least one element, the definition of
a fractional packing implies that

Thus

(52)

Exactly as before, one can obtain inequalities for Fisher in-
formation, entropy, and entropy power based on this form of
the variance drop lemma. The idea of looking for such refine-
ments with coefficients depending on arose in conversations
with Tom Cover and Prasad Tetali at ISIT 2006 in Seattle, after
our basic results described in the previous sections were pre-
sented. In particular, Prasad’s joint work with one of us [30]
influenced the development of Theorem 5.

Theorem 5: Let be any fractional packing for .
Then

(53)

For given subset sum informations, the best such lower bound
on the information of the total sum would involve maximizing
the right-hand side of (53) subject to the linear constraints (50).
This linear programming problem, a version of which is the
problem of optimal fractional packing well studied in combi-
natorics (see, e.g., [11]), does not have an explicit solution in
general.

A natural choice of a fractional packing in Theorem 5 leads
to the following corollary.

Corollary 2: For any collection of subsets of , let
denote the number of sets in that contain . In the same setting
as Theorem 2, we have

(54)

where is the maximum value of over the indices in .

We say that is quasi-balanced if for each
and each . If is discriminating, equality holds in (54) if the

are normal and is quasi-balanced.

Remark 12: For any collection and any ,
by definition. Thus, Theorem 5 and Corollary 2 generalize The-
orem 2. Furthermore, from the equality conditions in Corollary
2, we see that equality can hold in these more general inequali-
ties even for collections that are not balanced, which was not
possible with the original formulation in Theorem 2.

Remark 13: One can also give an alternate proof of Theorem
5 using Corollary 2 (which could be proved directly), so that
the two results are mathematically equivalent. The key to doing
this is the observation that nowhere in our proofs do we actually
require that the sets in be distinct. In other words, given a
collection , one may look at an augmented collection that has

copies of each set in . Then the inequality (54) holds for
the augmented collection with the counts and appro-
priately modified. By considering arbitrary augmentations, one
can obtain Theorem 5 for fractional packings with rational co-
efficients. An approximation argument yields the full version.
This method of proof, although picturesque, is somewhat less
transparent in the details.

Remark 14: It is straightforward to extend Theorem 5 and
Corollary 2 to the multivariate case, where are independent

-valued random vectors, and represents the trace of
the Fisher information matrix of . Similarly, extending The-
orem 3, one obtains for independent -valued random vectors

with densities and finite covariance matrices that

which implies the monotonicity of entropy for standardized
sums of -dimensional random vectors. We leave the details to
the reader.

Remark 15: It is natural to speculate whether an analogous
subset sum entropy power inequality holds with inside
the sum. For each between the minimum and the maximum of
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the , we can split into the sets .
Under an assumption that no one set in dominates, that is,
that there is no with , we
are able to create suitable normals for perturbation of the Fisher
information inequality and integrate (in the same manner as in
the proof of Proposition 3) to obtain

(55)

The quasi-balanced case (in which is the same for each
in ) is an interesting special case. Then the unions of sets in

are disjoint for distinct values of . So for quasi-balanced
collections the refined subset sum entropy power inequality
(55) always holds by combining our observation above with the
Shannon–Stam entropy power inequality.

IX. CONCLUDING REMARKS

Our main contributions in this paper are rather general
-super-additivity inequalities for Fisher information and en-

tropy power that hold for arbitrary collections , and specialize
to both the Shannon–Stam inequalities and the inequalities
of ABBN [1]. In particular, we prove all these inequalities
transparently using only simple projection facts, a variance
drop lemma, and classical information-theoretic ideas. A re-
markable feature of our proofs is that their main ingredients are
rather well known, although our generalizations of the variance
drop lemma appear to be new and are perhaps of independent
interest. Both our results as well as the proofs lend themselves
to intuitive statistical interpretations, several of which we have
pointed out in the paper. We now point to potential directions
of application.

The inequalities of this paper are relevant to the study of cen-
tral limit theorems, especially for i.n.i.d. random variables. In-
deed, we demonstrated monotonicity on average properties in
such settings. Moreover, most approaches to entropic central
limit theorems involve a detailed quantification of the gaps asso-
ciated with monotonicity properties of Fisher information when
the summands are nonnormal. Since the gap in our inequality is
especially accessible due to our use of a Pythagorean property
of projections (see Remark 3), it could be of interest in obtaining
transparent proofs of entropic central limit theorems in i.n.i.d.
settings, and perhaps rate conclusions under less restrictive as-
sumptions than those imposed in [21] and [2].

The new Fisher information inequalities we present are also
of interest, because of the relationship of inverse Fisher infor-
mation to asymptotically efficient estimation. In this context,
the subset sum inequality can be interpreted as a comparison
of an asymptotic mean-squared error achieved with use of all

, and the sum of the mean-squared errors achieved
in distributed estimation by sensors that observe
for . The parameter of interest can either be a location
parameter, or (following [21]) a natural parameter of exponen-
tial families for which the minimal sufficient statistics are sums.
Furthermore, a nonasymptotic generalization of the new Fisher
information inequalities holds (see [5] for details), which sheds
light on minimax risks for estimation of a location parameter
from sums.

Entropy inequalities involving subsets of random variables
(although traditionally not involving sums) have played an im-
portant role in understanding some problems of graph theory.
Radhakrishnan [33] provides a nice survey, and some recent de-
velopments (including joint entropy inequalities analogous to
the entropy power inequalities in this paper) are discussed in
[30]. The appearance of fractional packings in the refined in-
equality we present in Section VIII is particularly suggestive of
further connections to be explored.

In multiuser information theory, subset sums of rates and
information quantities involving subsets of random variables
are critical in characterizing rate regions of certain source and
channel coding problems (e.g., -user multiple-access chan-
nels). Furthermore, there is a long history of the use of the
classical entropy power inequality in the study of rate regions,
see, e.g., Shannon [36], Bergmans [6], Ozarow [32], Costa [12],
and Oohama [31]. For instance, the classical entropy power in-
equality was a key tool in Ozarow’s solution of the Gaussian
multiple description problem for two multiple descriptions, but
seems to have been inadequate for problems involving three or
more descriptions (see Wang and Viswanath [45] for a recent
solution of one such problem without using the entropy power
inequality). It seems natural to expand the set of tools available
for investigation in these contexts.

APPENDIX I
THE ANALYSIS OF VARIANCE DECOMPOSITION

In order to prove the variance drop lemma, we use a decompo-
sition of functions in , which is nothing but the ANOVA
decomposition of a statistic. For any , denotes the
conditional expectation of , given all random variables other
than , i.e.,

(56)
averages out the dependence on the th coordinate.

Fact 2 (ANOVA Decomposition): Suppose sat-
isfies , i.e., , for independent
random variables . For , define the or-
thogonal linear subspaces

(57)

of functions depending only on the variables indexed by . Then
is the orthogonal direct sum of this family of subspaces, i.e.,

any can be written in the form

(58)

where , and the subspaces (for ) are or-
thogonal to each other.

Proof: Let denote the integrating out of the variables
in , so that . Keeping in mind that the order of
integrating out independent variables does not matter (i.e., the

are commuting projection operators in ), we can write
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(59)

where

(60)

Note that if is in , , being in the image of the
operator . If is not in , is already in the
image of , and a further application of the projection has
no effect. Thus, is in .

Finally, we wish to show that the subspaces are orthog-
onal. For any distinct sets and in , there exists an index

which is in one (say ), but not the other (say ). Then, by
definition, is contained in the image of and is
contained in the image of . Hence, is orthogonal
to .

Remark 16: In the language of ANOVA familiar
to statisticians, when is the empty set, is the
mean; are the main effects;

are the pairwise interactions, and so on.
Fact 2 implies that for any subset , the function

is the best approximation (in mean square) to
that depends only on the collection of random variables.

Remark 17: The historical roots of this decomposition lie
in the work of von Mises [44] and Hoeffding [18]. For var-
ious interpretations, see Kurkjian and Zelen [24], Jacobsen [19],
Rubin and Vitale [34], Efron and Stein [16], Karlin and Rinott
[23], and Steele [40]; these works include applications of such
decompositions to experimental design, linear models, -sta-
tistics, and jackknife theory. Takemura [41] describes a general
unifying framework for ANOVA decompositions.
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