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Abstract

In this paper, we present an overviewggheralized expectation criteria (GE), a simple, robust,
scalable method for semi-supervised training using wekdgled data. GE fits model parameters
by favoring models that match certain expectation congsasuch as marginal label distributions,
on the unlabeled data. This paper shows how to apply geredadixpectation criteria to two classes
of parametric models: maximum entropy models and conditioandom fields. Experimental
results demonstrate accuracy improvements over supdrirai@ing and a number of other state-
of-the-art semi-supervised learning methods for theseatsod

Keywords: generalized expectation criteria, semi-supervised Iegriogistic regression, condi-
tional random fields

1. Introduction

Semi-supervised learning, where a small amount of human annotation is eambith a large

amount of unlabeled data to yield an accurate classifier, has receiiguifecant amount of atten-
tion from the research community. However, there are surprisingly feescaf its use in applica-
tions, where the emphasis is on solving a task, not on advancing theorgttmistanding. This
may be partially due to the natural time it takes for new machine learning ideagpagate to

practitioners, but we believe it is also due in large part to the inherentuiffiof the task and the
unreliability of existing methods.

Instead of addressing the difficulties of semi-supervised learning tieade propose to use
weakly labeled data (“side-information”) in semi-supervised learning. skothis data, we present
generalized expectation critera (GE), a method initially described aspectation regularization in
Mann and McCallum (2007). GE represents a new family of semi-supérigéasening, where mod-
els are fit by minimizing model divergence from an input distribution. To dateuthe divergence
from the input distribution there is no need for additional training data, asxpected distribution
on the unlabeled data can be used. These terms can be easily integratethevitieions, such as
traditional log-likehood.

x. Gideon S. Mann is the corresponding author.
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The experiments in this paper explore an illustrative special case ofaB&,regularization,
where a marginal distribution over output labels is applied as an expectatimtraint. We in-
vestigate two parametric models: maximum entropy models and their structurad anglog,
conditional random fields. We demonstrate that for both of these modedd, rietularization is
able to provide performance gains over other supervised and semiss@gdearning methods.

Generalized expectation criteria have a number of advantages oveatltesemi-supervised
learning techniques that make it suitable for use in practice. It is simple, makeagyt to im-
plement and use. It requires no additional processing such as aiimggran inverted index for
graph construction or pre-clustering unlabeled data. Since it can hawidlde spectrum of side-
information, human intuitions about the problem can be explicitty communicated tiedheing
process, in contrast to other methods which can require opaque sigersuch as carefully tuned
initialization, or specification of “contrastive examples” and other “auxilf@rctions”. We apply
GE in this paper to discriminative models, and thus it is able to robustly handiappag, non-
independent feature sets and yields transparent confidence estimakesform of probabilities).
Additionally, GE has all of the advantages of parametric models, in particd#atslity and a small
memory footprint at test time.

2. Related Work

Traditionalsupervised learning takes as input fully labeled data, a set of tupgles- {(x,y) }, where

X is the input and the desired output. The learner is a function which maps the input to a pvedicti
function: J(D) = f, wheref : x — y. Supervised learning is powerful, but the amount of labeled
data needed can require significant human time and effort to create.effoarnto reduce the need

for human effort, the machine learning community has explored semi-supétegrning. Ireemi-
supervised learning approaches, a small amount of labeled data is augmented by unlabeled data,
a set of elementd! = {x}, which it exploits to chose a similar functiod(D U U) = f. This
section presents the main methods for semi-supervised learning from labeledlabeled data: 1)
bootstrapping, 2) expectation maximization, 3) feature discovery, 4)idedigundaries in sparse
region methods, and 5) graph-based methods.

In contrast to these methods, GE criteria exploit semi-supervised learnmgafeakly labeled
data. With this scenario, there be no labeled data. Instead, in addition teladalata there is side
information that has been provided to the learner, for example, expectatistraints like marginal
label distributiongyy = p(y).! Section 2.2 reviews prior work in this area.

2.1 Semi-supervised Learning with Labeled and Unlabeled Instances

There are five main prior categories of semi-supervised learning agm@ea bootstrapping, ex-
pectation maximization, feature discovery, decision boundaries in spagiems, and graph-based
methods.

2.1.1 BOOTSTRAPPING

In bootstrapping, or self-training approaches, a classifier is firseaon the fully labeled instances
and then is applied to unlabeled instances. Some subset of those newlyl liaistdaces are then
used (in conjunction with the original labeled instances) to retrain the model.

1. Liang et al. (2009) presents a taxonomy of side-information.
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Algorithm 1 Bootstrapping for semi-supervised learning
fO) J(’Z))
repeat
Us — Uyeu(X, V(%))
O — J(DU Up)
until done

One of the most successful examples of this work is Yarowsky (199%reva small 'seed set’
of labeled instances is incrementally augmented. Co-training (Blum and Mité®8i8) looks at
the case where two complementary classifiers can both be applied to a paproliem. Abney
(2004) provides a deeper understanding of these methods by dertiagstinat they optimize a
natural objective function. However, these methods typically requiréragal human intervention
in order to avoid performance loss during the bootstrapping procedsastin Riloff and Shepherd
(2000).

2.1.2 EXPECTATION MAXIMIZATION

Generative models trained by expectation maximization (Dempster et al., 1&v& pbken widely
studied for semi-supervised learning. EM consists of two steps: an ttipecstepQ(8|01) =
Epyixe0 [109L(8;x,y)], and a maximization step{* > = ar gmaxg Q(66")). To apply EM to semi-
supervised data, the log-likelihood function, l&g8;x,y), is set to be a composite of labeled and
unlabeled data (possibly with a weighting factor to down-weight the contribtitiahe likelihood
from the unlabeled data). One popular example of the use of EM for gwreemodels is Nigam

et al. (1998) which presents aina Bayes model for text classification trained using EM and semi-
supervised data.

EM has also been applied to structured classification problems such as-gspdech tagging
(Klein and Manning, 2004), where EM can succeed after very cheafd clever initialization.
While these models can often be very effective, especially when used pyittotypes” (Haghighi
and Klein, 2006b), they cannot efficiently accommodate non-indepéreatures, for example,
those that span multiple inputs. In these cases, the dynamic program deguienpute the feature
expectations over all input positions quickly becomes intractable, as buildatattice requires
exponential space in the length of input features.

EM for discriminative models has also been explored. Wang et al. (200@ppes a EM based
model which instead of the likelihood, maximizes the entropy given the latergbleas. Alter-
natively, Salakhutdinov et al. (2003) present an expected gradighboewvhich can be used for
discriminative models which have some patrtially observed labels, and McCatlam(2005) uses
this method for conditionally trained CRFs. While this method is appealing in theafamput
data that consists of sequences with partially hidden variables, it cagapidied to scenarios with
fully unlabeled instances.

Another twist on this technique is to blend generative and discriminative mdmjet®mbining
ML estimates over the labeled data with EM parameter estimates over the unladaleitbda joint
model which combines a CRF and a HMM (Suzuki et al., 2007; Suzuki avahks, 2008). In
this formulation, the log-likelihood can be viewed as two separate log-likeliimoctionsL;(0)
andL>(8) which respectively correspond to the CRF and HMM log-likelihood. Whetingzing
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L1(6) (using maximum likelihood), the HMM parameters are held constant, and teeseewhen
optimizingL2(8).

While EM can sometimes works well, it is often fragile and finds solutions thatvarse than
the equivalent supervised model. Merialdo (1994) gives a classic déxammere EM fails to help
part-of-speech tagging. Cozman and Cohen (2006) discuss the fisissng EM and describe
situations where it can fail. Additionally, the generative models on which Epénés often perform
worse than discriminative models.

2.1.3 FEATURE DISCOVERY

As alternative to estimating a classifier directly with unlabeled data, a numbeowbg have ex-
plored using the unlabeled data for feature induction or feature discowed those features are
then embedded into a traditional supervised learning problem. A latent @hgsterapplied over
the unlabeled data, to learn a functiin which is used to provide additional featurgéx) = z,
these features are then used to augment the original labeled®atay y, v, c»(Xd U Zd,Yd), and
then supervised learning proceeds as usual. For example, Miller eD@#)(and Ganchev et al.
(2007) apply the method described in Brown et al. (1992) to cluster alkofvtird tokens in a large
unsupervised corpus. Then for a given sentence, in addition to sthieddures, additional features
corresponding to the latent clusters of the tokens in the sentence, @ ddds technique, along
with similar approachs (Freitag, 2004; Li and McCallum, 2005), have yieseall but consistent
success. This method can be applied independently of the particular traiethgd and in Section
6.3, we explore combining our method with those described by Miller et al4(200

Ando and Zhang (2005) use a similar method, but the clustering they expla@mposed
of auxiliary problems (e.g., predict a given token given the token contéxt)heir method, they
estimate the parameters for a linear classifier for each auxiliary problenthemthese parameters
are embedded as a transformation of the parameters for a linear classiftez briginal problem.
Although this method has produced impressive gains, it is quite sensitivegeltaion of auxiliary
information, and making good selections requires significant insight. Eireend J. Blitzef. note
that the list of tricks necessary to get the method of Ando and Zhang 260&ork includes:
oversampling positive instances, selecing the unlabeled data carefallipgseal-valued features,
and choosing the appropriate feature types.

Additionally, feature discovery as a semi-supervised learning technitjge om having a sub-
stantial amount of labeled data for training. It cannot be used in casa®whly a limited amount
of labeled data is available.

2.1.4 DECISIONBOUNDARIES IN SPARSEREGIONS

Another family of methods uses the intuition that decision boundaries ouglititoléav-density re-
gions (corresponding to an assumption of class separability) and thiscfinginative models with
this objective in mind. Clearly, if the cluster assumption is violated (i.e., the classawt widely
separable), assigning decision boundaries to low density regions i @&lpmioe. One illustrative
example is entropy regularization (Grandvalet and Bengio, 2004),endnéraditional conditional
label log-likelihood objective function is augmented with an additional term riiatmizes the

2. Conveyed in personal communication.
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entropy of the label distribution on the unlabeled data:

O(6; D, U) =L(6;D)+H(6; U)
zdz logp(yalxa) =A 5 5 p(ylxu)logp(y|xu).
€D

ueaua 'y

This objective function favors parameter settings where the model is cefttie labels on given
unlabeled data. In entropy regularization, the hyper-parameéteis a dramatic effect on the per-
formance of the learner, since it must be tuned with regards to the amolatietéd and unlabeled
data. Entropy regularization is particularly difficult to apply in cases of wenall amounts of la-
beled data, since in one degenerate case, the model could select omelatgpfor all possible
inputs. Studies on structured output models in Jiao et al. (2006) experimatgmonstrate that
careful tuning ofA is mandatory.

Transductive support vector machines (TSVMs) (Joachims, 19%bj adnstraint to the SVM
optimization function in order to preserve the margin over unknown test tabels

Vien Vi[B-X+b]>1

1
,0) =argmn =||6]|*> subjectto .
(1sh.0) =aromn S0l sbjestiof xe2 MELHSL

Itis combinatorially intractable to do a brute-force search over all podsibédings{y,}, so an ap-
proximation search must be undertaken. Even with these approximatioagydnehm as originally
proposed has running tin@(n®). Sindhwani and Keerthi (2006) propose a method for speeding up
training in some cases. In our experience, like entropy regularizatioiMB&ilso require extensive
and delicate tuning of meta-parameters. We note that Sindhwani and K@&®a) report results
with meta-parameters tuned on test data. Benchmark tests have showritribigy eegularization
performs as well as TSVMs (when the SVM is given a linear kernel) (Elapt al., 2006). Another
related method is information regularization (Corduneanu and Jaakk®d),2¢hich measures dis-
tance via the mutual information between a classifier and the marginal distritp{t{n

2.1.5 (RAPH-BASED METHODS

Graph-based (manifold) methods can be very accurate when appliethit@geervised learning.
In these methods, a graph, typically with weighted edges, is constructedisgdhe labeled and
unlabeled instances. Thereafter, unlabeled instances are assigalsdalatnrding to their neigh-
bors. Zhu and Ghahramani (2002) propose label propagationeudiezls propagate from labeled
instances to unlabeled instances (see Algorithm 2). In this formulation, #inerevo significant

Algorithm 2 Label propagation
repeat

Vet s PO ) = 33 jea A0 — WP V)
until p(yf,t)yxf})) converges

choices that must be made: the graph structure (the neighbork{@rdfor each instance) and the
transition functiorg(j — i). Szummer and Jaakkola (2002) present a closely related approadh whic
uses random walks through the graph to assign labels. More distantlydrela@nd McCallum
(2004) examine a method which performs an implicit clustering over points,sasititaneously
estimates pair-wise distance and classification boundaries.
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As originally proposed, graph-based methods are slow, requiring @mé) or on average
O(kn?) wherek is the number of neighbors (similar to TSVMs). By sub-sampling unlabeled data
one can reduce run-time fro@(n®) to O(m?n), wherem is the subsampled number of unlabeled
data points (Delalleau et al., 2006), but subsampling does not take falhtadye of available unla-
beled data. Zhu and Lafferty (2005) propose alternative methodedmicing the time compleity
to O(m?),m < n, but these may also impact performance. For structured output spadtesty
et al. (2004) and Altun et al. (2005) have looked at approaches tlsisg methods. However, the
high running time of these methods has prevented wide-scale adoption,egnigiatie been tested
predominantly on synthetic or toy examples (e.g., with 5 labeled examples)ntRe&aluja et al.
(2008) proposed a method for performing graph-based semi-supeterning in parallel.

Since these are non-parametric models, they do not build a compact epoddire model,
and so it is not always clear how to apply them inductively (on new unldied¢a). At the very
least, labeled and unlabeled data must be stored in order to classify newlega In this paper
we compare against a representative graph-based label propagetiood called Quadratic Cost
Criterion (QC) (Bengio et al., 2006) whose results are reported in Qlkagieal. (2006).

2.1.6 DFFICULT APPLICATIONS

There are cases of semi-supervised learning being used in applicadtingséowever, not without
difficulty. In fact, a broad survey of semi-supervised learning methGtaelle et al., 2006) found
that they do not uniformly beat supervised methods and that there is meviteeer from among the
methods. This conclusion reflects the experimental evidence and theloseppart from a large
span of work.

Expectation-maximization is notoriously fickle for semi-supervised learnimg.dlassic result
(Merialdo, 1994) attempts semi-supervised learning to improve HMM paspeéch tagging and
finds that EM with unlabeled data reduces accuracy. Ng and Cardi8)ac® apply EM but finds
that it fails to improve performance, as do Grenager et al. (2005) (witheir tricky initialization).
Cozman and Cohen (2006) discuss use cases where EM might fail to work

Krogel and Scheffer (2004) use transductive SVMs for the funatiganomics KDD Cup chal-
lenge and find that not only does it fails to improve performance but it eeteriorates perfor-
mance. Ifrim and Weikum (2006) also find that TSVMs deteriorate perdoice. Kockelkorn et al.
(2003) use transductive SVMs for text classification, but complain tigtimputationally costly.
Zhang and Oles (2000) discuss theoretical reasons why TSVMs migtd f@ork in various sce-
narios.

Macskassy and Provost (2006) apply harmonic mixing to classificatioratfoal data, how-
ever the running time of harmonic mixing proves to be a barrier to its use. Inahe af word
sense disambiguation, Niu et al. (2005) has looked at label propagatidripund that the metric
for graph construction has a dramatic effect on performance. Chan(8005) look at combining
manifold methods (e.g., ISOMAP) with semi-supervised learning, but findsttbamethods are too
fragile in their tuning parameters to be effective. Blum and Chawla (206t)céte fragility in the
tuning parameters as a problem for their graph-based method.
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2.2 Semi-supervised Learning with Weakly Labeled Data

As an alternative to semi-supervised learning with labeled and unlabeleamataber of methods
have investigated semi-supervised learning with weakly labeled data or &mation, though
none with the expressiveness in labeling allowed by GE criteria.

Graph-based methods have used class proportions for post-pngcesset thresholds on label
propagation (Zhu et al., 2003). Schuurmans (1997) uses predicteddiatributions on unlabeled
data for model structure selection (as opposed to parameter estimatior) digiamtly, conditional
harmonic mixing (Burges and Platt, 2006) minimizes over each point the Kérglince between
the currently predicted label distribution and the distribution predicted by ighbers. Wang et al.
(2004) also look at methods for incorporating class proportions intoifizdgn. In their model,
they pseudolabel instances and provide them as constraints for the tmbdeldle.

The use of side information to train a parametric classifier has been explei@e by Schapire
et al. (2002) who uses a boosted ensemble of weak learners set fimankgenerated expected
distributions. There are significant differences between GE and this, Wwoparticular, Schapire
etal. (2002) match distributions on a per-instance basis, while generalipedtation criteria match
a global distribution. Thus in the model proposed by Schapire et al. }2860@ry example has to
match the distribution given as inptitGraca et al. (2008) integrates similar types of instance-
based constraints into EM learning, where the constraints restrict the spacwhich the model
calculates the expectations of the hidden variables.

Like Schapire et al. (2002), Jin and Liu (2005) present a model farrparating class pro-
portions into discriminative models which places a expected class distributereach instance.
Unlike Schapire et al. (2002), these distributions start from a fixed poittlaen are allowed to
change during training.

In contrastive estimation (Smith and Eisner, 2005), EM is performed ovestaiated log-
likelihood function, where instead @f6) = ;1og p(x;; 8), the contrastive estimation log-likelihood
function isLce (0) = 3ilog p(xi|A(X); ). The neighborhood functiofi(x;) must be highly tuned,
and even slight variations in it can have significant impact on error. Mareially, the bias intro-
duced by choosing\((x) is difficult to predict and unintuitive.

Haghighi and Klein (2006b) take prototypes as input to their method, andiges SVD to link
up words to prototypes with similar co-occurrence patterns (e.g., “Infgmibnd” has the label
NEIGHBORHOOD. Haghighi and Klein (2006a) extends this framework to context-fr@engnar
induction. Another group that has investigated integrating constraints intiste output learning
is Chang et al. (2007) which integrates constraints into unsupervisetrgavith HMM. In their
method, they reranking candidate labelings by constraint violations andifieea threshold set of
these candidates for re-training in a Viterbi-like approximation to expectaticimmzation.

Generalized expectation criteria are unique in that it uses the expectedutistr as the sole
criterion for optimizing the model parameters on one set of unlabeled dataytthibmay also use
labeled data). Most other methods do not try to directly fit these expectationsse them instead
as heuristics within a more complicated semi-supervised learning model. Wheomygare with
techniques that use the label distribution (e.giye&8ayes with a fixed label prior), we find they do
worse than GE, which demonstrates that GE is able to use these class distsilnutice effectively
than other methods.

3. Label regularization is impossible under the Schapire et al. (2008ginsince if the model exactly matched the
label expectation on a per-instance basis, in application it would assigs@hies to the majority class.
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3. Generalized Expectation Criteria

When a person is designing a classifier, they frequently have intuitions tidwodata they are trying
to classify. For example, someone designing a part-of-speech taggdrknayh that ‘nouns’ are
quite frequent, whereas ‘conjunctions’ are much less common. Manua#¥irigbdata can be a
round-about way of providing this information to the machine learning model veeak labeling
provides another route for biasing the model with this information. It wouldiffieult to hypoth-
esize priors ovemodel parameters to capture this intuition. With GE the designer sets priors over
model expectations, and since these expectations have a relatively transparent interprétatice
human designer, they provide an appealing route for injecting bias into t&fida GE can effec-
tively learn from a wide variety of side information, including expectationst@ints which hold
over global properties of the classifier (e.g., label marginals in labelaggation), constraints over
individual instances, and expectation constraints which are more siygdisan the base model can
model directly (e.g., a three label sequence in a markov order 1 CRF).

A generalized expectation (GE) criterionis a term in a parameter estimation objective func-
tion that assigns scores to values of a model expectation. First somerdtaodation: x is the
input, y the output, and® the parameters for a given model. Given a set of unlabeleddata{x}
and a conditional modgb(y|x;8), a GE criterionG(6; U) is defined by a score functidhand a
constraint functiorG(x, y):

G(6; U) = S(Eu[Ep(yxe) (G, Y)])-

In this light, GE criteria can be viewed as an replacement for a maximum likelibstichator
and can be maximized alone to yield a parameter estifateor a particular choice of model
family and parameterization, many different choices for score functiodscanstraint functions
may be explored. In this paper we consider a subset of GE criteria wkigkss a preference for
a particular value of a constraigy, and apply the KL-divergence to compute model divergence
from this constraint:

G(8; U) = D(Gxyl|Eu[p(yx;8)G(x,y)]).

Other work has considered squared loss and constraint functionl afgicnore and less expressive
than the model parameterization (Druck et al., 2009a).

GE criteria can be used as a sole criterion for an objective function (eagnnd McCallum
2008). In this work, we combine it the log-likelihood(8) to form a composite objective function:

O(6; U, D) =L(6;D)+G(6; U).

Alternatively, an entropy regularization term (Grandvalet and Ben@©4® can be combined into
the above objective function in the same manner:

O(6; U, D) =L(6;D)+G(6;U)+H(6; U).

GE criteria can be interpreted as a generalization of traditional maximum likelihéast, GE
allows a variety of scoring functions (e.g., KL-divergence or mearasgglierror from a reference

4. Entropy regularization cannot be framed as a instance of GE, lmniealization could encompass boB(8; U) =
S(Eu[Epyixe) [F (%,Y)]]), whereF is an arbitrary function over a particul@e, y) tuple (e.g., for entropy regularization

F =logp(y|x;8).
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distribution) and thus can incorporate information from a source othertimgirical feature counts
derived from the training data (e.g., human intuition, empirical counts akfreen alternative data
sources). Second, there need not be a one-to-one relationshipehdBieterms and features. For
example, we can express preferences on a subset of model fdahuatdsave others unconstrained),
or on marginal distributions larger than model factors. In this paper, Wl @pconstraint for only
one feature obtained from human intuition about the problem.

We explorelabel regularization, where the constrainig are expectations of model marginal
distributions on the expected output labels. We look at funct®fisy) = 1(y), and use various
estimated label marginal distributions:

Gxy = P(Y).

The effect of adding this term is to ensure that the model applied to the (ediati@ta matches the
label proportions. Note that this does not force the conditional label distribution for eachriosta
to conform to this constraint, but rather it encourages the model to meebtiggaint in aggregate
over all instances.

Similar to label regularization, Quadrianto et al. (2008) uses label piopstto learn classifiers,
though there are some interesting differences from our work. Their me#ties on having multiple
training subsets with very different class distributions, whereas we @#yone data set with a
single set of label proportions. Their work concentrates on nonisteat classification, whereas
we extend our method to the structured output case.

3.1 Recent Work on GE Criteria and Related Methods

Since the initial proposal of GE criteria (under the nagrgectation regularization) in Mann and
McCallum (2007), there has been a flurry of recent work on genedhkexpectation criteria and
related methods which apply expectation constraints for weak learning.

In a set of user experiments, Druck et al. (2008) compares traditidneleld data anthbeled
features (which can be used to build feature marginal distributions). That studg fhrat given the
same amount of time, human annotation in the form of labeled features anfi@assained using
GE criteria outperform human annotation of traditional labeled instancesaronum likelihood
training. For the structured output case, Mann and McCallum (20083Hmasn that expectations
over features for CRF learning, similar to the prototypes proposed iniffasiggind Klein (2006b),
are more effective when used with GE than similar numbers of labeled tokedsaitrain a CRF.
Druck et al. (2009a) extends these methods to conditional random figdshdency parsing models,
and shows that in that case as well feature marginal distributions carfeotivefly used to guide
training.

A few groups have investigated related methods for incorporating exjgecteonstraints.
Ganchev et al. (2009) use expectation constraints over aligned sesitand a source-language
parser induce dependency grammar on a target language, using ratgenmethod related to
expectation-maximization and a discriminative model closely related to GE critgeitare et al.
(2009) presents an alternative objective function to learn using exjpectoonstraints over unla-
beled data.

Since the emphasis is on reducing human annotation time, it is a clear questiowlzstier
active learning can be applied to help choose labeled features or digrec@nstraints. Druck

5. The mathematics is unchanged for expectation constraints over gty f@atures, but the experiments concern only
this simple scenario.
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et al. (2009b) pursues this question and uses active learning to chwbagefeatures to use with
GE criteria. Along those lines, Liang et al. (2009) proposes a notion chsuements’ to encap-
sulate the variety of weakly labeled data, and uses active learning to ghide measurements are
provided from the human annotator to guide learning.

4. GE Criteria for Log-linear Models

In this section, we describe how to apply the GE criteria proposed abowmnthitionally trained
log-linear models, starting with conditional maximum-entropy models, aka multinongatio
regression models (Berger et al., 1996). In these models, thekaseaéar feature functiony(z y),
and the probability of the labglfor inputx is calculated by

p(ylx;8) = Z(lx) em(; Bk (X, y)) :

whereZ(x) = 5 exp(Tk 8kWk(xY')) is the partition function. Given training daf, the model is
trained by maximizing the log-likelihood of the labels (with a Gaussian prior fgulegization):

O(6; D) =logL(6; D)
92
—; log p(ya|xd; 6) — 2202 :

This can be done by gradient methods (Malouf, 2002), where the gtafithe likelihood is

d

6,007 = 3 (Wa36) ~ 3 PO O(0) ) +

For semi-supervised discriminative training, we augment the objectiveidunisy adding the
generalized expectation criteria objective function terms.

0O(6;D,U) =L(6; D)+ G(6; U)

Yoo . _Xkeﬁ
—% 9P(yalXa);8) = 5 " —AD(Gxyl [EulEpyxe) [G(X.Y)I]).

Note that here the side information comes in the expectation consteriptghich specify partic-
ular priors for model marginal. In practice, we find that the hyper-paramme&lo not need to be
extensively tuned. In particulak, does not need tuning for each data set, and can be set simply to

A = 10x # labeled examplé.
The form of the GE criteria lends itself to optimization by gradient based metidtés drop-
ping terms which are constant with respect to the partial derivative, aviefiwith:
0 ~n.
67&(6(6’ U) 69 zgxyk)g > Py 6)G(xy)

xeu

Ox,
- z ( 2xeu p(Y|Xy9) ) eru 96y P(YIx; 8)G(x,y)

%(zxeu p(y?:(;ye)e(x,y)> 2 POXOGKX )<4Jk (xy) - Z p(Y [X; B)Wi(x )>

6. As support for this value df, notice that the KL-divergence is significantly smaller than the likelihood asikali-
hood is proportional to the number of examples, while the KL-divergésaot.
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GE criteria aren’t convex, and this can be shown by a contradictorpgbea Take a simple version

of the GE criteria:G(6; U) = yylogy p(y|x;0). In this setting, for an arbitrary labg| you can
find parameter settings wheve, p(y;|x) = 1, by having a parameté= {6y = o, Vj # k,0; = 0}
whereyk(x,y) = 1{y =Y }. In this setting, it's pretty clear that multiple optima exist, and that other
settings oM yield smaller values o&(6; U).

Label regularization can occasionally find a degenerate solution wtaher than the expec-
tation of all instances matching the input distribution, instead, the distributionlalyels foreach
instance will match the given distribution on every example. For example, given a thass clas-
sification task, if the labeled class distributipy(y) = {.5,.35,.15}, it will find a solution such that
p(y;0) = {.5,.35,.15} for every instance. As a result, all the test instances will be assigned the
same label.

One solution, appealing to 0/1 loss, would be to simply measure and match tlutegiqreover
winning class counts, but this is not differentiable. So instead, we p@ke 6) more peaked using
alessthan 1.

Py 8) exp(igekwx)) -

This is differentiable and thus amenable to many gradient ascent methqaisictite we find that
this meta-parameter does not require fine-tuning. Across all data seisnply siseT = 0.1 for
multi-class problems an@l = 1 for binary classification problems, and we find this to work well.

4.1 CRF Training

The previous section has shown the application of generalized expectatana to classification
models. However, GE can additionally be applied to structured models. Iretttisrs, we examine
the case of linear chain structured conditional random fields (Lafféry.,e2001), and derive the
GE gradient for this model.

Linear-chain CRFs are a discriminative probabilistic model over seqaanedXx;..x,) of fea-
ture vectors and label sequenges- (yi1..yn), where|x| = |y| = n, and each labey; € s. This
model is analogous to maximum entropy models for structured outputs, wipetations can be
efficiently calculated by dynamic programming. For a linear-chain CRF okbeorder one

p(y[x;6) = Z(lx)eXD@ ekwk(x,y)> :

where Wy(x,y) = 3 Wk(X,¥i,Yi+1,i), and the partition functiorZ(x) = ¥ exp(¥xOWk(X,Y')).
Given training dataD, the model is trained by maximizing the log-likelihood,

L Ly k8K
0(8; D) = glog P(yal*a;8) = 5 5"

by gradient-based methods where the gradient of the likelihood is (similar toothetructured
case):

0

96, 08:D) = cfr <Wk(xdayd) - ; p(ylxd:e)wk(xd,y)> + %-
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The second term (the expected counts of the features given the maub§ camputed in a tractable
amount of time, since according to the Markov assumption, the featuretakipas can be rewrit-
ten:

; )qu(XthYi—s—lv I)

> ply
y

A dynamic program (the forward/backward algorithm) then computes in@itnés|?) all the needed
probabilitiespg (i, Yi+1), wheren is the sequence length, afgllis the number of labels.

xy)=> > PV

I YisYiv1

4.2 Semi-supervised training with Generalized Expectation Criteria

To add unlabeled data regularization to the CRF training, just as with the maximtuopy model,
we augment the objective function with the regularization term:

O(6; D, U) =L(6; D)+ G(6; U)
2
=§rlogp<yd|xd;e>—22fk D(GeyIEctlEpys [ GO

Note that we restrict the constraint function to functions over one outpat,l&(x,y;). Druck et al.
(2009a) has looked at extending the method to arbitrary constraint fae@i,y), but here we
only consider constraint functions over functions of one label.

The derivation of the gradient f@8(0; 1) is somewhat more complicated than in the unstruc-
tured case, but follows roughly the same lisés the set of permissible output labeyg,, ) = {y:
ym = S}. The gradient is then:

0 0
26,0001 g 3 65109 5 5 5 plYm5 XG0

XEU M Yimos)

MM Ole o
Il
VR
M

gX.,S )
7 PLY X)G(X,s
<erﬂmwm P(Y(m-5)X)G(x. ) Xezﬂ;yé 38, PV(m=s) X)G(x;5)

. gX~S
Now def i ne: '
W aerine XEU,MY (m=s) p(y(nbs)’X)G(X’S)>
T35S PGS (B Yimes) — 3 P BIO) )
XEU M Y(meg) y
—Y 2T Y T Py XX, Yims)
S XeEU M Yim=y)
—z% > > PYmsglX)G XSZpylek(xy)>
S XEU M Yim=s)
zz% (Z > k(Y Yiva, ZPy. Yitl s Ym = SX)G(X, ))
S XeU N1 YiYita
-3 85 (3.3 wixnnai) (3 pom-s6x9) )
S XeU N1 VYiYit1 m
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After combining terms and rearranging we arrive at the final form of thdignt:

= ZJZ z qu(XayiayiJrl)i)x
cU 1 V¥iYi+1

X

> g (Z P(Yi, Vi1, Ym = SIX; 8)G(X,S) — P(¥i, Yi+1/%:6) 5 P(ym = s|x; G)G(Xvs)> :

S m

Here, the second term is easily obtainable from forward/backwardhedirst term is a little more
complicated to compute. Computing this term naively would require multiple runsnsitreoned
forward/backward. Here we propose a more efficient method thatresgonly one run of for-
ward/backward. For the sake of simplicity, we omit the constraint functi®(x, s); its addition is
trivial. First we decompose the probability into two parts:

i n
> POiLYir1,Ym=SX;0) = 3 P(Yi,Vi+1,Ym =SX;8)+ 3 P(Yi,Yi+1,Ym = 5X;6).
m m=1 m=I+1
Similar to forward/backward we build a lattice of intermediate results that therbearsed to
calculate the quantity of interest:
i

> POV, Yi+1, Ym = S[x;6)

m=1

i1
= P, Yi+1[X;0)3(%1,8) + Y P(Vi,Yi+1,Ym = S/X; 6)
m=1

i—1
= P(¥i,Yi+1/%:0)3(yi,8) + (Z > POi-1,Y5Ym= Slx;9)> P(Yi+lyi,X; 6).

Yi—1m=1

For each labed, it requires one pass to create a lattice vﬂﬂi_ll p(Yi—1,Yi,Ym = S/X; 8) for all pairs

(Vi Yi+1)- Ymeir1 P(Yi—1,¥i,Ym = S|X;8) can be computed in the same fashion. To compute the
lattices it takes time(n|s|?), and one lattice must be computed for each label so the total time is
O(n/sf®).

5. Experimental Results for Classifiers

We present two sets of experiments: experiments on maximum entropy modet®ditional
random fields for the special case of generalized expectation crit&veh regularization. For this

set of experiments, we evaluate on five different data sets, and coaganst seven different semi-
supervised and supervised-only methods. We present learningscuivere the amount of labeled
training data is gradually increased from one instance per class up tatiasuef instances and
demonstrate that generalized expectation criteria are able to show imprdsdoremoth types of
scenarios. We present experiments with noisy expected distributionshamdthat the method

is robust with respect to a variety of settings }foand temperature. We do not vary the gaussian
regularizer, but leave a default value. Unpublished experiments byr@kbhave suggested that

7. Kakade et al. (2002) present a related method that comp(ies = s1.|Vi+1 = 9).
8. Conveyed in personal communication.
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Name # Test Examples # Unlabeled Examples # features # classeg
SRAA 20k 20k 77,494 4

POS 20k 20k 11,520 44

SecStr 1000 83k 314 (45,436)| 2

BIOII 100k 100k 54,958 3
CoNLLO3 | 100k 100k 114,264 9

Table 1. The data sets are complex: they have dramatic class skews, higilgépendent fea-
tures, and large amounts of data. The SecStr data set has 315 atomiedeatat 45k
features when pairwise feature conjunctions are used.

while gaussian regularization can have an effect for label regulangdto more complicated GE
variants it doesn’t dramatically affect performance. We begin trainingpétameters set at O (even
though the objective function may not be convex).

5.1 Experimental Set-up

First, we examine a protein secondary structure prediction Be&St), as extensively evaluated
in Chapelle et al. (2006), compare with the published results and show bightrégularization is
able to outperform previous methods. Next, we examine three especialytdiffatural language
processing tasks: the CoNLLO3 named-entity recognition t@si{L03), Part of speech tagging
of the Wall Street JournaPOS), and the 2007 Biocreativell evaluatioBIQII ), using a sliding
window classifie. Finally, one of the main targets for semi-supervised learning is text classifica
tion (Nigam et al., 2006), and we evaluate on the simulated/real auto/avi&iRhA) task. The
tasks are large in scale, with up to hundreds of thousands of instanddeadnres (see Table 1).
They have complex characteristics such as heavily inter-dependamefeand highly skewed class
distributions.

Across all of the experiments, for supervised comparisons, we compidraedve Bayes and
maximum entropy models, for semi-supervised comparisons we compare WwithBeyes trained
with EM and maximum entropy models trained with entropy regularization. On soske, tan
particular the sliding window NLP tasks, the number of features per instaresd dramatically,
and so we used document length normalization for thigenBayes approaches as we found it to
significantly improve accuracy. On the secondary structure predicBenSt), we had access to
published results for a supervised SVM using a radial-basis functioR\R&nel, a Cluster Kernel
(Weston et al., 2006) and a graph based-method, the Quadratic Costo@ritéth Class Mean
Normalization (Bengio et al., 2006) trained using various data sub-sammiregrees (Delalleau
et al., 2006): a random sampler and two smarter variations. Presumallingra graph-based
method on the entire unlabeled training set would have been technicallyibiéeas

For CoNLLO3, POS BIOII , andSRAA, we performed inductive learning, splitting the data
randomly into two sections, training and test. From the training set, we randdmbecsome
instances to be labeled and set the remainder to be hidden. Out of thosa,hidtlthen select a

9. The sliding window classifier makes independent decisions for daateat in the sequence. While finite-state
methods could also be applied in these cases, the cost of training labkirization would be prohibitive, and we
found that these methods work well.
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# Labeled Instances

2 100 1000
SVM (supervised) 55.41 66.29
Cluster Kernel 57.05 65.97
QC randsub (CMN) 57.68 59.16
QC smartonly (CMN) 57.86 59.29
QC smartsub (CMN) 57.74 59.16
Naive Bayes (supervised) 52.42%(+0.4) | 57.12%(+0.7) | 64.47%(+ 0.2)
Naive Bayes EM 50.79%(+ 1.5) | 57.34%(+ 1.1) | 57.60%(= .009)
MaxEnt (supervised) 52.42%(+ 0.5) | 56.74%(+ 1.1) | 65.43%( 0.3)
MaxEnt + Ent. Min. 49.40%(+ 2.1) | 54.45%(+1.8) | 58.28%(+ 0.1)
MaxEnt + GE 57.08% (+.03) | 58.51%(+ 0.4) | 65.44%(+ 0.3)

Table 2: Label regularization outperforms other semi-supervised lgamathods at 100 labeled
data points. At one instance per class, its performance is better thanptngised SVM
and maximum entropy model at 100. Standard error is reported foriegas that were
run locally. Other experimental performance is taken from the literature.

fixed number to use for unsupervised learning. We then evaluate the nrothed bidden test data.
We repeat this evaluation five times for each of the models.

The SecStrtask was set up in what is commonly called transductive learning, where tthel mo
is evaluated on hidden training data. For this task, the labeled/unlabeled spipwmvided with
the data from Chapelle et al. (2006) and evaluation is on hidden trainingldaieder to provide a
somewhat more fair comparison with the RBF kernels used by the other methadbis task, the
feature set used by the maximum entropy model afigerBayes models is augmented by pairwise
feature conjunction¥’

For the maximum entropy model trained with entropy regularization, after saperimenta-
tion, we weighted its contribution to the objective function with

A = # labeled data points / # unlabeled data points

This was shown to yield relatively good performance. For the first sekpériments, we use la-
bel proportions estimated from all of the data, corresponding to a ssevdaere a user gives this
knowledge to the system during training. Section 5.3 presents experimemmglirobustness to
noisy label proportions both when smoothed towards a uniform distributibmaen sampled from
a limited number of training examples. Across the experiments, we observiddlbbregulariza-
tion trains in time linear in the amount of unlabeled data, and since the resultingispdemetric,

it is linear in the number of features for evaluation.

5.2 Learning Curves

For the first set of experiments, we experimented with varying the numbsrpefrvised training
example, while keeping the unlabeled data set size the same (with sizes ofdbeled data shown

10. Though, as one anonymous reviewer noted, this makes them striotly empressive then kernel methods with
guadratic features.
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Figure 1: BIOII: Label regularization (GE) outperforms all other method@he x-axis represents
increasing numbers of labeled data instances. The y-axis is the F-medsto@verage
across all classes.

in Table 1). We added examples in a balanced way, going from 1 exampttapsiup to 500 exam-
ples per class (when possible). For each data point we ran 5 trialse Wieedata was partitioned
into training/test/unlabeled uniformly at random. The sole exception was f@abstrdata where
the data splits and tests were pre-specified.

As Table 2 shows, foBecStr, label regularization outperforms the other methods at 100 labeled
points, and approaches the cluster kernel method on 1000 points. WHidenp@nce results were
not available for the other methods for two instances per class, we rdmrégloéarization for this
case and found that it outperforms thgervised SVM and maximum entropy model when they
are trained with 100 labeled points. In these experiments QC is not run @/e@othplete data
(presumably because of scalability problems), but operates on a seibset,selected randomly
(randsub) or in a smarter fashion (smartonly and smartsub), while therkhdarization method
uses the complete data.

Figures 1, 2, 3, and 4 show classifier performance using a fixed ambumiabeled data as
greater amounts of labeled data is added. Label regularization yields cagmifienefits over the
other methods foPOS BIOII , andCoNLLO3 for all amounts of labeled data. Label regularization
on SRAA shows a benefit over the fully supervised maximum entropy model but itgamcis
not as high as that obtained by the EM-trainetvadBayes learner. This may be partly explained
by the fact that the baseline performance of the discriminative maximum gmnmopel is much
lower than the generative ive Bayes model, so that label regularization starts off at a considerable
deficit.

While alternative methods often result in degredations of performancetio®rsupervised
counter parts (EM, entropy regularization, cluster kernels), in thgseriements label regularization
consistently yielded improved accuracy. Additionally, the benefit of ladgllarization is more ap-
parent as the feature sets and numbers of unlabeled instances inaiatee least improvements
on one of the simplest tasks, tBRAA text classification task.

These experiments demonstrate that label regularization can at least amtéh,many cases
beat, alternative methods of semi-supervised learning, given minimal a@ditidormation and
access to large samples of unlabeled data. The successes of GE suggdasvestigation of addi-
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Figure 2: CoNLLO3: Label regularization (GE) outperforms all other md¢h The x-axis repre-
sents increasing numbers of labeled instances per class, and the yaadarnacy.
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Figure 3: POS: Label regularization (GE) outperforms all other methtbdagh performance im-
provements over supervised maximum entropy methods appear to level130@ la-
beled instances.

tional, alternative modalities of supervision which will generate data thateaddted to supervised
classifiers and combined with unlabeled data in order to improve performance

5.3 Noisy Priors

The previous section assumes that the system has accurate knowletthgedidtributions over
the labels. In this section, we perform a sensitively analysis by gradualbothing the class
distribution until it reaches a uniform distribution. We add noisy courttsthe true counts(y):

. _c(y)+v
Pi(y)(y) = 5, () +V)

As more noise is added, the input distribution converges to uniform.
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Figure 4: SRAA: Label regularization (GE) outperforms its superviseximmam entropy counter-
part and entropy regularization and is the winner at one labeled instandasg. After
that, ndve Bayes EM is the clear winner.

Figure 5 demonstrates the effect of increasing noise in the system=At 000, the majority
class probability drops from 84% to 80% and there is almost no loss ofrpaafce. Av = 10,000
are added, the majority class probability drops to 61% and there is only alskghif performance.
At v = 1e07 the majority class probability has dropped to 11%, a virtually uniform didtabpand
performance has leveled off. These results are encouraging asutggss that relatively large
changes (of 20% absolute, 27% relative) can be tolerated without magaslas accuracy. Even
when the human has no domain knowledge to contribute, label distribution estiofatefficient
accuracy should be obtainable from a reasonably small number of ladbelatples.

To test this assumption, we performed another set of experiments, wiseradrof smoothing
the input distributions towards a uniform distribution, we sampled them frond#te, varying
the number of instances used in the sample. These points were sampled érdatahand then
the data was partitioned into test/train/unlabel splits. Figure 6 and 7 demonseatdfebt of
sampled distributions, as opposed to distributions smoothed towards a udifdrinution. For the
CoNLL3 data set, as can be seen in Figure 6, after sampling from 1000 points rfinerzace of
the classifier doesn’t get worse, suggesting that only a small amouribokpowledge or labeling
is necessary for determining accurate input distributions. WithP®& data, it appears that as
you increase the number of points used to compute the sample performanogemphough it
appears to begin to level out at 1000 points. Because this data set iscsigihyfismaller, we were
unable to continue running experiments with larger numbers of sampled poevaltmte when the
performance begins to level out.

5.4 Robustness

Along with robustness in the face of noise from the estimated label propsrtioem model is robust
to changes il and temperature. As can be seen in Figura &nd temperature have a wide
plateau over which their performance is stable. At some extreme valuksanfl temperature,
the performance degrades, and can drop below supervised penfigmahis trend was observed
for 500 labeled examples (shown in the figure), as well as in cases whemn dB little as one
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Figure 5: CoNLLO3: The x-axis represents increasing amount of roigsards a uniform distri-
bution. On this data set, the majority class is 84% of the instances, and so tberunif
distribution is an extremely poor approximation. Performance suffers littlenema-
jority class proportion is erroneously given as 61%{(10,000)
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Figure 6: CoNLLO3: An input label distribution with sampling noise. After Q@dints, sampling
from more points doesn’t appear to lead to performance improvements.

labeled example for a number of the data sets. For other semi-supervisei|texs such as entropy
regularization, extensive tuning is required across for each indiMitiua set and labeled/unlabeled
data set sizes in order to improve upon supervised-only performaaces{il., 2006).
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Figure 7: POS: An input label distribution with sampling noise. Since POS hag atasses (44),
access to an accurate sampling distribution has a larger impact on perée;naad the
graph suggests that even higher precision in sampling would lead to higberaay.
Note that we were unable to sample as many points as in the previous examyde béa
limited amounts of available data.
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Figure 8: CoNLLO3: For a wide range afand temperature the performance is similar and sur-
passes the purely supervised performance.

5.5 Running Time

Figure 9 shows the running time per optimization iteration for the two largest,t@shéL. L and
BIOII . The slope variation between the running times can be accounted for byriieen of fea-
tures in each of the data sets.

5.6 Mechanism of Effect

One question that needs to be addressed is whether label regularizatgmasing performance
solely by adjusting the label proportions or operating in some other fashlarugh certainly cor-
recting label proportions is one pathway for improved performance we twa pieces of evidence
that additional learning is happening in the model. First, when we allow othssifitas access to
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Figure 9: Label regularization is linear in the number of unlabeled exampwigisput requiring
sub-sampling.

the label proportions, they are unable to reach the same gains as achigwvedE. For example, in

all of the experiments the hae Bayes classifier has its label prior fixed to the input distribution as
it is subsequently trained with EM, yet it typically fails to reach the same levpkedbrmance as
achieved with the GE methods. Second, Druck et al. (2008) reporitsreSaxperiments using GE
criteria where the input distributions were only allowed to affect the featilmey were conditioned

on (corresponding to only being able to adjust the label proportionghelse experiments, when
GE could only adjust the features specified by the input distributions it\wethggnificantly worse
results, thus indicating that learning parameter values for features eotlgdiconditioned by the
input distributions has a dramatic effect on classifier accuracy.

5.7 Combining Label Regularization and Entropy Regularization

Generalized expectation criteria can often be easily combined with other madglsemi-supervised
model in the parametric model family, such as expected gradient methodsH&diakv et al.,
2003), can be easily combined with GE, and certain generative modelasuéiie MRFs (Druck
et al., 2007) can be simply combined as well. More distantly, just as variouslmodn be aug-
mented with regularization terms (as in ridge regression for linear regnessidels), GE may be
augmented in the same way. In this paper we used a Gaussian prior and mirihid@argence
from input distributions with gradient methods here, in other cases it migireean alternative
penalty term from the input distributions and a different minimization technique.

Here we examine combining label regularization with entropy regularizati@naxthe objective
function is augmented with more than one regularization criterion. For manyeadperiments,
combining label regularization and entropy regularization does not lead towements. Two
exceptions were experiments &RAA and theSecStrdata sets. Notably, o8ecSt; combined
entropy regularization and label regularization yields a performancé.806a level which matches
the performance of the supervised radial-basis SVM and beats all sthepervised methods. For
SRAA, Figure 10 shows that when entropy regularization is added to labdlaregtion, there
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Figure 10: SRAA: Combining label regularization and entropy regularizatim be easily accom-
plished, and yields improvements over label regularization alone for thisdata
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Figure 11: CoNLLO3: On this data set, combining label regularization atréd@nregularization
does not lead to any benefit. The GE+Entropy regularization curvelgxaerlaps the

GE curve.

can sometimes be a benefit over the use of label regularization or enggphanization alone.
In comparison, Figure 11 shows that there is little or no difference in pagnce when entropy
regularization is combined with label regularization in the caseaLL03.

6. Experimental Results for Conditional Random Fields

In this section, we examine the performance of label regularization fatittomal random fields.
We look at two data sets, Craigslist Apartment listings, and citation data. Weaceragainst two
previous methods for semi-supervised learning of conditional randdas fientropy regularization
and the clustering method proposed by Miller et al. (2004) in Section 6.3 eWiedistrate that label
regularization can achieve higher accuracy than purely supervisathgyaand can beat or match
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MRF (prototypes) 53.7%
MRF (prototypes) + cluster 71.5%
HMM supervised only (100) 74.4%
CRF supervised only (100) 75.8%(+ 0.3)
CRF supervised (100) + Ent. Reg. (2k¥6.7%(+ 0.4)
CRF supervised (100) + GE (2k) 77.1%(+ 0.3)

Table 3: APT: A CRF trained semi-supervised with 100 labeled exampleskama@beled exam-
pled has the highest performance, beating the strictly supervised CRRea@&RF trained
semi-supervised with entropy regularization. Standard error is showarentheses for
experiments run locally.

the performance of entropy regularization or clustering. We do notth@rgaussian regularizer, but
leave a default value. We begin training with parameters set at 0 (everttttweigbjective function
may not be convex). Later experiments start from a model initialized by atrantured classifier
trained with GE, which we observed to yield higher accuracy (Mann andd#em, 2008).

6.1 Apartment Listings

First we examine performance on the apartment dataA&ek ) initially presented by Grenager et al.
(2005) and later examined by Haghighi and Klein (2006b), with labellaegation. This data was
collected in June 2004 from craigslist.com, and consists of 302 hand-dbhaésewhere each ad is
labeled with 12 fields (e.gSIZE, RENT, NEIGHBORHOOD, FEATURES. The average ad has 119
tokens in 8.7 fields.

For this task, sliding window models perform poorly as the fields are “sti¢kg,, the best way
to predict the next label is from the previous label). We set label regatan A as before, but set
the entropy regularizationto 0.01 times the number of labeled examples divided by the number of
unlabeled examples. For these experiments we used 2,000 unlabeled afmlistiags.

We performed minimal feature engineering, using only standard capitalizatidnvord class
features (e.g., “digits”). We additionally used a feature that is the exaentsking of the previous
word. The use of flexible, non-independent features demonstratbstiedit of the greater expres-
sive power of discriminatively trained CRFs; with these features aloneCRfe out-performs the
supervised HMM.

Table 3 compares the performance of our system relative to previoesvisgrd and semi-
supervised systems,where at the maximum amount of training data, label regularization achieves
a 1.3% accuracy improvement over the purely supervised CRF, and aa@el¥#acy improvement
over semi-supervised learning via entropy regularization.

Table 4 shows learning curve performance for the CRF with a variety tdrdift settings.
With accurate input distributions, the CRF trained with label regularizatioreees the highest
performance, for all but with one example, where entropy regularizéitme highest performer.
Label regularization gives a 8% absolute accuracy improvement at tlee levels of training data
and a 1.3% boost (a 5% relative error reduction) for a highly trainedesez model. Unlike entropy

11. We did not implement the ad-hoc boundary pre-processing asteppacessing as is performed by the unsupervised
MRF. These boundary features gave a 3% improvement for HaghighKlein (2006b).
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# Supervised Supervised | Entropy Regularization) GE: Estimated Priors GE: Accurate Priorg
1 41.2%(+ 1.7) | 44.3%(= 0.3) 41.3%(+ 1.7) 45.7% (£ 1.7)
5 48.4%(+ 1.8) | 45.8%(+ 1.1) 51.9%(+ 1.6) 56.2% (+ 0.6)
10 55.9%(+ 1.3) | 58.0%(+ 2.5) 57.5%(+ 1.2) 63.0 % (+ 0.2)
50 71.7%(+ 0.5) | 74.1% (£ 0.2) 73.7 %(+ 0.4) 74.0 %(+ 0.6)
100 75.8%(+ 0.3) | 76.7 %(+ 0.4) 77.4% (£ 0.2) 77.1 %(+ 0.3)

Table 4: APT: Use of input distributions estimated from limited labeled data yieldsler im-
provements over the true distributions, but still improves over the strictlyrgigeel accu-
racy, and at large levels of training data, nearly matches the accuraieyed by the true
distributions. Standard error is shown in parentheses for the experiments

# Supervised Supervised Entropy Regularizationy GE: Estimated Priors GE: Accurate Priors
1 24.9%(+ 3.6) | 17.5%(+ 3.2) 25.5%(+ 3.8) 37.3% (+ 2.1)
5 52.4%(+ 0.5) | 27.0%(<+ 2.7) 52.4%(+ 5.6) 54.7% (+ 0.5)
10 56.1%(+ 0.6) | 35.2%(+ 3.3) 55.5%(+ 0.7) 57.9% (+ 0.4)
50 67.8%(+ 0.6) | 66.5%(=+ 0.8) 67.5%(+ 0.3) 68.0% (£ 0.6)
100 72.7%(+ 0.5) | 73.5% (+ 0.5) 72.4%(+ 0.3) 72.0%(+ 0.6)

Table 5: CITE: Label regularization (GE) is able to significantly improve enphrely supervised
cases at very low levels of training data. At higher levels of training damaakes less of
an impact. Standard error is shown in parentheses for the experiments.

regularization, label regularization improves over supervised leargigsall amounts of training
data.

In addition to testing with accurate proportions, we also examined perfoenahen input
distributions were read directly off of the minimal training label sequenceeWhese noisy input
distributions were used, the performance was less than with entropy niegtian at lower levels
of training data, but it still provided consistent gains in performancesact) training settings.

6.2 Citation Data

In addition to experiments on apartment data, we also ran experiments on cilat®oITE ) as
given by Grenager et al. (2005). This data set consists of 500 &amadktated citations taken from
the reference sections of different computer science papers. Eatbrcis annotated with 13 fields
(e.g.,AUTHOR, TITLE, DATE, JOURNAL), and on average the citation has 35 tokens annotated with
5.5 fields. For this experiment we used 1,000 unlabeled examples) withtimes the number of
unlabeled data points, and the entropy regularizer set as before. (setlig data, as shown in
Table 5, label regularization gives a slight win at low levels of training datéat higher levels,

it does not provide any improvement. Entropy regularization unfortunateigistently decreases
performance. Here, estimating the input distributions from the minimal trainitegldads to per-
formance decreases beyond supervised training. The differetwedrethe two data sets suggest
that more work is needed to understand in what situations label regulanizaiobe expected to
work well.

978



GENERALIZED EXPECTATION CRITERIA

# Supervised Supervised | Supervised + Clustering GE GE + Clustering
1 41.2%(+ 1.7) | 44.5%(+ 0.9) 45.7%(+ 1.7) | 50.0% (£ 0.3)
5 48.4%(+ 1.8) | 54.3%(+ 1.8) 56.2%(+0.6) | 58.9% (+1.1)
10 55.9%(+ 1.3) | 61.2%(+ 1.5) 63.0 %(+0.2) | 64.4% (+0.9)
50 71.7%(+0.5) | 74.1% (+ 0.5) 74.0 %(+0.6) | 74.1% (+0.3)
100 75.8%(+0.3) | 77.6% (+ 0.1) 77.1%(+0.3) | 77.6% (+0.2)

Table 6: APT: Using clustering features gives an additional gain to ladugllarization for low
levels of training data, but it doesn’t provide any additional benefitigldr levels of
training data. Standard error is shown in parentheses for the experiments

One thing to note from the experiments, is that as training data increasegrtbemance gap
between the true distributions and estimated input distributions diminishes, ubt@i0atupervised
examples, it almost matches the accuracy achieved by the true distributibase fesults are at
once encouraging and surprising, and suggest two possible réasimprovement. First, perhaps
the CRF isn’t matching the proportions implicit in the labeled data, even thougk #dcess to this
information. Second, it suggests that the unlabeled data does haveetrbeffond that of helping
to readjust the classifier towards the input distributions. In particulangpsrnew features are being
brought in by inclusion of the unlabeled examples.

The strengths of label regularization over entropy regularization arédldoFirst, GE gives an
overall win in performance across many different levels of training dd¢&ond, GE gives consis-
tent gains. GE rarely performs worse than purely supervised trainingr(the input distributions
are accurate), whereas the performance of entropy regularizatiorat&cesometimes yielding a
gain in performance, in other cases leading to a severe decreaseomymrte.

6.3 Clustering Features

Miller et al. (2004) proposes a method of using unsupervised clusters t@mperformance.

In his method, the unlabeled data undergoes word clustering, and thareteaorresponding to
clusters are added during supervised training. A similar method can bedpplie, in which fea-

tures corresponding to unsupervised word clusters are added denmgsupervised training. We
applied this method to the apartment data, and for very low level of trainingpdf@ncouraging

performance gains. Table 6 shows that for one labeled example, 2,(dlfeled examples, and
unsupervised clustering, the system achieves almost a 5% improvemesinigytlnese unsuper-
vised cluster features (45.7% to 50.0%). At higher levels of training ddial tagularization and

clustering features interact poorly, and using them together lead to novermpemt. While at lower

levels of training data, label regularization is able to achieve more gains thaiusiering method,

at higher levels of performance, it only matches performance. We hsyeiempted to use sim
features as proposed in Haghighi and Klein (2006b), but found the#leods difficult to tune (e.g.,
what SVD rank to retain).
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7. Conclusion

This paper has presentgeneralized expectation criteria, a simple, robust, scalable method for
semi-supervised learning. This method penalizes models by divergetveeelnethe model's ex-
pectations over the unlabeled data and input conditional probabilities, whithe estimated from
labeled data or given as a priori knowledge by a human annotator. Antamp@pecial caséabel
regularization is empirically explored for the case of maximum entropy models where we find it to
provide accuracy improvements over entropy regularizatioiverBayes EM, Quadratic Cost Cri-
terion (a representative graph-based method) and a cluster keriel\8® show that the method

is robust to noise in the estimates of the input conditional probabilities, the raedaapters need
little or no tuning, and that it runs in linear time with increasing numbers of unldle{amples.

We additionally present extensions of the method to conditional random.flalttss case, the
gradient computation is complicated and requires the use of a specializachidyprogram which
computesy ; p(Yi,Yi+1,Yj = [x;8). Conditional random fields trained with label regularization out-
perform alternative methods for semi-supervised training such as gregplarization, and can
achieve 1% to 8% improvement over supervised only approaches.

The simplicity of these methods, their robustness, and their high performiveggrgmise that
they may have a wide application and impact in use for semi-supervised méaduinimg.
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