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Abstract— We propose an analysis tool of the finite-length
iterative turbo decoding algorithm. The proposed tool is a gen-
eralized EXIT chart based on the mutual information transfer
characteristics of the extrinsic information in the iterative turbo
decoding algorithm. The proposed tool can describe the proba-
bilistic convergence behavior of the iterative decoding algorithm.
By using this tool, we obtain the BER estimates of the finite-
length turbo codes in the form of a lower bound, which shows a
gentle waterfall over a wide waterfall region. The obtained lower
bound is in reasonable agreement with the BER obtained by the
simulations of the iterative decoding algorithm.

I. INTRODUCTION

Since turbo codes were introduced [1] by Berrou et al. in
1993, the analysis of the bit error rate (BER) performance
has been an important issue. However, due to the mathemati-
cal complexity of the iterative turbo decoding algorithm, the
analytical derivation of the BER performance has not been
successful and thus we usually rely on extensive simulations.
As an alternative to avoid the exhaustive simulation, ten Brink
[2] proposed the extrinsic information transfer (EXIT) chart
considering the mutual information transfer characteristics of
the extrinsic information in each constituent soft-in/soft-out
(SISO) decoder of the turbo decoding algorithm under the
Gaussian assumption of the input extrinsic information with a
consistent probability density function (pdf) [3]. Independently,
El Gamal and Hammons [4], and Divsalar et al [5] proposed
a similar analysis tool using the signal-to-noise ratio (SNR)
transfer characteristics of the Gaussian extrinsic information.
These tools are useful to predict the threshold Eb

N0
, where the

waterfall occurs in the BER performance, of the infinite-length
turbo codes. However, the information blocklength of turbo
codes is, in practice, limited to avoid the high communication
latency and the high decoding complexity, e.g., 40 to 5114 bits
per information block is chosen in the 3G communications [6].
Since the finite-length turbo codes have a BER performance
with a gentle waterfall over a wide waterfall region, the
threshold Eb

N0
is not that meaningful and thus the EXIT chart

and the SNR transfer chart are not that useful for the analysis
of the finite-length turbo decoding algorithm. Thus, there has
been the need for an analysis tool of the finite-length turbo
codes and decoding algorithm. Lee and Blahut [7], [8] proposed
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Fig. 1. The structure of turbo decoding algorithm, where Z represents the
channel output or the received codeword frame, Λ1,2 and Λ2,1 denote the
extrinsic information obtained in DEC1 and DEC2, respectively.

the SNR transfer characteristic band (TCB) chart to analyze
the finite-length turbo decoding algorithm and obtain the BER
estimate or the lower bound on the BER performance of the
finite-length turbo codes. In an analogous manner, in this paper,
we propose an EXIT band chart which can give the information
about the probabilistic convergence behavior of the iterative
decoding algorithm. Then, we obtain a lower bound on the
average BER performance of the finite-length turbo codes by
using the EXIT band chart. The obtained lower bound is in
reasonable agreement with the BER performance obtained by
the full simulation of the iterative decoding algorithm even in
the wide waterfall region.

II. TURBO DECODING PRELIMINARIES

The iterative turbo decoding uses the maximum a posteri-
ori probability (MAP) decision algorithm composed of two
constituent SISO decoders [1], which are named as DEC1
and DEC2, respectively. The extrinsic information messages
obtained in one constituent SISO decoder are fed back to the
next constituent SISO decoder after interleaved or deinterleaved
to be used as the prior messages as shown in Fig. 1. Thus, the
behavior of each constituent SISO decoder can be represented
as a function of the extrinsic information for given received
codeword frame, or the channel output sequence. Throughout
this paper, we assume a binary additive white Gaussian noise
(AWGN) channel and the binary phase shift keying (BPSK)
signalling which maps the information bit 0 and 1 to 1 and −1,
respectively. Then, without loss of generality, we assume the
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all-zero information sequence which is transmitted as the all-
one sequence. Let bk, k = 1, 2, · · · , N , denote the information
bit in the information block with length N , and let xk be the
channel output of the BPSK signal corresponding to bk. Then,
we can write down the posterior �k of bk in the turbo decoding
algorithm in an AWGN channel with the noise variance σ2 as
[1]

�k =
2
σ2

xk + λ1,2
k + λ2,1

k , k = 1, 2, · · · , N, (1)

where λ1,2
k and λ2,1

k denote the extrinsic information of bk

obtained in DEC1 and DEC2, respectively.

III. EXIT BAND CHART

It is known that the behavior of each constituent SISO
decoder in the infinite-length turbo decoding algorithm can be
represented [2] by the transfer characteristics of the extrinsic
information in terms of the mutual information between the
extrinsic information and the corresponding information bit. In
this Section, we propose a more general transfer characteristics
of the extrinsic information to be used for the analysis of the
finite-length iterative turbo decoding algorithm. It is observed
that the sequence of extrinsic information has an approximately
Gaussian histogram [8]. Thus, the sequence of extrinsic in-
formation for each received codeword frame associated with
a certain channel realization and interleaver will be regarded
as an observation sequence of a Gaussian random variable
with a consistent pdf [3]. Let [s] label the seed of channel
realization and interleaver. Then, for given [s], we obtain

the sequences of output extrinsic information, {λ1,2
k

[s]}N
k=1

in DEC1 and {λ2,1
k

[s]}N
k=1 in DEC2. By the consistent pdf

of extrinsic information, the variance is twice the mean so
the statistics of extrinsic information can be described only
by the SNR, where SNR is half the mean and one quarter
of the variance. Let snrΛ1,2[s] and snrΛ2,1[s] be the SNR of

the sequence {λ1,2
k

[s]}N
k=1 and {λ2,1

k

[s]}N
k=1, respectively. As

mentioned above, for given [s], we can interpret {λ1,2
k

[s]}N
k=1

and {λ2,1
k

[s]}N
k=1 as the observation sequence of the Gaus-

sian random variable Λ1,2[s] ∼ N (
2snrΛ1,2[s] , 4snrΛ1,2[s]

)
and

Λ2,1[s] ∼ N (
2snrΛ2,1[s] , 4snrΛ2,1[s]

)
, respectively. In the itera-

tive decoding process, Λ1,2[s]
and Λ2,1[s]

are also used as the
input extrinsic information of DEC2 and DEC1, respectively.
Let IΛ1,2[s] be the mutual information between the extrinsic

information Λ1,2[s]
and the information bit. When Λ1,2[s]

is
considered the input extrinsic information of DEC2, IΛ1,2[s] is
related with snrΛ1,2[s] as [2]

IΛ1,2[s] = J
(
snrΛ1,2[s]

)
, (2)

where

J(x) = 1−
∫ ∞

−∞

1√
8πx

exp

(
− (y − 2x)2

8x

)
·log2

(
1 + e−y

)
dy

(3)
with x ≥ 0 is an increasing function. On the other hand, when
Λ1,2[s]

is considered the output extrinsic information of DEC1,
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Fig. 2. The cumulative distribution of the normalized IΛ1,2 [or IΛ2,1 ] for
arbitrarily fixed IΛ2,1 [or IΛ1,2 ] and Eb

N0
in DEC1 [or DEC2] with G =

(23, 35), N = 1024 and Rc = 1/2.

IΛ1,2[s] is obtained by using the histogram of {λ1,2
k

[s]}N
k=1.

The mutual information between the information bit and the
extrinsic information Λ2,1[s]

, which is denoted by IΛ2,1[s] , is
obtained in the same manner as for IΛ1,2[s] . Consequently, for
a given seed of channel realization and interleaver labelled
with [s], the behavior of each constituent SISO decoder can
be described by the transfer characteristics of the mutual
information IΛ1,2 and IΛ2,1 with a parameter Eb

N0
as

IΛ1,2[s] = g[s]

(
IΛ2,1 ,

Eb

N0

)
for DEC1 (4)

IΛ2,1[s] = h[s]

(
IΛ1,2 ,

Eb

N0

)
for DEC2. (5)

Since the functions g[s] and h[s] cannot be analytically derived
in practice, we obtain those functions by using the open loop
simulation [7] without considering iterations. We repeat the
open loop simulation by changing the seed of the channel real-
ization and the sequence of input extrinsic information in order
to simulate the various channel realization and interleavers used
in the actual iterative turbo decoding process. Since the change
of the seed for the sequence of input extrinsic information
can simulate the change of the interleaver used in the actual
iterative turbo decoding process, we can also label the seed
of the channel realization and the sequence of input extrinsic
information by [s]. We obtain various values for the mutual
information of output extrinsic information in the constituent
SISO decoder depending on the seed of the channel realization
and the sequence of input extrinsic information even though
we use the same Eb

N0
and the same mutual information of

input extrinsic information. Thus, for each Eb

N0
, by plotting the

collection of IΛ1,2 [or IΛ2,1] with respect to IΛ2,1 [or IΛ1,2] in
DEC1 [or DEC2], a band of IΛ1,2 [or IΛ2,1] called the EXIT
band is obtained. It is observed that in DEC1 [or DEC2], IΛ1,2

[or IΛ2,1] has approximately a Gaussian histogram for each
Eb

N0
and each IΛ2,1 [or IΛ1,2] as shown in Fig. 2. Thus, for
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Fig. 3. The EXIT band chart of the turbo decoding algorithm with G =
(31, 27), N = 1024 and R = 1/2.

each Eb

N0
, the band of IΛ1,2 [or IΛ2,1] for DEC1 [or DEC2]

can be represented by avg(IΛ1,2) and avg(IΛ1,2) ± std(IΛ1,2)
[or avg(IΛ2,1) and avg(IΛ2,1)± std(IΛ2,1)] as shown in Fig. 3,
where avg(·) and std(·) denote the average and the standard
deviation, respectively. The obtained two EXIT bands corre-
sponding to DEC1 and DEC2 are plotted together in one plane
as shown in Fig. 3, which is named as the EXIT band chart.
For each Eb

N0
and IΛ2,1 [or IΛ1,2], we can choose one IΛ1,2 [or

IΛ2,1] out of all possible ones in the EXIT band corresponding
to DEC1 [or DEC2]. By interpolating chosen IΛ1,2 [or IΛ2,1],
we can obtain a mutual information transfer characteristic of the
input and output extrinsic information in DEC1 [or DEC2] for
an arbitrarily chosen seed of channel realization and interleaver.
Then, the EXIT band for DEC1 and DEC2 can be thought to
contain many mutual information transfer characteristics g[s]

and h[s], respectively, obtained for various seeds of channel
realization and interleaver. Thus, we can also call these two
EXIT bands as the g-band and the h-band, respectively. Fig.
4 shows the mutual information trajectories of the individual
sequences of extrinsic information obtained from the iterative
turbo decoding simulation. This shows that the individual
mutual information trajectories fit in the EXIT band chart quite
well, where we note that the EXIT bands are represented by the
statistical bands as mentioned above. The widths of g-band and
h-band depend on the information blocklength N reciprocally.
As N goes to infinity, the widths of g-band and h-band go
to zero so the EXIT band chart shrinks to the ordinary EXIT
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Fig. 4. The mutual information trajectories and the EXIT band chart, where
N = 1024, G = (15, 13), Rc = 1/2 and Eb/N0 = 0.8dB.

chart.
The g-band and the h-band are monotonically increasing

with respect to IΛ2,1 and IΛ1,2 , respectively. Since the first
intersection of g[s] and h[s] implies the convergence of the iter-
ative decoding algorithm for given seed of channel realization
and interleaver labelled with [s], the study of the intersection
behavior of g-band and h-band can give us the information on
the probabilistic convergence behavior of the iterative decoding
algorithm. For very low Eb

N0
as shown in Fig. 3 (a), the g-

band and the h-band intersect at low IΛ1,2 and IΛ2,1 with
high probability, which results in high BER. As Eb

N0
grows, the

probability that the g-band and the h-band intersect at low IΛ1,2

and IΛ2,1 decreases slowly, which causes a slow improvement
in the BER performance with respect to Eb

N0
and thus a wide

waterfall region. At very high Eb

N0
, the g-band and the h-band

intersect at high IΛ1,2 and IΛ2,1 with probability 1, which results
in the low BER performance.

IV. LOWER BOUND ON BER PERFORMANCE

In Section III, we showed that the proposed EXIT band chart
is useful for the qualitative analysis of the finite-length iterative
turbo decoding algorithm. In this Section, we will show that the
proposed EXIT band chart is useful for the quantitative analysis
as well. For given [s], we obtain the AWGN channel output
x

[s]
k which is regarded as the kth observation of a Gaussian

random variable X [s] ∼ N (1, σ2). Then, for given [s], (1) can
be written as

�
[s]
k =

2
σ2

x
[s]
k + λ1,2

k

[s]
+ λ2,1

k

[s]
. (6)

Since for given [s], the channel output sequence and the se-
quences of extrinsic information are regarded as the observation
sequences of Gaussian random variables as mentioned above,
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the sequence of posterior {�[s]k }N
k=1 can also be regarded as

the observation sequence of a Gaussian random variable. In

other words, we can regard �
[s]
k , x

[s]
k , λ1,2

k

[s]
and λ2,1

k

[s]
as the

kth observations of the Gaussian random variables L[s], X [s],
Λ1,2[s]

and Λ2,1[s]
, respectively. It is accepted that X [s], Λ1,2[s]

and Λ2,1[s]
are weakly and nonnegatively correlated. Under the

assumption that the all-one sequence is transmitted, the mean
of L[s] is written as

µL[s] = 4Rc
Eb

N0
+ 2snrΛ1,2[s] + 2snrΛ2,1[s] , (7)

where 1
σ2 = 2Rc

Eb

N0
. By the nonnegative correlation of X [s],

Λ1,2[s]
and Λ2,1[s]

, the variance of L[s] is lower-bounded as

σ2
L[s] ≥ 8Rc

Eb

N0
+ 4snrΛ1,2[s] + 4snrΛ2,1[s] = 2µL[s] . (8)

From now on, we consider a fixed Eb

N0
for a simple notation,

where all variables, in fact, depend on Eb

N0
. Let P

[s]
e be the

bit error probability for given [s], where P
[s]
e is regarded as

the sth observation of the random variable Pe. Since the turbo
decoding algorithm uses the sign of the posterior, P

[s]
e can be

computed by

P [s]
e = Q

(
µL[s]

σL[s]

)
, (9)

where Q(x) =
∫∞

x
1√
2π

e−
t2
2 dt. Since

µ
L[s]

σ
L[s]

≤√
2Rc

Eb

N0
+ snrΛ1,2[s] + snrΛ2,1[s] by (7) and (8), and Q(·) is a

decreasing function, it follows from (2) and (9) that the BER
performance for given [s] is lower bounded as

P [s]
e ≥ Q

(√
2Rc

Eb

N0
+ J−1

(
IΛ1,2[s]

)
+ J−1

(
IΛ2,1[s]

))
.

(10)

Now, let us consider the lower bound on the average BER
performance over all possible channel realization and inter-
leavers by using the EXIT band chart. Since the constant sum of
J−1 (IΛ1,2) and J−1 (IΛ2,1) makes the right hand side (RHS) of
(10) constant, we regard the curve J−1 (IΛ1,2)+J−1 (IΛ2,1) =
K with a constant K as the “equi-BER contour”. For given
K, let us define tK coordinates whose axis is the equi-BER
contour. This relationship is depicted in Fig. 5. For given K,
let vK : t �→ IΛ1,2 , where vK(·) is monotonically decreasing
and t is the value of a point on the tK axis. For given K,
let us define a random variable AK which denotes the point
on the segment of J−1 (IΛ1,2) + J−1 (IΛ2,1) = K intersecting
the g-band, where the observation values of AK are read in
the tK coordinates. Then, the cumulative distribution of AK is
obtained by

Pr{AK ≤ t} = Pr{IΛ1,2

∣∣
IΛ2,1=J(K−J−1(vK(t)))

≥ vK(t)}
(11)

since IΛ1,2 is increasing with respect to IΛ2,1 . In the same
manner, for given K, we define a random variable BK denoting
the point on the segment of J−1 (IΛ1,2) + J−1 (IΛ2,1) = K
intersecting the h-band, where the observation values of BK are

0 1
0
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I Λ
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=
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Λ
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Λ
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Fig. 5. Relations of equi-BER contour, tK coordinates, vK(·), EXIT band

chart, AK and BK . Sample pairs of g[s] and h[s] with J−1
(
I
Λ1,2[s]

)
+

J−1
(
I
Λ2,1[s]

)
≤ K are also plotted.

read in the tK coordinates. Then, the cumulative distribution
of BK is obtained by

Pr{BK ≤ t} = Pr{IΛ2,1

∣∣
IΛ1,2=vK(t)

≤ J
(
K − J−1 (vK(t))

)}.
(12)

For given K, let us define αK as

αK � Pr {AK ≥ BK} , (13)

which can be computed by using the cumulative distribution
of AK and BK . Let I∞Λ1,2 and I∞Λ2,1 be IΛ1,2 and IΛ2,1 ,
respectively, at convergence of the iterative decoding algorithm.
Since the first intersection of g[s] and h[s] is interpreted as the
convergence of the iterative decoding algorithm for given [s], it
is clear that I∞

Λ1,2[s] and I∞
Λ2,1[s] are read at the first intersection

of g[s] and h[s], where I∞
Λ1,2[s] and I∞

Λ2,1[s] are regarded as
the sth observation of the random variable I∞Λ1,2 and I∞Λ2,1 ,
respectively. Let us consider sample pairs of of g[s] and h[s]

with J−1(I∞
Λ1,2[s]) + J−1(I∞

Λ2,1[s]) ≤ K for given K shown in
Fig. 5, where a[s] and b[s] denote the sth observation of AK and
BK , respectively. It is clear that J−1(I∞

Λ1,2[s])+J−1(I∞
Λ2,1[s]) ≤

K if a[s] ≥ b[s], but the converse does not hold. Thus,

αK ≤ Pr
{(

J−1 (I∞Λ1,2) + J−1 (I∞Λ2,1)
) ≤ K

}
= Pr

{
Q

(√
2Rc

Eb

N0
+
(
J−1

(
I∞Λ1,2

)
+ J−1

(
I∞Λ2,1

)))

≥ Q

(√
2Rc

Eb

N0
+ K

)}
(14)

since Q(·) is decreasing. Let P∞
e be the BER performance

at the convergence of decoding algorithm. For given K,
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let us define a “high BER asymptote” Ph
e K as Ph

e K �
Q
(√

2Rc
Eb

N0
+ K

)
. Then, from (10) and (14), we obtain

αK ≤ Pr
{
P∞

e ≥ Ph
e K

}
. (15)

Let Pe be the average P∞
e over all channel realization and

interleavers. Then, for each K, we obtain by Bayes’ rule

Pe = E{P∞
e

∣∣∣P∞
e ≥ Ph

e K} · Pr{P∞
e ≥ Ph

e K}
+ E{P∞

e

∣∣∣P∞
e < Ph

e K} · Pr{P∞
e < Ph

e K},
(16)

where Pe is the internal division point of the interval[
E{P∞

e

∣∣∣P∞
e < Ph

e K}, E{P∞
e

∣∣∣P∞
e ≥ Ph

e K}] with the ratio

Pr{P∞
e ≥ Ph

e K} : Pr{P∞
e < Ph

e K}. Let us choose the “low
BER asymptote” P l

e such that

P l
e ≤ E

{
P∞

e

∣∣∣P∞
e < Ph

e K

}
(17)

for any choice of K. Since Ph
e K ≤ E{Pe

∞
∣∣∣Pe

∞ ≥ Ph
e K},

the lower and upper endpoints of the interval
[
P l

e, P
h
e K

]
are smaller than those of the interval

[
E{Pe

∞
∣∣∣Pe

∞ <

Ph
e K}, E{Pe

∞
∣∣∣Pe

∞ ≥ Ph
e K}], respectively, for any K. It is

clear that Ph
e K · αK + P l

e · (1 − αK) is the interval division

point of the interval
[
P l

e, P
h
e K

]
with the ratio αK : 1 − αK .

Then, by comparing the endpoints of above two intervals and
their division ratios related by (15), it is clear that Pe ≥
Ph

e K · αK + P l
e · (1 − αK) for any K. Thus, we have

Pe ≥ sup
K

{
Ph

e K · αK + P l
e · (1 − αK)

}
. (18)

There may exist many ways of choosing P l
e. In this paper, we

choose the free distance asymptote proposed by Perez et al [9]
as P l

e, which is

P l
e � Nfreew̃free

N
Q

(√
2Rcdfree

Eb

N0

)
, (19)

where dfree is the free distance, Nfree is the average multi-
plicity of free distance codewords over all possible random
interleavers, and w̃free is the average weight of the information
sequences causing free distance codewords. For each K, we
compute αK by using the cumulative distributions of AK and
BK by way of (11) and (12) which are measured from the EXIT
band chart. The lower bounds on the average BER obtained in
(18) are plotted together with the BER obtained by the full
simulation of the iterative turbo decoding algorithm in Fig. 6.
As we can see in Fig. 6, the proposed lower bounds are in rea-
sonable agreement with the simulated BER performance curves
even in the waterfall region. The critical factor to improve
the lower bound is finding a tighter P l

e to the simulated BER
performance curve at high Eb

N0
. One of ideas is adding up the

free distance asymptote, the second free distance asymptote and

so on to obtain P l
e, i.e., P l

e =
∑d′

d=dfree

Ndw̃d

N Q
(√

2Rcd
Eb

N0

)
,

for appropriately chosen d′ > dfree.
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Fig. 6. The lower bounds on the BER performance of turbo codes for two
sample generators with N = 1024 and Rc = 1/2.

V. CONCLUSION

We proposed an EXIT band chart which can describe the
probabilistic convergence behavior of the iterative decoding
algorithm. Then, by using the proposed EXIT band chart,
we obtained a lower bound on the average BER performance
of the finite-length turbo codes which has a gentle waterfall
over a wide waterfall region. The obtained lower bound is in
reasonable agreement with the BER obtained by the simulations
of the iterative decoding algorithm. The proposed method can
generally be applied to obtain the lower bound on the BER
performance of iteratively decoded turbo-like codes with short
information block which result in the gentle waterfall.
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