
1

Generalized Euclidean Measure to Estimate Distances on
Multilayer Networks
MICHELE COSCIA, IT University of Copenhagen, Denmark

Estimating the distance covered by a spreading event on a network can lead to a better understanding of
epidemics, economic growth, and human behavior. There are many methods solving this problem – which
has been called Node Vector Distance (NVD) – for single layer networks. However, many phenomena are
better represented by multilayer networks: networks in which nodes can connect in qualitatively different
ways. In this paper, we extend the literature by proposing an algorithm solving NVD for multilayer networks.
We do so by adapting the Mahalanobis distance, incorporating the graph’s topology via the pseudoinverse of
its Laplacian. Since this is a proper generalization of the Euclidean distance in a complex space defined by
the topology of the graph, and that it works on multilayer networks, we call our measure the Multi Layer
Generalized Euclidean (MLGE). In our experiments, we show that MLGE is intuitive, theoretically simpler
than the alternatives, performs well in recovering infection parameters, and it is useful in specific case studies.
MLGE requires solving a special case of the effective resistance on the graph, which has a high time complexity.
However, this needs to be done only once per network. In the experiments, we show that MLGE can cache its
most computationally-heavy parts, allowing it to solve hundreds of NVD problems on the same network with
little to no additional runtime. MLGE is provided as a free open source tool, along with the data and the code
necessary to replicate our results.
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1 INTRODUCTION
Complex networks are a powerful tool that allows us to investigate a number of questions about
many different complex phenomena: how epidemics spread [6], how countries [21, 22] and producers
in general [33, 34] explore the space of new profitable activities, and how people adopt new behaviors
[19] or products [27] are but few examples among themany. All these research trails share a common
format: they represent a complex space (social or economic) as a network and investigate how an
event propagates on them. This propagation is usually some sort of process activating/deactivating
the nodes of the network. One way to represent this mathematically is by connecting the status of
each node to a number – e.g. how many times the node performed a given function. We call “node
vector” the data structure storing these values.

One crucial part of the answer to the questions posed in these papers relies on estimating how
far the process spreads in the network. This is a non-trivial quantity to estimate, because it involves
calculating a (weighted) distance between groups of nodes – or, to better say, the distance between
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Fig. 1. Two examples of NVD scenarios. (a) A multilayer network. Solid edges are intra-layer relationships,
whose color represent the layer. Dashed purple edges are inter-layer couplings connecting a node with its
identities in the other layer. Node labels identify each identity as “layer id–node id”. Orange and pink nodes
are active in two different moments in time, gray nodes are never active. (b) The single layer view of (a),
collapsing all nodes connected by a dashed purple edge and all edges between pairs of collapsed nodes. A
node is orange (or pink) if any of its multilayer identities was orange (or pink) in (a).

the two node vectors, which needs to take into account the network topology conecting these
nodes. There are many ways to do so, as summarized in a recent survey [10], which labeled this
problem as the Node Vector Distance (NVD) problem. However, there is a crucial limitation in this
literature: so far, all methods solving NVD do so on networks with a single layer. None of these
methods work on multilayer networks.
In this paper, we propose a method that can be used for multilayer networks. In a multilayer

network, like in Figure 1(a), nodes can connect via different qualitative types of relations [3, 24] –
e.g. friendship, enmity, financial, leisure, collaboration, etc. In this paper, we aim at answering the
question: what is the distance between orange and pink nodes in Figure 1(a)? How do different
layers (differently colored solid edges) influence this distance calculation? And how do we count
jumping between layers, by following the dashed purple edges connecting different identities of
the same entity?

The latter two are important questions, because multilayer networks are a sophisticated tool that
is able to represent more complex phenomena than single layer networks. Multilayer networks have
proven their usefulness in showing that particular properties of complex networks only emerge
when considering all the layers [4], proving that a true multilayer analysis is more powerful than
the sum of single layer analysis on each of the layers separately.

Moreover, methods that are agnostic of the different layers through which nodes connect could
result in incorrect estimates: e.g., assuming social relationships exert influence on people’s behavior,
but ignoring the difference between a friendship and an enmity link. For instance, Figure 1(b) shows
a version of Figure 1(a) that one would construct if they were unaware about multiplexity. Is the
distance between the orange and the pink nodes in Figure 1(b) an accurate approximation of the
real distances from Figure 1(a)? Would the answer be the same if we knew that the blue and green
layers actively obstruct the propagation?
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This paper is an extension of previous work in which we defined the Generalized Euclidean (GE)
NVD solution [7]. In GE, one estimates the distance between the status of nodes at time 𝑡 with
their status at time 𝑡 + 1 by calculating the effective resistance between the two statuses. This is
achieved by calculating the pseudoinverse of the graph Laplacian, solving the heat equation in a
discrete setting, with the graph constraining the underlying topology. In this paper, we formulate a
way to create a multiplex graph Laplacian, leading to a Multi Layer Generalized Euclidean (MLGE).
We can plug this multiplex Laplacian in the equation to solve the problem for multilayer networks.
Our formulation is flexible, because it allows us to specify different propensities for different layers
to conduct the spreading process, and also to define how likely is the process to jump across any
two layers of the network.

In our experiments, we show that MLGE has an intuitive behavior and it is theoretically simpler
than other possible multilayer adaptations of NVD-solving algorithms – specifically, the multilayer
versions of the Earth Mover Distance (MLEMD) and of the Graph Fourier Transform (MLGFT).
MLGE also performs well in recovering infection parameters on a number of real world networks.
We show MLGE’s usefulness in a case study, highlighting the structural importance of airlines
connecting European countries.
MLGE is not particularly computationally efficient, because it needs to calculate the pseudoin-

verse of the Laplacian. However, under the assumption that an analyst is interested in simulating
thousands of spreading events on the same network, its structure allows for caching of the most
computationally-heavy parts. As a result, the time it takes to run a single spread event is roughly
indistinguishable from running thousands of them, a feature that, e.g., MLEMD does not have.

The code and the data necessary to replicate the results in the experiment section of this paper
are freely available1. We release MLGE as an open source tool free for use. The code can be obtained
by downloading the same archive.

2 RELATEDWORK
This paper provides a contribution to solve the NVD problem. A survey about methods dedicated
to these solutions has recently been published [10]. As we will make clear in our problem definition
(Section 3), NVD aims at estimating the distance between two vectors on a space defined by a graph.
NVD, in the sense of “network distance”, should not be confused with similarly named problems.
Examples are graph-graph distance [26, 36], where we calculate the distance between two graphs
instead of one (and no vectors); or graph-node vector correlation [20], where we estimate the
likelihood that a node vector has spread through the edges of a graph; or graph variance [12],
where one measures how spread out in a graph the values of a vector are. In the latter two cases,
there is only one node vector, not two as in NVD.
Among the NVD methods discussed in the literature, we decide to extend the Generalized

Euclidean method [7] to incorporate multilayer network data. Two alternatives to GE are the Earth
Mover Distance [18] and the Graph Fourier transform [45, 46]. Since we use these two methods as
the comparison with our own method, we explain them more in details in Section 4.4. We only note
that EMD has been studied for a long time in the literature, and that there are plenty of approaches
to perform the optimization step that it requires [14, 15, 29, 38, 39]. Each of these optimizations
could be conceivably used to create a sub-class of NVD solutions based on the EMD idea.

There are many other classical computer science problems that could conceivably be adapted to
solve NVD. One is Multi-Agent Path Finding (MAPF). MAPF is roughly equivalent to EMD: we
have a certain number of robots moving on a graph and we want to move them from an origin
configuration to a target configuration. The difference is that we impose a capacity on nodes and

1https://www.michelecoscia.com/?page_id=1733#nvdml
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v1 = 1  0  0  0  0  0
v2 = 0  1  0  0  0  1
v3 = 0  0  0  0  1  4

G = 𝛿v1,vx,G

Fig. 2. An example of simple NVD. Each value in 𝑣𝑥 corresponds to the node in𝐺 above and the final column
reports a simple 𝛿 distance between each vector and 𝑣1.

edges, specifically no robot can use the same node or edge at the same time with another robot.
Different scenarios and optimizations can generate their own NVD measure [1, 28, 30].
Another classical problem is Discrete Pursue Evasion. This is like MAPF with two teams of

robots: the pursuers and the evaders. Once a pursuer meets an evader in a node, they annihilate
each other. The time it takes for total annihilation could be used to estimate the NVD between
pursuers and evaders. Again, different scenarios and different optimization strategies can create a
new NVD subclass [32, 47].
All EMD, MAPF, and DPE variants are barely used to solve NVD and, when they are, it is

exclusively in a single layer scenario. Thus, our contribution of a multilayer NVD is unique in the
literature.
Solving NVD in multilayer networks is useful. NVD has many applications. For instance, NVD

could be useful to discover the 𝛽 contagion factor in network epidemics [6] (as we do in Section
5.4), which is also useful for evaluating the success of viral marketing campaign [27] (replacing
pathogens with product adoptions); estimating how dynamic is the export basket of a country
[21, 22], or the industrial composition of a region’s industry space [34]; calculating the similarity of
two images for computer vision algorithms [40, 42]; and performing signal processing tasks such
as frequency analysis [43] and trend filtering [48]. Finally, NVD can be used to calculate network
correlations of node attributes [9]. All these applications benefit from representing the data as a
multilayer network, and thus would need a multilayer NVD measure.

3 PROBLEM DEFINITION
3.1 Formulation
In NVD we have three inputs. We have two node vectors (𝑣1 and 𝑣2) and a multilayer graph 𝐺 . We
want to find a distance function 𝛿𝑣1,𝑣2,𝐺 such that: 𝑣1 × 𝑣2 ×𝐺 ↦→ R+0 , i.e. 𝛿𝑣1,𝑣2,𝐺 takes the inputs
and returns a real positive number. The output tells us how far 𝑣1 is from 𝑣2, constrained by the
complex space defined by 𝐺 .
Figure 2 shows a simplified example to aid intuition. Here, we count as 𝛿𝑣1,𝑣2,𝐺 the number of

edges between the node in one vector and the node in the other. This simple 𝛿𝑣1,𝑣2,𝐺 would break
down if we have a more complex topology in 𝐺 , or if we have more than one non-zero value in 𝑣𝑥 .
Since 𝛿 is a distance estimation it must be zero or positive, it must be zero if we calculate the

distance between 𝑣1 and itself, and it must be reflective (i.e. the distance between 𝑣1 and 𝑣2 is equal
to the distance between 𝑣2 and 𝑣1). Triangle inequality is not a necessary property for 𝛿𝑣1,𝑣2,𝐺 , since
there are many distance measures that do not have this property (e.g cosine distance). The measure
we define in this paper does respect triangle inequality, but this is not necessary.

We now provide more details about the inputs (𝐺 in particular), since their shape is what
determines the main contribution of this paper.
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Differently from all other NVD papers in the literature, we represent 𝐺 as a labeled graph
𝐺 = (𝑉 , 𝐸, 𝐷,𝐶). Here, 𝑉 is the set of nodes, 𝐸 is the set of edges, 𝐷 is the set of layers/dimensions
and𝐶 is the set of inter-layer couplings. Each edge in 𝐸 is a quadruple (𝑢1, 𝑢2, 𝑑,𝑤), with 𝑢1, 𝑢2 ∈ 𝑉 ;
𝑑 ∈ 𝐷 ; and𝑤 ∈ R is a real-valued edge weight.

The couplings in 𝐶 are special edges. They are a triple (𝑢1, 𝑢2,𝑤), and they are semantically
different from edges in 𝐸. An edge in 𝐸 represents a relation between nodes 𝑢1 and 𝑢2 of type 𝑑 . In
this case 𝑢1 and 𝑢2 are distinct entities. A coupling in𝐶 represents an identity across layers between
𝑢1 and 𝑢2, meaning that they refer to the same entity in different layers. Going back to Figure
1(a), the connection between nodes 3-4 and 3-7 is an edge in the green layer (layer 3) connecting
two different entities (entities 4 and 7). The connection between nodes 3-4 and 1-4 is a coupling
connecting two nodes belonging to the same entities (entity 4) across two layers (layers 1 and 3).
What the layers represent in the real world is normally problem-dependent: some problems

require to split a network into layers, while others do not. In general, a network has layers if it
contains connections that are qualitatively different from each other and/or switching back and
forth between different ways of connecting two nodes requires some extra effort.

For instance, in a social network, we can consider a friendship to be qualitatively different from
a work collaboration, because they come with different dynamics and expectations – although, if
these distinctions are irrelevant for the problem at hand, they can be compressed into a generic
“social relationship”. In this case, the inter-layer coupling connects a person with all its personas:
crossing an inter-layer coupling means that the person is switching between different modes of
thinking: “am I relating with this person as a friend or as a co-worker?”

In another example, two airlines connecting the same airports in a flight network can be consid-
ered as different layers because, for travelers, switching between planes of different companies
comes at a certain monetary and practical costs (e.g. switching between terminals) – even if one
might ignore this technicality if they want to talk exclusively about which airports can be reached
from which others, no matter the airline. In this case, the inter-layer coupling tells us we are in
the same physical space – the airport – and crossing it reports the cost a traveler incurs when
switching airlines to continue their trip.

Note that, in this formulation, edge weights are capacities, not costs [8]. A capacity-type weight
tells you how related two nodes are. For instance, if you are analyzing a road network, they will
tell you the throughput of a trait of road in number of cars (or lanes). A cost-type weight tells you
how hard it is to pass through the edge. In the same example, this could be the length of the trait of
road (in kilometers or in the time it is required to pass through it). This is an important distinction
to make when comparing our approach with the alternatives (in Section 4.4).
If the data does not have information about relationship strength, all weights can be set to the

same constant and will not affect the result.
The input vectors 𝑣1, 𝑣2 must have length |𝑉 |. Each vector 𝑣𝑥 determines the activation weight

of each node of 𝐺 . Entries in 𝑣𝑥 must be zero or positive real values. If an entry is zero, we say that
the node is inactive. A non-zero value determines how strongly the node is active. If the data only
contains data about the active/inactive status, 𝑣𝑥 can be a binary vector. One could also normalize
𝑣𝑥 so that it sums to one.

3.2 Motivation
We need𝐺 to be multilayer because many complex systems are better represented by mutlilayer
networks, and events propagating on multilayer structures might not be representable in single
layer approximations. We provide two examples.
First, one might avoid the multilayer problem by analyzing a multilayer network one layer at

a time, aggregating the results. This would not work for NVD. One reason why is that a layer in
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Fig. 3. The node color represents the occupancy in 𝑣1 (orange) and 𝑣2 (pink). The edge color represents the
layer. The purple dashed lines are inter-layer couplings.

isolation might be disconnected, as for instance in Figure 3(a). In this case, one cannot calculate
a propagation distance between nodes 1 and 2, because disconnected components cannot allow
propagation between them. However, in presence of multiple layers (Figure 3(b)), the propagation
can happen via a different layer – in blue in the figure.
Second, one could solve the previous issue by simply collapsing all layers into a single layer

network. However, by doing so, we lose the information contained in the couplings𝐶 , which might
speed up or delay the spread.

4 METHODOLOGY
Here, we propose to solve multilayer NVD by extending the existing Generalized Euclidean (GE)
measure to a Multi Layer Generalized Euclidean (MLGE). We start by defining the simple Gen-
eralized Euclidean measure as done in the original paper [7] (Section 4.1), and then we move on
to increasingly complex settings: unweighted multilayer (Section 4.2) and weighted multilayer
(Section 4.3).

4.1 Single Layer
The core issue in this paper is estimating the distance between two vectors, 𝑣1 and 𝑣2. The most
obvious choice is assuming that the vectors live in an n-dimensional Euclidean space. The number
of dimensions is the length of the vector which, in our case, is the number of nodes in the network:
|𝑉 |. Then, one can simply calculate the Euclidean distance between the two points identified by
the vectors: 𝛿𝑣1,𝑣2 =

√︁
(𝑣1 − 𝑣2)𝑇 (𝑣1 − 𝑣2). In this formula, (𝑣1 − 𝑣2) is the element-wise difference

of the vectors, while (𝑣1 − 𝑣2)𝑇 is its transpose.
The problem with the Euclidean distance is that each dimension contributes equally to the spatial

distance between the points. In a network, this is not the case. Since each dimension is a node in
the network, some dimensions contribute less to the distance than others. If two vectors only differ
along two dimensions, it makes a difference whether the two corresponding nodes are connected
or not.

The Mahalanobis distance solves the problem of differential contribution to the total distance by
different dimensions. In the Mahalanobis distance, we multiply the squared vector difference by
the inverse of the vectors’ covariance matrix 𝑆 : 𝛿𝑣1,𝑣2 =

√︁
(𝑣1 − 𝑣2)𝑇𝑆−1 (𝑣1 − 𝑣2). The interpretation

is that some dimensions are correlated with each other and thus contain less unique information
than others. Therefore, each of them should contribute less to the overall distance. 𝑆 only depends
on the vectors we are comparing, thus it also ignores 𝐺 ’s topology, as does the Euclidean distance.

In this paper we propose to replace the covariance matrix 𝑆 with a matrix 𝑄 which contains the
graph’s topological information. One constraint we have to respect is that 𝑄 needs to be positive
(semi)definite, otherwise the 𝑥𝑇𝑄𝑥 product could be negative for some vector 𝑥 , which would result
in a nonsensical distance estimation. For this reason, we cannot use the adjacency matrix of the
graph, which is not positive semidefinite – unless the graph is empty.
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We focus on the graph Laplacian 𝐿 due to its relationship with diffusion processes [5] and its use
in solving the effective resistance calculation between pairs of nodes in a graph [25]. In practice,
one can estimate the distance between two nodes in a graph by measuring the difference in electric
potential they would have if the graph were an electric circuit [13]. This is more advantageous
than using the shortest path distance, because the shortest path distance is heavily affected by the
addition/removal of a handful of edges, while the effective resistance is a more robust measure [12].

Discussing how to estimate the effective resistance between two nodes goes beyond the scope of
this paper, but the relevant portion here is that it involves the calculation of the Moore-Penrose
pseudoinversion of the Laplacian (𝐿+), which contains an estimation of the distance between the
nodes in the network. The Laplacian 𝐿 is the result of the difference between the degree and the
adjacency matrices of 𝐺 , with the degree matrix being a matrix with the degrees of the nodes on
the main diagonal and zeros elsewhere.

We need to calculate the Moore-Penrose pseudoinverse because 𝐿 is singular and thus it cannot
be inverted. The pseudoinversion requires solving the singular value decomposition problem,
i.e. finding the matrix Σ such that 𝑄1Σ𝑄

𝑇
2 = 𝐿. Then one can calculate Σ+, which contains the

reciprocals of Σ and satisfies the equation 𝑄2Σ
+𝑄𝑇

1 = 𝐿+. 𝐿+ is now the pseudoinverse of 𝐿, since it
holds that 𝐿𝐿+𝐿 = 𝐿 and 𝐿+𝐿𝐿+ = 𝐿+.
𝐿+ is a proper candidate for our 𝑄 matrix, defining a proper metric between 𝑣1 and 𝑣2 over 𝐺 as:

𝛿𝑣1,𝑣2,𝐺 =
√︁
(𝑣1 − 𝑣2)𝐿+ (𝑣1 − 𝑣2).

4.2 Unweighted Multilayer
The Generalized Euclidean (GE) measure derived in the previous section only considers 𝐿 as
originating from an unweighted and single layer 𝐺 . Here, we need to generalize 𝐿 to the weighted
multilayer case. Here we start by redefining how 𝐿 is calculated for unweighted multilayer networks.

As a starting point, we calculate 𝐿 not by using the degree and the adjacency matrix of𝐺 , but by
using 𝐵: the oriented incidence matrix of 𝐺 .
𝐵 is an |𝑉 | × |𝐸 | matrix. In the column of edge (𝑢1, 𝑢2), there is one 1 in the row corresponding

to one vertex and one −1 in the row corresponding to the other vertex. All other rows have 0. Thus
all columns of 𝐵 sum to zero. Note that it does not matter which one between 𝑢1 and 𝑢2 gets the 1
and which one gets the −1, as long as the columns sum to zero. This matters for directed graphs
showing how our method could also be applied to directed multilayer graphs, even if we ignore
them in this paper.

One can calculate the graph Laplacian of an unweighted single layer 𝐺 as: 𝐿 = 𝐵𝐼𝐵𝑇 , where 𝐼 is
the identity matrix.
If all inter-layer couplings in a multilayer network have the same strength and this strength is

equal to the intra-layer edges in 𝐸, then one could simply make 𝐵 as a |𝑉 | × (|𝐸 | + |𝐶 |) matrix, and
obtain the multilayer Laplacian accordingly. Note that one would still have to decide the style of
the multilayer coupling. Usually, this would be a clique style, where all nodes belonging to the
same entity are connected to each other (Figure 4(a)). However, alternatives exists, e.g. determining
a layer order and then connecting the nodes belonging to the same entity with a chain (Figure 4(b)).
Layers can be coupled in an arbitrary graph, as long as all the different identities of the same entity
are part of the same connected component.

Since now we have a proper 𝐿, we can apply the classical GE formula to this simple unweighted
multilayer network. 𝐿 is a |𝑉 | × |𝑉 | matrix, whose −1 entries are either edges or couplings. Its
main diagonal is the sum of the degree of the node plus all its couplings. Thus, this simplified
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(a) Clique coupling. (b) Chain coupling.

Fig. 4. The node color represents the layer to which it belongs. The purple dashed lines are inter-layer
couplings.

𝐿 is equivalent to the Laplacian of the supra-adjacency matrix [41]. Section 4.3 details how to
distinguish edges from couplings. The order in which dimensions 𝐷 are considered is not important.

4.3 Weighted Multilayer
One can create a weighted Laplacian by replacing the identity matrix 𝐼 with a properly constructed
weight matrix𝑊 . In our case,𝑊 must be a diagonal ( |𝐸 | + |𝐶 |) × (|𝐸 | + |𝐶 |) matrix. Each entry in
the diagonal represents the weight of a specific edge or inter-layer coupling. If the data already
contains edge weights and inter-coupling strengths, this can be passed directly to generate the
graph Laplacian as 𝐿 = 𝐵𝑊𝐵𝑇 .

In absence of data about edge and coupling weights, one might still want to differentiate between
the propagation happening inside a layer and the one happening across layers. This requires two
(sets of) parameters:

(1) Interlayer jump cost parameter(s): how easy it is to jump across layers. This could be a
|𝐷 | × |𝐷 | layer-layer matrix, if each layer pair has a different relation, or it could be a single
parameter if moving across any two layers is equivalent. This defines the 𝐶 portion of𝑊 .

(2) Intralayer cost(s): how much it costs to propagate inside a specific layer 𝑑 . This is a layer
vector of length |𝐷 | if each layer has a different cost. This defines the 𝐸 portion of𝑊 .

In both cases, but most likely for the couplings 𝐶 , one might want to specify an infinite edge
weight. Inter-layer couplings in multilayer networks often connect different identities of the same
entity. This would imply that, if something affects an entity, it affects all of its identities at the same
time. As a consequence, the coupling strength is infinite. Our method can handle this scenario by
collapsing nodes connected by infinite-strength couplings into the same node – and thus simplifying
𝐵 by reducing its dimensions.

When collapsing nodes across layers, one has to be aware that edges might need to be aggregated
as well. If you collapse node 1 into node 2 and node 3 into node 4, if both the (1, 3) and the (2, 4)
edges existed in different layers, they would collapse into the same edge. Thus we also need to
specify a function aggregating the weights of these edges. For MLGE, it makes sense to sum edge
weights: since edge weights are capacities, the new capacity connecting the collapsed nodes is the
sum of the old capacities connecting the different identities of the nodes. However, this is not the
only reasonable choice: as we will see in Section 5.2, measures based on shortest paths only use
the maximum weight between the two collapsed ones, thus we have to aggregate edge weights by
taking the maximum rather than the sum.

Now that the Laplacian 𝐿 = 𝐵𝑊𝐵𝑇 includes both weights and multilayer couplings, we can solve
the multilayer NVD problem by applying the classical GE formula.
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𝐿 has the same shape as in the unweighted multilayer case described in Section 4.2, with the
difference that now its entries are weighted and there is a way to quantify the difference between
edges and couplings.

4.4 Alternative Approaches
There are two alternatives to solve NVD: Graph Fourier Transform (GFT) and the Earth Mover
Distance (EMD).

4.4.1 Graph Fourier Transform. In GFT, one filters the input vectors 𝑣𝑥 such that their entries take
into account the connections between the nodes they represent [45]. The idea is that each value in
𝑣𝑥 is the result of the combination of a true signal and the correlations between sensors (the nodes).
Just like in signal processing, the GFT can tease those correlation out to reconstruct the true signal.
The two filtered input vectors can then be compared directly.

The filter is achieved by calculating the eigenvectors of the Laplacian of 𝐺 . If _0 ≤ _1 ≤
· · · ≤ _𝑛 are the sorted eigenvalues of 𝐿 and 𝑙0, 𝑙1, . . . , 𝑙𝑛 are the corresponding eigenvectors, then
Φ = (𝑙0, 𝑙1, . . . , 𝑙𝑛) and Λ is the diagonal matrix with the eigenvalues on the diagonal and zeroes
everywhere else. The filter of 𝑣 is then achieved as:

𝑣 = ΛΦ𝑇 𝑣 .

GFT was never developed with multilayer networks in mind but, given that it rests on the
Laplacian just like MLGE, we can develop an MLGFT by constructing the weighted multilayer
Laplacian in the same way we outlined in the previous sections.

4.4.2 Earth Mover Distance. In EMD, one assumes that the objective is to transport the weights
from the 𝑣1 occupancy to 𝑣2. We want to do so with the minimal number possible of edge crossing
[18]. This is not limited to graphs, but is valid for any two points 𝑢1, 𝑢2 in a space with a properly
defined distance 𝛿𝑢1,𝑢2 that respects triangle inequality. If𝑀 is the set of moves, the objective is:

𝑀 = argmin
𝑚𝑢1,𝑢2

∑︁
𝑢1

∑︁
𝑢2

𝑚𝑢1,𝑢2𝛿𝑢1,𝑢2 .

𝑚𝑢1,𝑢2 tells us the amount of weight that we want to transport from 𝑢1 to 𝑢2. The EMD distance
is then simply the sum of 𝑀 , i.e. the sum of distances between all 𝑢1s and 𝑢2s, weighted by how
much weight we can transfer between them. In a graph, one can use the shortest path distance
between 𝑢1 and 𝑢2 as 𝛿𝑢1,𝑢2 . While working on multilayer networks, to get an MLEMD measure
one has to make sure to take into account the layer switching cost, which can be encoded in the
weight of the coupling edges in 𝐶 .

Minimizing𝑀 is not trivial. We use the Pele and Werman [38, 39] implementation2.

4.4.3 Theoretical Comparison. In Section 5 we provide a few empirical examples of when MLGE
is superior to MLGFT and MLEMD. Here, instead, we briefly mention some minor theoretical
advantages over the alternatives.
As mentioned in Section 3.1, MLGE interprets the edge weights as capacities. MLGFT and

MLEMD, instead, see weights as costs. This has both theoretical and practical advantages for MLGE.
If edge weights are costs, it is difficult to represent instantaneous transitions. This would imply to

have an edge weight of zero, which would be confused with an absent edge. The resulting adjacency
matrix would have two different “types” of zeroes, with different semantics. There is, in principle,
no issue in having an infinite edge weight, provided this case is handled as we do in Section 4.3.

2https://github.com/wmayner/pyemd
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Fig. 5. Graphs transforming their edge weights to be interpreted as costs or capacities. The edges are labeled
with their value, which also determines their thickness.

Secondly, and relatedly, it is always possible to transform costs into capacities, but the converse
is not true. Compare Figure 5(a) with Figure 5(b). An edge with cost infinity has capacity zero
(equivalent to an absent edge), and an existing edge with cost zero has infinite capacity (Figure
5(a)). However, an edge with infinite capacity cannot have a cost of zero – as we mention before, it
would be confused with an absent edge in the adjacency matrix (Figure 5(b)). As a consequence,
MLGE can be applied in all scenarios – just transform edge costs into capacities –, but MLGFT and
MLEMD need some non-trivial adaptations to be applied to the edge-weight-as-capacity scenario.

None of this is insurmountable. One could always remember to keep track of the two semantically
different zeroes in the edge weights in MLGFT and MLEMD and apply our node collapse strategy,
but it represents a small argument in favor of using the cleaner interpretation of MLGE over the
alternatives.

5 EXPERIMENTS
5.1 Setup
The experiments in this section use the following datasets:

• EU Airlines [4]. In this network, the nodes are airports, connected if an airline has a direct
flight between the two airports. Each airline is a layer in the network. We clean the data
by removing airports that are not actually in Europe, plus some generic airport codes like
“XXXX”. Each node has an attribute telling us in which country the airport is located.

• Ego SM is a network extracted in 2013 from various social media – each of which is a layer
of the network. It collects all the direct friends – and the relations between them – of the
author on Facebook, Twitter, Linkedin, Last.Fm, Flickr, Google+, and Gmail.

• Copenhagen is the data produced by a study on mobility and social networks in Denmark
[44]. Students connect if they are Facebook friends, and if they call or text each other. Each of
these relationships is a layer of the network. The original data for calls and texts is weighted
and directed, but here we ignore the edge’s weight and direction for simplicity.

• Aarhus is a network connecting 61 faculty members in the Aarhus university CS department
in various ways, each determining a layer of the network [31]. They could collaborate,
co-author, have lunch together, and more.

• Physics is a network of scientific co-authors [11]. Physicists connect if they co-author a
paper, and the paper’s classification determines the layer in which the connection appears.
There are 16 total classifications.

• IRA is a network of social relationships betweenmembers of the Irish Republic Army terrorist
group [17]. Relationships come from five different time periods between 1970 and 1998, each
providing a layer in the network.
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Dataset |𝑉 | |𝐸 | |𝐷 | |𝐶 | Dens
EU Airlines 2,034 3,588 37 11,611 0.001
Ego SM 1,031 6,119 7 780 0.012
Copenhagen 1,904 7,747 3 1,539 0.004
Aarhus 224 620 5 328 0.025
Physics 909 7,090 16 849 0.017
IRA 1,293 2,131 5 931 0.003

Table 1. The number of nodes (|𝑉 |), edges (|𝐸 |), layers (|𝐷 |), inter-layer couplings (|𝐶 |), and edge density
(Dens) of all the cleaned datasets used in this paper.

(a) Short distance. (b) Long distance.

(c) Flattening of (a). (d) Flattening of (b).

Fig. 6. The setup for our chain test, increasing the number of layers between source (red) and destination
(green) node. Dashed purple edges represent the inter-layer couplings.

Table 1 reports their summary statistics. Here, the number of nodes |𝑉 | is the actual number
of nodes in the multilayer structure. Thus, two coupled nodes from different layers count as two
distinct nodes, even though in the literature they would normally be counted as a single node. The
inter-layer coupling count |𝐶 | assumes a clique-style inter-layer coupling. If a node has no edges in
a layer, it does not appear in that layer and thus needs no coupling.
We perform all experiments on a Xeon E-2286M 2.40GHz CPU, 32GB of RAM, Ubuntu 20.04.2

LTS.

5.2 Chain Test Validation
In this section we validate our multilayer NVD measures. We do so by testing some intuitive
scenarios, using chain of layers – which is why we call this the chain test. We start with a chain of
layers. Each layer contains a single edge. The two nodes are coupled, via a chain coupling style, to
the two nodes of the nearest layer. Figure 6(a) shows the setup with |𝐷 | = 2 layers and all coupling
weights in 𝐶 set to one. We then calculate the distance between two vectors occupying the node in
each corner of the setup.
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Fig. 7. The NVD distance value (y axis) for each of the alternative measures (line color), by varying the length
(subfigure a, x axis) and the strength of the inter-layer couplings (subfigure b, x axis) in the multilayer chain
test. Non-multilayer measures in dashed lines.

(a) Original network. (b) Infinite strength 𝐶 .

Fig. 8. The result of having infinite strength 𝐶 couplings (in dashed purple edges).

5.2.1 By Increasing |𝐷 |. As we increase |𝐷 | (Figure 6(b)), the distance between the two nodes
increases, proportional to the cost of transitioning between layers. We thus expect an NVD measure
to increase. However, if we did not have the capacity of seeing the multilayer structure, single-layer
NVD measures would only see the nodes as always being directly connected (Figure 6(c-d)). We
thus expect them to fail.
Figure 7(a) confirms our expectations. As we increase the number of layers between the origin

and the destination, all multilayer measures (MLGE, MLEMD, and MLGFT) correctly report longer
and longer distances. An analyst unable to see the multilayer nature of the data, instead, would
estimate the distances as constant (using GE, EMD, or GFT). MLEMD is the most sensitive to the
added layer: its distance has a linear relationship with |𝐷 |. MLGE has a sublinear relationship –
specifically, it is proportional to

√︁
|𝐷 |, while MLGFT is the least sensitive.

5.2.2 By Increasing𝐶 Weights. When we increase the strength of the couplings𝐶 , keeping |𝐷 | = 2,
MLGE behaves differently from MLEMD and MLGFT. If the strength of 𝐶 is infinite, all coupled
nodes collapse onto each other across layers, so we can approximate the multilayer network with a
multigraph (Figure 8). Since MLGE simulates the process of reaching and equilibrium state between
the input vectors, the fact that there are |𝐷 | links between the two nodes is important. Thus, as
the strength of 𝐶 grows, MLGE converges to a distance estimation that is lower than the one you
would get if the network would be single-layer, because alternative paths to achieve equilibrium
exist (Figure 7(b)).
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Fig. 9. The Small World validation result: NVD distance (y axis) as we add more and more layers (x axis).
Multilayer distance in dark color and single layer distances in dashed bright color.

This is not true for MLEMD and MLGFT. In this scenario, only the shortest path matters. The
fact that there are two possible paths is irrelevant, because the amount of weight to transfer (𝑚𝑎,𝑏 )
and the distance to cover (𝛿𝑎,𝑏 = 1) are the same, thus𝑀 is the same. This means that MLEMD and
MLGFT initially think that the distance to cover in the multilayer network is larger than the one
to cover in the single layer network, and only when the strength of coupling links is infinite we
collapse exactly on the single layer case (note that, in this scenarion GE = EMD, thus the EMD light
blue data line is hidden behind GE’s light red).

The behavior of MLGE here is more intuitive, because MLGE does not lose sight of the fact that,
if two nodes connect in multiple layers, then they are more related to each other and thus should
be able to pass information more easily.

5.3 Small World Validation
The chain test can show the behavior of the measure in a simple and intuitive setting, but it lacks in
complexity. We complement it with a similar setup using a more complex model, namely the Watts-
Strogatz Small World (SW) model [49]. In SW, nodes are displayed in a lattice and connected with a
fixed number of their neighbors. Then, each connection has a small probability of being rewired,
creating shortcuts in the lattice. We generate |𝐷 | independent SW networks, each generating a
layer of the network. Nodes with the same numeric id are coupled together across layers with a
chain coupling.
In our test, 𝑣1 has a value of 1 for four nodes at one end of the lattice in the first layer, while 𝑣2

has a value of 1 for four nodes at the opposite end of the lattice in the last layer. If |𝐷 | = 2 the first
and the last layers are adjacent, but if |𝐷 | > 2 then there are |𝐷 | − 2 intermediate layers between
them. Thus, we expect a proper multilayer NVD measure to record larger and larger distances as
|𝐷 | grows.
On the other hand, a non multilayer NVD measure should shrink. This is because the layers are

generated independently: when flattened, all created shortcuts will allow each node in the lattice
to reach more and more portions of the lattice. Thus the two sets of nodes with 1 values in 𝑣1 and
𝑣2 will get closer and closer.

Figure 9 shows that our intuition is correct for the MLGE and MLEMD measures: the multilayer
distance grows as we add more and more layers between 𝑣1 and 𝑣2, but the single layer measure –
blind to this increase in complexity in the structure – decreases. The only single layer measure grow-
ing as the number of layers grows is GFT, which has the counterintuitive behavior of considering
nodes farther away as the network gets denser.
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5.4 Performance
Here we use NVD techniques to estimate the propagation of an event in a network, using three mod-
els: the cascade and the threshold models, both developed by Granovetter [19], and the Susceptible-
Infected (SI) compartmentalized epidemic model on networks [37]. We use three models to show
that some NVD measures are more suited to work in different scenarios.

The models have some common characteristics that make them a natural test for NVD measures.
In all models we can represent the nodes’ status as a vector containing 0 if the node is not active,
and 1 if it is. No other values are possible. All models depend on some 𝛽 parameter. How 𝛽 is used
is different in different models – which is why we will use different symbols to refer to the 𝛽 of a
specific model: 𝛽𝑐 , 𝛽𝑡 , and 𝛽𝑠 for the cascade, threshold, and SI models, respectively. However, the
common factor is that they all use their specific 𝛽 to determine, at each time step, which nodes
change their values from 0 to 1 – and from 1 to 0, if allowed by the model.

We run 10, 000 simulations of each model on each of our datasets. For each run, we infect 10-20
nodes at random – generating a binary node vector 𝑣1 – and we extract a 𝛽 value from a random
distribution. We run each simulation for five steps. The final node configuration is stored in another
node vector 𝑣2. We then calculate the NVD between 𝑣1 and 𝑣2: the distance between the initial and
the final statuses of the nodes.
We then estimate the contribution an NVD measure does to predicting the real 𝛽 value. We do

so in two steps. First, we run a regression between 𝛽 and |𝑣2 |, i.e. the number of infected nodes
at the end of the process. This regression will have a certain mean absolute error 𝛽𝑏𝑎𝑠𝑒 . Then we
run a regression predicting 𝛽 with both |𝑣2 | and our NVD measure. This regression will have a –
hopefully – lower mean absolute error 𝛽𝑛𝑣𝑑 . The Relative Mean Absolute Error Difference between
the two models is:

𝑅𝑀𝐴𝐸𝐷 =
𝛽𝑏𝑎𝑠𝑒 − 𝛽𝑛𝑣𝑑

𝛽𝑏𝑎𝑠𝑒
.

This formula tells us how much we were able to reduce, on average, the mean absolute error of
the prediction of 𝛽 by adding the NVD measure to our regression. Thus, the higher RMAED, the
more useful NVD is. The RMAED value can be interpreted as a relative gain. If it is equal to 0.1, it
means that, on average, we reduced the prediction error by 10%.
We need these two steps because |𝑣2 | is a strong predictor of 𝛽 – if the propagation event can

infect nodes more or less easily, this will be reflected in how many nodes are infected at the end.
|𝑣2 | is a trivial quantity to calculate: to be useful, the more complex NVD measure must reduce the
errors made by using only |𝑣2 |.
Finally, we make two batches of comparisons. First, we compare MLGE against alternative

multilayer network distance measures – the multilayer adaptations of EMD (MLEMD) and of GFT
(MLGFT). Second, we flatten each 𝐺 into its single layer version and we apply the single layer
versions of the measures. This is done to prove that the multilayer structure is adding value to the
analysis, recalling our argument from Section 3.2.

5.4.1 Cascade Model. In the cascade model we have a belief propagating on a network, whose
spread is regulated by a parameter 𝛽𝑐 . To be activated, a node needs at least a 𝛽𝑐 fraction of its
neighbors to be active as well. A node moves from inactive to active when this condition is met,
and can move from active to inactive when this condition stops being met. There is an expected
correlation between 𝛽𝑐 and the network distance the belief will cover [10].
We extract 𝛽𝑐 from a normal distribution. We fix the average and standard deviation of the

distribution such that we avoid oversampling the 𝛽𝑐 values that would cause the threshold model to
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Network MLGE MLEMD MLGFT GE EMD GFT
EU Airlines 0.358 0.144 0.246 0.181 0.098 0.054
Ego SM 0.283 0.167 0.151 0.223 0.161 0.082
Copenhagen 0.198 0.015 0.020 0.031 -0.010 0.007
Aarhus 0.017 0.015 0.007 0.010 0.005 0.005
Physics 0.221 0.155 0.063 0.193 0.141 0.153
IRA 0.187 0.138 0.073 0.185 0.127 0.054

Table 2. The RMAED of each multilayer network distance measure (left panel) and single layer distance
measure (right panel). Best performing method in bold. Cascade model.

Network MLGE MLEMD MLGFT GE EMD GFT
EU Airlines 0.219 0.223 0.200 0.091 0.103 0.033
Ego SM 0.110 0.109 0.094 0.041 0.043 0.028
Copenhagen 0.001 0.000 0.001 0.000 0.000 0.000
Aarhus 0.120 0.114 0.104 0.011 0.007 0.011
Physics 0.030 0.026 0.020 -0.002 -0.002 -0.002
IRA 0.167 0.188 0.170 0.135 0.133 0.093

Table 3. The RMAED of each multilayer network distance measure (left panel) and single layer distance
measure (right panel). Best performing method in bold. Threshold model.

die out. High 𝛽𝑐 values result in a final state with no active nodes, which are indistinguishable from
each other. Since 𝛽𝑐 is continuous and normally distributed, the quality measure RMAED is based
on a simple linear regression model. In this experiment, we take the logarithm of the NVD measure.
This is because, in the cascade model, each linear increase in 𝛽𝑐 causes an exponential decrease in
active nodes, because the requirements for being active for each node becomes demanding. Thus
we would expect a log-linear relationship between 𝛽𝑐 and the NVD distance which makes our
validation via linear fit unsuitable. By log-transofming the NVD value, we are correctly estimating
its mean absolute error.

Table 2 shows the results. Firstly, when comparing MLGE with MLEMD and MLGFT, we can see
that MLGE shows a stronger predictive error loss than the alternatives. Secondly, for all measures,
the loss in prediction power when working on a flattened structure is noticeable in all but one cases
(MLGFT on the Physics network). This proves the usefulness of the multilayer extension to NVD.

5.4.2 Threshold Model. The threshold model works exactly like the cascade model, but 𝛽𝑡 this
time is not the relative number of neighbors that needs to be infected, but the absolute number.
To be activated, a node needs at least 𝛽𝑡 neighbors to be active. The higher the 𝛽𝑡 the more active
neighbors you need to transitions and, therefore, the less the covered distance.

We extract 𝛽𝑡 from a discrete uniform random distribution. The minimum is 1, and the maximum
(empirically, between 4 and 8) is a value that generates at least one additional infected node in the
network. Since 𝛽𝑡 is discrete and not normally distributed, we cannot run a linear model to predict
it. Instead, we run a Poisson regression, which is used to model count variables. In this case, we do
not log-transform the NVD measure, because this is already taken into account in the assumptions
of the Poisson regression.
Table 3 shows the results. The table highlights that, depending on the underlying propagation

model, different NVD measures might perform better or worse. Compared to Table 2, now we see
that the difference between MLGE and MLEMD is much lower. In some cases, MLEMD is preferred.
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Network MLGE MLEMD MLGFT GE EMD GFT
EU Airlines 0.029 0.044 0.006 0.004 0.004 0.000
Ego SM 0.033 0.030 0.007 0.012 0.006 0.003
Copenhagen 0.056 0.086 0.002 0.007 0.007 0.001
Aarhus 0.013 0.009 0.002 0.001 0.004 0.002
Physics 0.015 0.013 0.006 0.007 0.006 0.002
IRA 0.039 0.037 0.002 0.029 0.024 0.000

Table 4. The RMAED of each multilayer network distance measure (left panel) and single layer distance
measure (right panel). Best performing method in bold. SI model.

We also see that the underlying network makes a difference. For the Copenhagen dataset, no NVD
measure actually provides any improvement over simply counting the number of final active nodes.
It is still true, however, that multilayer NVDs always perform better than ignoring the multilayer
nature of the propagation phenomenon.

5.4.3 SI Model. Finally, we test an SI model, where the presence of a single active neighbor turns
a node active with probability 𝛽𝑠 . We extract 𝛽𝑠 from a random normal distribution, and thus we
perform a simple linear regression.

This is the hardest test for these measures, because there is a strong direct association between
𝛽𝑠 and |𝑣2 |. This is due to the fact that, in an SI model, nodes cannot turn inactive after they have
been activated. To give context, the 𝑅2 of the regression between 𝛽𝑠 and |𝑣2 | is 0.917 in the EU
Airlines network, i.e. |𝑣2 | is practically a perfect predictor of 𝛽𝑠 .

However, Table 4 shows that multilayer NVD measures can still reduce the mean absolute error
by several percentage points, even in present of almost perfect correlations. Again, our proposed
MLGE is the best contributor in most datasets, and multilayer NVD measures perform better than
NVD measures that only access to single layer information.
In summary, in this section we see two things. First: multilayer NVD measures are always an

improvement over monolayer NVD measures. Second: while MLGE is always a good multilayer
NVDmeasure, it is not always the best. This is model specific: depending on the phenomenon under
study one might want to choose MLEMD instead. This is a known property of NVD measures:
they have different ways of modeling propagation on a network, as classified in previous work
[10]. MLGE assumes a random percolation model, while MLEMD assumes an omniscient optimizer.
Thus, the choice of the specific NVD measure is not only a matter of performance: it also depends
on the characteristics of the precise phenomenon under study.

5.5 Efficiency
MLGE’s efficiency is linked to the calculation of the pseudoinverse of the Laplacian, which is
O(|𝑉 |𝜔 ), with 𝜔 higher than 2 but lower than 3, depending on the implementation of SVD used.
Empirically, on the machine used for the experiments, a full run of MLGE on a network with
|𝑉 | ∼ 1000 and |𝐸 | ∼ 9000 took 4.4 seconds. Figure 10 shows how that compares to the other
methods on a number of dimensions. In all cases, we perform the experiments on a stochastic
blockmodel synthetic network, which allows us to vary one aspect of the network while keeping
the rest constant.

5.5.1 By Input Size. In Figure 10(a) we change the size of the input vectors 𝑣𝑥 in terms of number
of nonzero entries. We can see that both MLGE and MLGFT are unaffected by how many non-
zero entries 𝑣𝑥 have. MLGE has a slightly better constant factor in the runtime than MLGFT, as
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Fig. 10. The runtimes (y axis) of all methods, varying different dimensions of the input (a-c). The thick line is
the average of ten runs and the thin lines show the standard deviation. (d) Comparing one run against 100
runs on the same network, reusing computation.

calculating the pseudoinverse of the Laplacian is faster than calculating the eigenvectors. MLEMD,
instead, is heavily affected, because it needs to calculate the shortest paths between all pairs of
nodes with at least one non-zero entry in 𝑣𝑥 . If there are many zeroes, it means that MLEMD has
much fewer computations to make.

5.5.2 By Layer Count. In Figure 10(b) we keep the number of nodes and intra-layer edges constant,
but we split the network in more layers. MLGE and MLGFT are unaffected, while MLEMD takes
longer times.While the number of intra-layer edges is constant, there are more inter-layer couplings,
and thus it takes longer to calculate the shortest paths.

5.5.3 By Node Count. In Figure 10(c) we increase the number of nodes in the network. We can see
that, as the networks get larger, there is little difference in the order of magnitude of the runtime
between the methods (note the logarithmic scaling). MLEMD scales better, because the shortest
path computation is more efficient than pseudoinverting (O(|𝑉 |2) vs O(|𝑉 |∼3)), but EMD still needs
to optimize the weight transfer, which is a computationally complex problem.

5.5.4 Runtime Breakdown. Figure 10(d) highlights the key advantage of MLGE and MLGFT over
MLEMD. Here, we are in the scenario of having a single network on which a process unfolds,
and many vectors 𝑣𝑥 for which we are interested in calculating the distances. This is a common
scenario: simulating day after day of an epidemic outbreak on the same network, the distance for
every exporter pair on the unchanging Product Space, etc.

In both MLGE and MLGFT, most of the running time is taken by the expensive step of pseudoin-
verting or calculating the eigenvectors of the Laplacian. However, if the graph does not change,
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Rank Airline Δ𝑑 Δ|𝐸 | Δ|𝑉 |
1 Flybe 0.0557 88 6
2 Austrian Airlines 0.0180 43 2
3 Netjets 0.0177 143 14
4 Ryanair 0.0152 523 19
5 Turkish Airlines 0.0149 95 10

Table 5. Top five airlines by Δ𝑙 value. We also report the number of edges (Δ|𝐸 |) and of nodes (Δ|𝑉 |) that 𝐺
loses once we remove layer 𝑙 .

both can be cached and reused. Then, calculating more distances adds little to no additional run-
time. Calculating a single distance in MLGE in our scenario takes 4.4 seconds, but calculating 100
distances takes only 4.8 in total.

On the other hand, in MLEMD we can only cache the shortest paths, but we still need to find the
optimal weight transfer between two vectors. As a result, even if calculating a single distance takes
only 2.6 seconds, calculating 100 distances takes 48 seconds, ten times as much as with MLGE.

5.6 Case Study
In this case study, we focus on the EU Airlines dataset. We use MLGE to answer the question: how
important is an airline for the connectivity of Europe? And: which are the most important airlines
for the connectivity of a country in Europe? To answer these questions, we represent each country
𝑐 as a node vector 𝑣𝑐 . The vector 𝑣𝑐 contains 1 for the entries corresponding to the airports located
inside 𝑐 , and 0 otherwise. We then calculate all country-country distances by applying MLGE to all
country pairs, obtaining the current average distance between countries in the EU:

𝐸𝑈𝑎𝑣𝑔 =

∑
𝑐1,𝑐2

𝑀𝐿𝐺𝐸 (𝐺, 𝑣𝑐1, 𝑣𝑐2)

|𝑂 | ( |𝑂 | − 1) ,

with 𝐺 being the network, and 𝑂 the set of countries. Note that we just skip calculating the
distance of 𝑐 with itself.
We can repeat the procedure removing each layer 𝑑 in turn. This results in a 𝐸𝑈𝑑 distance

estimation, which normally is higher – but it could be lower if removing 𝑑 also drops a significant
number of hard-to-reach nodes. The Δ𝑑 = 𝐸𝑈𝑑 − 𝐸𝑈𝑎𝑣𝑔 value is interesting: it tells us how much
the distance increased by removing 𝑑 from the network. The higher this value, the more important
the layer is for the network.

Table 5 reports the top five airlines according to this criterion. This ranking is interesting because
we established that MLGE has a clean intuition as a distance – thus it is meaningful –, and it cannot
be approximated with simpler statistics. One could expect that an airline is important proportionally
to the number of edges it contributes. However, by far the layer with most edges is Ryanair (523
edges, the second largest layer is Easyjet with 199). Yet, Ryanair only ranks fourth in importance
(Easyjet ranks seventh), and the top two layers have fewer than 100 edges.

In fact, the p-value of the expected anti-correlation between Δ𝑑 and the size in edges of 𝑑 is a
mere 0.07 after controlling for Δ|𝑉 | – which we need to do because otherwise dropping edges could
result in decreasing Δ𝑑 if we also drop enough hard-to-reach nodes. This is far from the required
significance threshold of 0.01.

One cannot also explain the Δ𝑑 value by looking at the topology of the layer itself. Airlines tend
to have two main wiring strategies: (i) connect everything to a central hub – usually a national
airline strategy like for Austrian Airlines (Figure 11(a)); or (ii) have an “all-to-all” decentralized
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Fig. 11. Two layers of the EU Airlines network. Nodes in red are the domestic airports of the two companies.

Country Airline EU Δ𝑑 Rank Country Δ𝑑 Rank
Belgium Brussels Airlines 28th 2nd
Czechia Czech Airlines 10th 2nd
France Air France 17th 15th
Germany Lufthansa 6th 3rd
Ireland Aer Lingus 30th 3rd
Italy Alitalia 19th 17th
Norway Norwegian Air 18th 2nd
UK British Airways 11th 10th

Table 6. Selected countries with the ranking of their domestic airline in the overall EU Δ𝑙 ranks and in the
ranking considering only the country as an origin.

strategy – a low-cost approach such as the one of Ryanair (Figure 11(b)). The difference between
Figures 11(a) and 11(b) can be estimated by using a centralization score [16] – by comparing the
centrality scores with the ones one would obtain from a maximally centralized graph, i.e. a star.
The p-values of the correlations between Δ𝑑 and degree, closeness, and betweenness central-

ization scores are 0.26, 0.18, and 0.0336, respectively. When we perform the Holm-Bonferroni
correction for multiple hypothesis tests [23], such p-values fail to clear the significance threshold
of 0.1, meaning that there is no significant correlation between Δ𝑑 and them. One cannot simply
approximate Δ𝑑 by looking at the centralization of the layer.
For our second question, we perform the same operation but, rather than making an average

across all country-country pairs, we focus on each country and we average only its distances to all
other EU countries. We expect to see that the national airline of the country ranking higher than it
does for the whole Europe, as it connects all of its cities to the rest of the system.

Table 6 reports the result of this test for selected countries. In all cases our expectation is met: the
flagship airline is more important for the country itself than for Europe as a whole, because it ranks
higher in importance. However, there is a clear distinction between countries. For some (Belgium,
Czechia, Ireland, Norway) the rank difference is large: between 8 and 27 positions. For others
(France, Germany, Italy, UK), the rank difference is barely noticeable. This could be explained by
the size and economic importance of the countries in the latter group, which causes non-domestic
airlines to still serve them with a wide variety of routes.
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6 CONCLUSION
In this paper we extend an existing algorithm to solve the Node Vector Distance (NVD) problem
to handle multilayer networks. This is a necessary extension, because multilayer networks can
accurately model more complex real world phenomena. Ignoring this more complex structure would
lead to incorrect estimations. Our method, Multi Layer Generalized Euclidean (MLGE) can handle
weighted networks with an arbitrary number of layers and an arbitrary function determining the
strength of inter-layer couplings. The method has both theoretical and practical advantages over
the possible alternatives. Specifically, by using an “edge weights as capacities” approach, it is more
intuitive, and it is overall more effective in retrieving infection parameters in a threshold model.
We also show that MLGE’s results are intuitive for a human interpreter, and they are useful in a
case study.

This is an improvement over the literature solving NVD, but a number of questions remain open.
First, all methods – both single and multilayer – require the input network to be connected in a
single component. How to generalize this method to arbitrary networks is still unclear. Second,
using SVD to pseudoinvert the Laplacian is by no means the only possible choice. The growing
literature on node embeddings [2, 35] could provide useful alternatives, which might also help with
the high space and time complexity of the method. Further, one could use these methods to infer
the underlying network structure behind a propagation event. Finally, one could extend the NVD
literature by finding correlations between spreading events, rather than their distance – similarly
to the network-event correlation explored in related works [20].

Acknowledgments. The author wishes to thank Clara Vandeweerdt for insightful discussions
regarding the statistical analysis.
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