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Generalized Estimating Equation (GEE) is a marginal model popularly applied for longitudinal/clustered data analysis in clinical
trials or biomedical studies.We provide a systematic review onGEE including basic concepts as well as several recent developments
due to practical challenges in real applications. 	e topics including the selection of “working” correlation structure, sample size
and power calculation, and the issue of informative cluster size are covered because these aspects play important roles in GEE
utilization and its statistical inference. A brief summary and discussion of potential research interests regarding GEE are provided
in the end.

1. Introduction

Generalized Estimating Equation (GEE) is a general sta-
tistical approach to 
t a marginal model for longitudi-
nal/clustered data analysis, and it has been popularly applied
into clinical trials and biomedical studies [1–3]. One longitu-
dinal data example can be taken from a study of orthodontic
measurements on children including 11 girls and 16 boys.	e
response is the measurement of the distance (in millimeters)
from the center of the pituitary to the pterygomaxillary

ssure, which is repeatedly measured at ages 8, 10, 12, and 14
years. 	e primary goal is to investigate whether there exists
signi
cant gender dierence in dental growth measures and
the temporal trend as age increases [4]. For such data analysis,
it is obvious that the responses from the same individual tend
to be “more alike”; thus incorporating within-subject and
between-subject variations into model 
tting is necessary to
improve e�ciency of the estimation and the power [5].

	ere are several simple methods existing for repeated
data analysis, that is, ANOVA/MANOVA for repeated mea-
sures, but the limitation is the incapability of incorporating
covariates. 	ere are two types of approaches, mixed-eect
models and GEE [6, 7], which are traditional and are widely
used in practice now. Of note is that these two methods
have dierent tendencies in model 
tting depending on the

study objectives. In particular, the mixed-eect model is
an individual-level approach by adopting random eects to
capture the correlation between the observations of the same
subject [7]. On the other hand, GEE is a population-level
approach based on a quasilikelihood function and provides
the population-averaged estimates of the parameters [8]. In
this paper, we focus on the latter to provide a review and
recent developments of GEE. As is well known, GEE has
several de
ning features [9–11]. (1)	e variance-covariance
matrix of responses is treated as nuisance parameters in
GEE and thus this model 
tting turns out to be easier
than mixed-eect models [12]. In particular, if the overall
treatment eect is of primary interest, GEE is preferred. (2)
Under mild regularity conditions, the parameter estimates
are consistent and asymptotically normally distributed even
when the “working” correlation structure of responses is
misspeci
ed, and the variance-covariance matrix can be
estimated by robust “sandwich” variance estimator. (3) GEE
relaxes the distribution assumption and only requires the
correct speci
cation of marginal mean and variance as well
as the link function which connects the covariates of interest
and marginal means.

However, several aspects of GEE are still in controversy
since Liang and Zeger [6]. Crowder addressed some issues
on inconsistent estimation of within-subject correlation
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coe�cient under a misspeci
ed “working” correlation struc-
ture based on asymptotic theory [7]. In addition, the estima-
tion of the correlation coe�cients using the moment-based
approach is not e�cient; thus the correlation matrix may not
be a positive de
nite matrix in certain cases. Also, Liang and
Zeger did not incorporate the constraints on the range of cor-
relation which was restricted by the marginal means because
the estimation of the correlation coe�cientswas simply based
on Pearson residuals [6]. Chaganty and Joe discussed this
issue for dependent Bernoulli randomvariables [13], and later
Sabo and Chaganty made future explanation [14]. For exam-
ple, Sutradhar and Das pointed out under misspeci
cation
the correlation coe�cient estimates did not converge to the
true values [15]. Furthermore, for discrete random vectors,
the correlation matrix was usually complicated, and it was
not easy to attain multivariate distributions with speci
ed
correlation structures. 	ese limitations lead researchers to
actively work on this area to develop novel methodologies.
Several alternative approaches for estimating the correlation
coe�cients have been proposed; for example, one method
was based on “Gaussian” estimation [16, 17], and the basic
idea was to estimate the correlation coe�cients based on
multivariate normal estimating equations, and the feature
was that this estimation can ensure the estimated correlation
matrix was positive-de
nite. Wang and Carey proposed to
estimate the correlation coe�cients by dierentiating the
Cholesky decomposition of the working correlation matrix
[18]. Also, Qu and Lindsay (2003) proposed similar Gaussian
or quadratic estimating equations [19]. In particular, for
binary longitudinal data, the estimation of the correlation
coe�cients was proposed based on conditional residuals [20–
22]. Nevertheless, in this paper, the above issues are not
discussed in great depth, and the assumption that, under
the regular mild conditions, the consistency of parameter
estimates as well as within-subject correlation coe�cient esti-
mate holds is satis
ed. 	us, three speci
c topics including
model selection, power analysis, and the issue of informative
cluster size are mainly focused on and the recent develop-
ments are reviewed in the following sections.

2. Method

2.1. Notation and GEE. Suppose that longitudinal/clustered
data consists of � subjects/clusters. For subject/cluster � (� =1, 2, . . . , �), suppose that there are �� observations and ���
denotes the �th response (� = 1, . . . , ��), and let ��� denote
a � × 1 vector of covariates. Let �� = (��1, ��2, . . . , ����)�
denote the response vector for the �th subject with the mean
vector noted by 	� = (	�1, 	�2, . . . , 	���)� where 	�� is the
corresponding �th mean. 	e responses are assumed to be
independent across subjects/clusters but correlated within
each subject/cluster. 	e marginal model speci
es that a
relationship between 	�� and the covariates ��� is written as
follows:


 (	��) = �����, (1)

where 
 is a known link function and � is an unknown� × 1 vector of regression coe�cients with the true value

as �0. 	e conditional variance of ��� given ��� is speci
ed
as Var(��� | ���) = ](	��), where ] is a known variance
function of 	�� and  is a scale parameter which may need to
be estimated. Mostly, ] and  depend on the distributions of
outcomes. For instance, if ��� is continuous, ](	��) is speci
ed
as 1, and  represents the error variance; if ��� is count,
](	��) = 	��, and  is equal to 1. Also, the variance-covariance
matrix for �� is noted by �� = �1/2� ��(�)�1/2� , where� � = Diag{](	�1), . . . , ](	���)} and the so-called “working”
correlation structure ��(�) describes the pattern of measures
within subject, which is of size �� × �� and depends on
a vector of association parameters denoted by �. Table 1
provides summary of commonly used “working” correlation
structures with the moment-based estimates for � (more
details in http://www.okstate.edu/sas/). Note that the iterative
algorithm is applied for estimating � using the Pearson

residuals ��� = (��� − 	��)/√](	��) calculated from the current

value of �. Also, the scale parameter  can be estimated by

̂ = 1� − � �∑�=1
��∑
�=1
�2��, (2)

where� = ∑��=1 �� is the total number of observations and �
is covariates dimensionality.

Based on Liang and Zeger [6], GEE yields asymptotically

consistent �̂ even when the “working” correlation structure
(��(�)) is misspeci
ed, and the estimate of � is obtained by
solving the following estimating equation:

� (�) = �∑
�=1
����−1� (�� − 	�) = 0, (3)

where �� = �	�/���. Under mildregularity conditions, �̂ is
asymptotically normally distributed with a mean �0 and a
covariancematrix estimated based on the sandwich estimator

�̂�� = ( �∑
�=1
����−1� ��)−1 !̂��( �∑

�=1
����−1� ��)−1 (4)

with

!̂�� = �∑
�=1
����−1� Cov (��) �−1� �� (5)

by replacing�,�, andwith their consistent estimates, where
Cov(��) = "̂�"̂�� with "̂� = ��−	̂� is an estimator of the variance-
covariance matrix of �� [6, 23]. 	is “sandwich” estimator is
robust in that it is consistent even if the correlation structure
(��) is misspeci
ed. Note that if �� is correctly speci
ed, then�̂�� reduces to (∑��=1����−1� ��)−1, which is o�en referred to as
the model-based variance estimator [24].	us, aWald#-test
can be performed based on asymptotic normal distribution of
the test statistic. Next, we will overviewmodel selection crite-
ria and particularly “working” correlation structure selection
criteria with regard to GEE.
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Table 1: Summary of commonly used “working” correlation structures for GEE.

Correlation structure Corr(���, ��	) Sample matrix Estimator

Independent Corr(���, ��	) = {{{
1 � = '0 � ̸= ' (1 0 00 1 00 0 1) NA

Exchangeable Corr(���, ��	) = {{{
1 � = '4 � ̸= ' (1 4 44 1 44 4 1)

4̂ = 1(�� − �)  �∑�=1∑� ̸=	�����	�� = �∑
�=1
�� (�� − 1)

'-dependent Corr(���, ��,�+�) = {{{{{{{
1 6 = 04� 6 = 1, 2, . . . , '0 6 > ' ( 1 41 041 1 410 41 1 )

4̂� =1(�� − �) 
�∑
�=1
∑
�≤��−�

�����,�+
� = �∑

�=1
(�� − 6)

Autoregressive AR(1) Corr(���, ��,�+�) = 4�, 6 = 0, 1, 2, . . . , �� − � ( 1 4 424 1 442 4 1 )
4̂ = 1(�1 − �)

�∑
�=1
∑
�≤��−1

�����,�+1
�1 = �∑

�=1
(�� − 1)

Toeplitz Corr(���, ��,�+�) = {{{
1 6 = 04� 6 = 1, 2, . . . , �� − � ( 1 41 4241 1 4142 42 1 )

4̂ = 1(�� − �) �∑�=1∑� ̸=	 �����	
�� = �∑

�=1
��(�� − 1)

Unstructured Corr(���, ��	) = {{{
1 � = '4�	 � ̸= ' ( 1 412 413421 1 423431 432 1 ) 4̂�	 = 1(� − �) �∑�=1 �����	

2.2. Model Selection of GEE. In this section, we will discuss
the model selection criteria available of GEE. 	ere are
several reasons why model selection of GEE models is
important and necessary: (1) GEE has gained increasing
attention in biomedical studies which may include a large
group of predictors [25–28]. 	erefore, variable selection is
necessary for determining which are included in the 
nal
regressionmodel by identifying signi
cant predictors; (2) it is
already known that one feature of GEE is that the consistency
of parameter estimates can still hold evenwhen the “working”
correlation structure ismisspeci
ed. But, correctly specifying
“working” correlation structure can de
nitely enhance the
e�ciency of the parameter estimates in particular when the
sample size is not large enough [16, 24, 25, 29]. 	erefore,
how to select intrasubject correlation matrix plays a vital role
in GEE with improved 
nite-sample performance; (3) the
variance function ](	) is another potential factor aecting the
goodness-of-
t of GEE [25, 30]. Correctly speci
ed variance
function can assist in the selection of covariates and an appro-
priate correlation structure [31, 32]. Dierent criteria might
be needed due to the goal of model selection [24, 29, 33], and
next I will particularly introduce the existing approaches on
the selection of “working” correlation structure with its own
merits and limitations [34].

According to Rotnitzky and Jewell, the adequacy of
“working” correlation structure can be examined through

Γ = (∑��=1����−1� ��)−1!̂��, where !̂�� has been de
ned in
Section 2.1 [35]. 	e statistic RJ(�) is de
ned by

RJ (�) = √(1 − RJ1)2 + (1 − RJ2)2, (6)

where RJ1 = trace(Γ)/� and RJ2 = trace(Γ2)/�, respectively.
If the “working” correlation structure � is correctly speci
ed,
RJ1 and RJ2 will be thus close to 1, leading to RJ(�)
approaching 0. 	us, RJ1, RJ2, and RJ(�) can all be used for
correlation structure selection.

Shults and Chaganty [36] proposed a criterion for select-
ing “working” correlation structure based on the minimiza-
tion of the generalized error sum of squares (ESS) given as
follows:

ESS (�,�) = �∑
�=1
(�� − 9�)� �−1� (�� − 9�)

= �∑
�=1
#�� (�) �−1� (�) #� (�) ,

(7)

where #�(�) = �1/2(�� − 9�). 	e criterion is de
ned by

SC = ESS (�,�)(� − � − :) , (8)
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where � = ∑��=1 �� is the total number of observations,� is the number of regression parameters, and : is the
number of correlation coe�cients within the “working”
correlation structure. Another extended criterion from SC
was proposed by Carey and Wang [37], where the Gaussian
pseudolikelihood (GP) is adopted, and it is given by

GP (�) = −0.5 × �∑
�=1
(�� − 9�)� �−1� (�� − 9�) + log (<<<<��<<<<) , (9)

where a better “working” correlation structure yields a larger
GP. In their work, they also showed that GP criterion held
better performance than RJ via simulation.

Another criterion is proposed by Pan [38], which mod-
i
ed Akaike information criterion (AIC) [39] in adaption
to GEE. Due to the fact that GEE is not likelihood-based,
thus it is called quasi-likelihood under the independence
model criterion (QIC) [40]. 	e basic idea is to calculate
the expected Kullback-Leibler discrepancy using the quasi-
likelihood under the independence “working” correlation
assumption due to the lack of a general and tractable quasi-
likelihood for the correlated data under any other complex
“working” correlation structures. QIC(�) is de
ned by

QIC (�) = −2Ψ (�̂ (�) ; A) + 2trace (Ω̂��̂��) , (10)

where the quasilikelihood Ψ(�̂(�); A) = ∑��=1∑���=1 C(�̂(�), ̂;{���, ���}) with C(	, ̂; �) = ∫�� ((� − E)/̂�(E))FE de
ned by

[12], �̂ and ̂ are obtained under the hypothesized “working”
correlation structure �, Ω̂� = ∑��=1����−1� ��|�=�̂,�=�, and �̂��
is de
ned above with replacement of � by �̂(�) [38]. Note
that, in this work, Pan ignored the second term in Taylor’s
expansion of the discrepancy and showed its in�uence was
not substantial among his simulation set-ups. Later on,
Hardin andHilbe (2003)made slightmodi
cation onQIC(�)
by using �̂(A) and ̂(A) for more stability, and QIC(�)HH is
given by

QIC (�)HH = −2Ψ (�̂ (A) ; A) + 2trace (Ω̂��̂��) . (11)

Note that QIC(�) and QIC(�)HH do not perform well in
distinguishing the independence and exchangeable “work-
ing” correlation structures because, in certain cases, the same
regression parameter estimates can be obtained under these
two structures. Also, the attractive property of the QIC
criterion is that it allows the selection of the covariates and
“working” correlation structure simultaneously [41, 42], but
this measure is more sensitive to the mean structure because
QIC is particularly impacted by the 
rst term and the second
termwhich plays a role as a penalty. To better select “working”
correlation structure, Hin and Wang proposed correlation
information criterion (CIC) de
ned by

CIC = trace (Ω̂��̂��) . (12)

In their work, CIC was shown to outperform QIC when
the outcomes were binary through simulation studies [43].

One limitation of this criterion is that it cannot penalize
the overparameterization; thus the performance is not well
in comparison with two correlation structures having quite
dierent numbers of correlation parameters.

Another attractive criterion is the extended quasilike-
lihood information criterion (EQIC) proposed by Wang
and Hin [25] by using the extended quasilikelihood (EQL)
de
ned by Nelder and Pregibon based on the deviance
function, which is shown below under the independent
correlation structure [44]:

C∗ (�, ; A) = − 12� (�; A) − 12 �∑�=1
��∑
�=1

log (2G� (	��)) ,
(13)

where the sum of deviances �(�; A) = ∑��=1∑���=1 −2{C(���;	��) − C(���, ���)} with C(⋅) being the quasilikelihood de
ned
as above. 	erefore, EQIC is de
ned by

EQIC (�) = 1� (�; A) + �∑�=1
��∑
�=1

log (2G� (	��))
+ 2trace (Ω̂��̂��) ,

(14)

where some adjustments were applied to �(	) by adding a
small constant ' with the optimal chosen value as 1/6. 	e
author indicated that the covariates were 
rst selected based
on QIC, and the variance function could be identi
ed as
the one minimizing EQIC given the selected covariates; then
“working” correlation structure selection could be achieved
based on CIC; in addition, they found out that the covariates
selection by EQIC given dierent working variance functions
was more consistent than that based on QIC [45].

Besides those criteriamentioned above, Cantoni et al. also
discussed the covariate selection for longitudinal data anal-
ysis [46]; also, a variance function selection was mentioned
by Pan and Mackenzie [30] as well as Wang and Lin [47];
in addition, more work on “working” correlation structure
selection was addressed by Chaganty and Joe [48], Wang and
Lin [47], Gosho et al. [49, 50], Jang [51], Chen [52], and
Westgate [53–55], among others. Overall, themodel selection
of GEE is nontrivial, where the best selection criterion is still
being pursued [56], and the recent work by Wang et al. can
be followed up as the rule of thumb [45].

2.3. Sample Size and Power of GEE. It is well known that
the calculation of sample size and power is necessary and
important for planning a clinical trial, which have been
well studied for independent observations [1]. With the
wide applications of GEE in clinical trials, this topic for
correlated/clustered data has gainedmore attention than ever
[5, 57]. 	e general method for sample size/power calculated
was discussed by Liu and Liang [58], where the generalized
score test was utilized to draw statistical inference and the
resulting noncentral chi-square distribution of test statistic
under the alternative hypothesis was derived; however, in
some special cases, that is, correlated binary data with
nonexchangeable correlation structure, there was no close
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form available along the outline of that formula. A�erwards,
Shih provided an alternative formula on sample size/power
calculation, which relied on Wald tests using the estimates
of regression parameters and robust variance estimators [59].
For example, in a study with one parameter of interest J, the
hypothesis of interest can be formulated as

K0: J = 0 versus K�: J = L ̸= 0, (15)

where L is the expected value. 	us, based on a two-sided#-test with type I error M, the power denoted by N can be
obtained by

N = 1 − Φ(#�/2 − L√�√]� ) , (16)

where� is sample size and ]� is the robust variance estimator

corresponding to J in the estimate of��̂��. Accordingly, the
sample size is given by

� = ]� (#�/2 − #1−�)2L2 . (17)

For correlated continuous data, the calculation is straightfor-
ward using (16); however, in particular, for correlated binary
data, more work will be needed [60], and Pan provided
explicit formulas for ]� under various situations as follows
[61]:

]� = Ω[ 1G�0 (1 − �0) + 1(1 − G) �1 (1 − �1)] , (18)

where Ω = �(∑��=1 1����−1� ���−1� 1��)/(∑��=1 1����−1� 1��)2 with G
as the proportion of subjects assigned to the control group
and �0 and �1 as the mean for control and case groups
[61]. 	e detailed calculations of ]� under several important
special cases are given by

If �� = �� = CS: Ω = �∑��=1 (��/ (1 + (�� − 1) 4)) ;
If �� = A, �� = CS: Ω = �∑��=1 �� [1 + (�� − 1) 4](∑��=1 ��)2 ;
If �� = �� = AR (1) : Ω = � (1 + 4)∑��=1 [�� − (�� − 2) 4] ;
If �� = A, �� = AR (1) :
Ω = �∑��=1 [�� + 2 (�� − 1) 4 + 2 (�� − 2) 42 + ⋅ ⋅ ⋅ + 24��−1](∑��=1 ��)2 .

(19)

	ese formulas can be directly used in practice, which has
covered most situations encountered in clinical trials [61].
Note that when �� = �� = CS, Liu and Liang (1997) provided

a dierent formula of sample size compared with (17) with�� = �, which is

� = ((Z1−�/2 + Z1−�)2
× ((1 − G) �0 (1 − �0) + G�1 (1 − �1))
× [1 + (� − 1) 4])

× (�G (1 − G) (�1 − �0)2)−1 .
(20)

Be aware that the dierence is due to the test methods, the
Wald #-test used by Pan [61] and the score test applied by
Liu and Liang [58]. Note that, in some cases, the score test
may be preferred [62]. Although some other works exist for
sample size/power calculation, they focused on the other
alternative approaches rather than GEE [63, 64]; thus we
do not discuss them here. For correlated Poisson data, the
sample size/power calculation is more challenging due to
the occurrence of overdispersion or sparsity, where negative
binomial regression model may be explored [62, 65–67].

On the other hand, there are several concerns [68].
First, we here focus on the calculation of the sample size �
assuming �� is known; however, based on the power formula
(16), ]� depends on �� and thus increasing �� can also assist
in power improvement but turns out to be less eective than� [69]. Second, the sample size/power calculation may be
restricted to the limitation of clusters, for example, clustered
randomized trials (CRTs), where the number of clusters could
be relatively small. For example, by the literature review of
published CRTs, the median number of clusters is shown as
21 [70]. In such situations, the power formula adjusted for the
small samples in GEE is necessary, which has drawn attention
from researchers recently [71–75].

2.4. Clustered Data with Informative Cluster Size. 	e appli-
cation of GEE in clustered data with informative cluster
size is another special topic [76]. Taking an example of
a periodontal disease study, the number of teeth for each
patient may be related to the overall oral health of the
individual; in other words, the worse the oral health is, the
less the number of teeth is and, thus, cluster size �� may
in�uence the distribution of the oral outcomes, which is
called informative cluster size [45, 77]. Such issues commonly
occur in biomedical studies (e.g., genetic disease studies), and
rigorous statistical methods are needed for valid statistical
inference [78]. Note that if the maximum of cluster size
exists and is known, then this can be treated as (informative)
missing data problem, which can be solved via the weighted
estimating equations proposed by Robins et al. [79]; however,
if the maximum is unknown or not accessible, the method
of within-cluster resampling (WCR) proposed by Homan et
al. could be applied [80]. 	e basic idea is that, for each of ^
resampled replicate data based on a Monte Carlo method (^
is a large number, i.e., 10,000), one observation is randomly

extracted from each cluster, where �̂� with variance estimatorΣ̂� can be obtained from a regular score equation denoted by`�(�) for independent observations (i.e., linear regression for
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continuous data; logistic regression for binary data; Poisson
regression for count data), a = 1, 2, . . . , ^. 	e details are
shown as follows:

`� (�) = �∑
�=1
`�� (��) A [� ∈ "�] = 0;

�̂wcr = 1̂ �∑
�=1
�̂�;

�̂wcr = 1̂ �∑
�=1
Σ̂� − 1̂ �∑

�=1
(�̂� − �̂wcr) (�̂� − �̂wcr)� ,

(21)

where `��(��) = �����−1�� (��� − ����J�) with "� as the set of

data index selected from the �th cluster in ath replicate data.
Alternatively, the approach considered by Williamson et al.
by adopting the weighted estimating equations performs
asymptotically equivalently asWCR and also avoids intensive
computing, and it is referred to as the cluster-weighted GEE
(CWGEE) [81]. 	e estimating equation is

` (�) = �∑
�=1

1� ��∑�=1`�� (�) = 0, (22)

where `�� is de
ned the same as above, but what is dierent is
that the subscription � ranges from 1 to ��, not restricted by

the index "�. Note that as ^ → ∞, (1/^)∑��=1 `�(�) converges
to its expected estimating function and is asymptotically
equivalent to `(�).

	is method was also explored or extended for the
correlated data with nonignorable cluster size by Benhin et
al. and Cong et al. [82, 83]. Furthermore, a more e�cient
method called modi
ed WCR (MWCR) was proposed by
Chiang and Lee, where minimum cluster size �� > 1 subjects
were randomly sampled from each cluster, and then GEE
models for balanced data were applied for estimation by
incorporating the intracluster correlation; thusMWCRmight
be a more e�cient way for analysis [84]. But MWCR is not
always satisfactory and Pavlou et al. recognized the su�cient
conditions of the data structure and the choice of “working”
correlation structure, which allowed the consistency of the
estimates fromMWCR[85]. In addition,Wang et al. extended
the above work to the clustered longitudinal data, which are
collected as repeated measures on subjects arising in clusters,
with potential informative cluster size [45]. Examples include
health studies of subjects from multiple hospitals or families.
With the adoption and comparison of GEE, WCR, and
CWGEE, the author claimed thatCWGEEwas recommended
because of the comparable performance with WCR and the
lack of intensive Monte Carlo computation in terms of well
preserved coverage rates and desirable power properties,
while GEE models led to invalid inference due to the biased
parameter estimates via extensive simulation studies and real
data application of a periodontal disease study [45]. In addi-
tion, for observed-cluster inference, Seaman et al. discussed
the methods, including weighted and doubly weighted GEE
and the shared random-eects models for comparison, and

showed the conditions under which the shared random-
eects model described members with observed outcomes Y
[86]. More work can be found in [87–90], among others.

3. Simulation

In this section, we focus on “working” correlation structure
selection and compare the performances of the existing
criteria through simulation studies. Two types of outcomes
are considered, continuous and count responses. 	e models
for data generation are as follows:

9�� = J0 + J1 × e��;
log (9��) = J0 + J1 × e��, (23)

where J0 = J1 = 0.5, � = 1, 2, . . . , A with A = 50, 100, 200, 500
and � = 1, 2, . . . , f with f = 4, 8. 	e covariates e�� are i.i.d.
from a standard uniform distribution Unif(0, 1). For each
scenario, we generate the data based on the underlying true
correlation structures as independent (IND), exchangeable
(EXCH), and autoregressive (AR-1) with 4 = 0.3, 0.7.
1,000 Monte Carlo data sets are generated for each scenario,
where the estimates of regression parameters and within-
subject correlation matrix and seven model selection criteria
measures are calculated using the “working” correlation
structure of IND, EXCH, and AR-1. 	e partial simulation
results are provided in Tables 2, 3, and 4, where the results of
CIC are not shown because they are the same as those of QIC.

Based on the results, RJ does not perform well for
the scenarios with either continuous or binary outcomes,
while RJ1 and RJ2 have comparable performances and can
select the true underlying correlation structure in most
scenarios with better performance under large sample size.
QIC is not satisfactory when the true correlation structure
is independent but has advantageous performance for the
scenarios with the true correlation structure as exchangeable
or AR-1. On the other hand, SC and GP do not perform
well for longitudinal data with normal responses, but the
performance is slightly improved for longitudinal data with
binary outcomes. 	e results may vary due to variety of
factors including the types of “working” correlation structure
considered for model 
tting, the sample size, and/or the
magnitude of correlation coe�cient. For the future work,
there is a necessity to 
nd out a robust criterion for “working”
correlation structure selection of GEE, and more advanced
approaches are emerging currently.

4. Future Direction and Discussion

In this paper, we provide a review of several speci
c topics
such as model selection with emphasis on the selection of
“working” correlation structure, sample size and power cal-
culation, and clustered data analysis with informative cluster
size related to GEE for longitudinal/correlated data. 	e
simulation studies are conducted for providing numerical
comparisons among 
ve types of model selection criteria
[91, 92]. Until now, novel methodologies are still needed and
being developed due to the increasing usage and potential
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Table 2: Simulation for longitudinal data with independent correlation matrix.

� � Criterion

Selection frequencies of “working” correlation structure

IND EXCH AR-1 IND EXCH AR-1

Normal Binary

4

50

QIC 198 393 409 202 374 424
RJ 327 423 250 312 421 267
RJ1 388 322 290 399 316 285
RJ2 384 327 289 388 320 292
SC 488 1 512 351 310 339
GP 547 0 453 368 306 326

100

QIC 209 377 414 185 407 408
RJ 338 415 247 340 410 250
RJ1 389 349 262 381 358 261
RJ2 389 353 258 372 357 271
SC 482 1 517 352 346 302
GP 520 0 480 360 348 292

8

50

QIC 200 411 389 203 363 434
RJ 282 497 221 292 476 232
RJ1 402 354 244 386 340 274
RJ2 402 357 241 373 347 280
SC 465 1 535 351 325 324
GP 558 0 442 382 311 307

100

QIC 188 393 419 201 398 401
RJ 321 442 237 287 466 247
RJ1 347 385 268 385 367 248
RJ2 347 382 271 377 369 254
SC 492 0 508 355 343 302
GP 541 0 459 370 341 289

Table 3: Simulation for longitudinal data with exchangeable correlation matrix with 4 = 0.3.
� � Criterion

Selection frequencies of “working” correlation structure

IND EXCH AR-1 IND EXCH AR-1

Normal Binary

4

50

QIC 106 699 195 53 758 189
RJ 419 139 442 869 5 126
RJ1 0 963 37 12 898 90
RJ2 0 959 41 22 876 102
SC 0 593 407 282 650 68
GP 1 593 406 412 524 64

100

QIC 31 879 90 7 867 126
RJ 350 88 562 911 2 87
RJ1 0 995 5 2 946 52
RJ2 0 996 4 10 933 57
SC 0 598 402 339 635 26
GP 0 501 499 445 531 24

8

50

QIC 80 828 92 50 876 74
RJ 10 395 595 813 6 181
RJ1 0 1000 0 0 987 13
RJ2 0 1000 0 0 966 25
SC 0 488 513 302 696 2
GP 0 511 489 497 500 3

100

QIC 17 953 30 8 973 19
RJ 0 408 592 861 0 139
RJ1 0 1000 0 0 997 3
RJ2 0 1000 0 0 993 7
SC 0 470 530 328 672 0
GP 0 526 474 486 514 0
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Table 4: Simulation for longitudinal data with AR-1 correlation matrix with 4 = 0.3.
� � Criterion

Selection frequencies of “working” correlation structure

IND EXCH AR-1 IND EXCH AR-1

Normal Binary

4

50

QIC 91 166 743 66 170 764

RJ 712 142 146 925 12 63

RJ1 0 478 522 7 505 488

RJ2 0 466 534 20 499 481

SC 0 480 520 220 350 430

GP 0 543 457 303 332 365

100

QIC 25 116 859 7 122 871

RJ 770 95 135 972 4 24

RJ1 0 475 525 1 569 430

RJ2 0 481 519 5 571 424

SC 0 491 509 237 371 392

GP 0 540 460 290 353 357

8

50

QIC 50 88 862 44 77 879

RJ 646 148 206 934 5 61

RJ1 0 445 555 0 535 465

RJ2 0 443 557 10 535 455

SC 0 467 533 168 397 435

GP 0 549 451 269 406 325

100

QIC 16 39 945 7 33 960

RJ 648 154 198 972 0 28

RJ1 0 455 545 1 603 396

RJ2 0 455 545 1 609 390

SC 0 480 520 177 458 365

GP 0 532 468 247 457 296

theoretical constraints of GEE as well as new challenges
emerging from practical applications in clinical trials or
biomedical studies.

In addition, current research of interest related to GEE
also includes a robust and optimal model selection criterion
of GEE under missing at random (MAR) or missing not at
random (MNAR) [93, 94], sample size/power calculation for
correlated sparse or overdispersion count data or longitudinal
data with small sample [57–60], GEE with improved per-
formance under the situations with informative cluster size
and/or MAR and/or small sample size [95–98], and GEE for
high-dimensional longitudinal data [99]. Although GEE has
attractive features, �exible application, and easy implementa-
tion in so�ware, the application in practice should be cautious
depending on the context of study design or data structure
and the goals of research interest.
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