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Abstract
In this paper, we present an overview ofgeneralized expectation criteria (GE), a simple, robust,
scalable method for semi-supervised training using weakly-labeled data. GE fits model parameters
by favoring models that match certain expectation constraints, such as marginal label distributions,
on the unlabeled data. This paper shows how to apply generalized expectation criteria to two classes
of parametric models: maximum entropy models and conditional random fields. Experimental
results demonstrate accuracy improvements over supervised training and a number of other state-
of-the-art semi-supervised learning methods for these models.
Keywords: generalized expectation criteria, semi-supervised learning, logistic regression, condi-
tional random fields

1. Introduction

Semi-supervised learning, where a small amount of human annotation is combined with a large
amount of unlabeled data to yield an accurate classifier, has received a significant amount of atten-
tion from the research community. However, there are surprisingly few cases of its use in applica-
tions, where the emphasis is on solving a task, not on advancing theoreticalunderstanding. This
may be partially due to the natural time it takes for new machine learning ideas to propagate to
practitioners, but we believe it is also due in large part to the inherent difficulty of the task and the
unreliability of existing methods.

Instead of addressing the difficulties of semi-supervised learning head-on, we propose to use
weakly labeled data (“side-information”) in semi-supervised learning. To use this data, we present
generalized expectation critera (GE), a method initially described asexpectation regularization in
Mann and McCallum (2007). GE represents a new family of semi-supervised learning, where mod-
els are fit by minimizing model divergence from an input distribution. To calculate the divergence
from the input distribution there is no need for additional training data, as theexpected distribution
on the unlabeled data can be used. These terms can be easily integrated with other terms, such as
traditional log-likehood.
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The experiments in this paper explore an illustrative special case of GE,label regularization,
where a marginal distribution over output labels is applied as an expectation constraint. We in-
vestigate two parametric models: maximum entropy models and their structured output analog,
conditional random fields. We demonstrate that for both of these models, label regularization is
able to provide performance gains over other supervised and semi-supervised learning methods.

Generalized expectation criteria have a number of advantages over alternative semi-supervised
learning techniques that make it suitable for use in practice. It is simple, making iteasy to im-
plement and use. It requires no additional processing such as constructing an inverted index for
graph construction or pre-clustering unlabeled data. Since it can handlea wide spectrum of side-
information, human intuitions about the problem can be explicitly communicated to thelearning
process, in contrast to other methods which can require opaque supervision, such as carefully tuned
initialization, or specification of “contrastive examples” and other “auxiliaryfunctions”. We apply
GE in this paper to discriminative models, and thus it is able to robustly handle overlapping, non-
independent feature sets and yields transparent confidence estimates (in the form of probabilities).
Additionally, GE has all of the advantages of parametric models, in particular scalability and a small
memory footprint at test time.

2. Related Work

Traditionalsupervised learning takes as input fully labeled data, a set of tuplesD = {(x,y)}, where
x is the input andy the desired output. The learner is a function which maps the input to a predictive
function: J(D) = f , where f : x→ y. Supervised learning is powerful, but the amount of labeled
data needed can require significant human time and effort to create. In aneffort to reduce the need
for human effort, the machine learning community has explored semi-supervised learning. Insemi-
supervised learning approaches, a small amount of labeled data is augmented by unlabeled data,
a set of elementsU = {x}, which it exploits to chose a similar function:J(D ∪U) = f . This
section presents the main methods for semi-supervised learning from labeledand unlabeled data: 1)
bootstrapping, 2) expectation maximization, 3) feature discovery, 4) decision boundaries in sparse
region methods, and 5) graph-based methods.

In contrast to these methods, GE criteria exploit semi-supervised learning from weakly labeled
data. With this scenario, there be no labeled data. Instead, in addition to unlabeled data there is side
information that has been provided to the learner, for example, expectationconstraints like marginal
label distributions ˜gy = p(y).1 Section 2.2 reviews prior work in this area.

2.1 Semi-supervised Learning with Labeled and Unlabeled Instances

There are five main prior categories of semi-supervised learning approaches: bootstrapping, ex-
pectation maximization, feature discovery, decision boundaries in sparse regions, and graph-based
methods.

2.1.1 BOOTSTRAPPING

In bootstrapping, or self-training approaches, a classifier is first trained on the fully labeled instances
and then is applied to unlabeled instances. Some subset of those newly labeled instances are then
used (in conjunction with the original labeled instances) to retrain the model.

1. Liang et al. (2009) presents a taxonomy of side-information.
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Algorithm 1 Bootstrapping for semi-supervised learning

f (0)← J(D)
repeat
UB←∪xi∈U(xi, f (t−1)(xi))
f (t)← J(D ∪UB)

until done

One of the most successful examples of this work is Yarowsky (1995), where a small ’seed set’
of labeled instances is incrementally augmented. Co-training (Blum and Mitchell,1998) looks at
the case where two complementary classifiers can both be applied to a particular problem. Abney
(2004) provides a deeper understanding of these methods by demonstrating that they optimize a
natural objective function. However, these methods typically require continual human intervention
in order to avoid performance loss during the bootstrapping process, such as in Riloff and Shepherd
(2000).

2.1.2 EXPECTATION MAXIMIZATION

Generative models trained by expectation maximization (Dempster et al., 1977) have been widely
studied for semi-supervised learning. EM consists of two steps: an expectation stepQ(θ|θ(t)) =
Ep(y|x,θ(t) [logL(θ;x,y)], and a maximization step,θ(t+1) = argmaxθ Q(θ|θ(t)). To apply EM to semi-
supervised data, the log-likelihood function, logL(θ;x,y), is set to be a composite of labeled and
unlabeled data (possibly with a weighting factor to down-weight the contribution to the likelihood
from the unlabeled data). One popular example of the use of EM for generative models is Nigam
et al. (1998) which presents a naı̈ve Bayes model for text classification trained using EM and semi-
supervised data.

EM has also been applied to structured classification problems such as part-of-speech tagging
(Klein and Manning, 2004), where EM can succeed after very careful and clever initialization.
While these models can often be very effective, especially when used with “prototypes” (Haghighi
and Klein, 2006b), they cannot efficiently accommodate non-independent features, for example,
those that span multiple inputs. In these cases, the dynamic program required to compute the feature
expectations over all input positions quickly becomes intractable, as buildingthe lattice requires
exponential space in the length of input features.

EM for discriminative models has also been explored. Wang et al. (2002) proposes a EM based
model which instead of the likelihood, maximizes the entropy given the latent variables. Alter-
natively, Salakhutdinov et al. (2003) present an expected gradient method, which can be used for
discriminative models which have some partially observed labels, and McCallumet al. (2005) uses
this method for conditionally trained CRFs. While this method is appealing in the caseof input
data that consists of sequences with partially hidden variables, it cannot be applied to scenarios with
fully unlabeled instances.

Another twist on this technique is to blend generative and discriminative models, by combining
ML estimates over the labeled data with EM parameter estimates over the unlabeled data, for a joint
model which combines a CRF and a HMM (Suzuki et al., 2007; Suzuki and Isozaki, 2008). In
this formulation, the log-likelihood can be viewed as two separate log-likelihoodfunctionsL1(θ)
andL2(θ) which respectively correspond to the CRF and HMM log-likelihood. When optimizing
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L1(θ) (using maximum likelihood), the HMM parameters are held constant, and the reverse when
optimizingL2(θ).

While EM can sometimes works well, it is often fragile and finds solutions that areworse than
the equivalent supervised model. Merialdo (1994) gives a classic example where EM fails to help
part-of-speech tagging. Cozman and Cohen (2006) discuss the risks of using EM and describe
situations where it can fail. Additionally, the generative models on which EM depends often perform
worse than discriminative models.

2.1.3 FEATURE DISCOVERY

As alternative to estimating a classifier directly with unlabeled data, a number of groups have ex-
plored using the unlabeled data for feature induction or feature discovery, and those features are
then embedded into a traditional supervised learning problem. A latent clustering is applied over
the unlabeled data, to learn a functionfl, which is used to provide additional featuresfl(x) = z,
these features are then used to augment the original labeled data:D̄ = ∪(xd ,yd)∈D(xd ∪ zd ,yd), and
then supervised learning proceeds as usual. For example, Miller et al. (2004) and Ganchev et al.
(2007) apply the method described in Brown et al. (1992) to cluster all of the word tokens in a large
unsupervised corpus. Then for a given sentence, in addition to standard features, additional features
corresponding to the latent clusters of the tokens in the sentence, are added. This technique, along
with similar approachs (Freitag, 2004; Li and McCallum, 2005), have yielded small but consistent
success. This method can be applied independently of the particular trainingmethod and in Section
6.3, we explore combining our method with those described by Miller et al. (2004).

Ando and Zhang (2005) use a similar method, but the clustering they exploreis composed
of auxiliary problems (e.g., predict a given token given the token context). In their method, they
estimate the parameters for a linear classifier for each auxiliary problem, andthen these parameters
are embedded as a transformation of the parameters for a linear classifier for the original problem.
Although this method has produced impressive gains, it is quite sensitive to theselection of auxiliary
information, and making good selections requires significant insight. F. Pereira and J. Blitzer.2 note
that the list of tricks necessary to get the method of Ando and Zhang (2005) to work includes:
oversampling positive instances, selecing the unlabeled data carefully, scaling real-valued features,
and choosing the appropriate feature types.

Additionally, feature discovery as a semi-supervised learning technique relies on having a sub-
stantial amount of labeled data for training. It cannot be used in cases where only a limited amount
of labeled data is available.

2.1.4 DECISION BOUNDARIES IN SPARSEREGIONS

Another family of methods uses the intuition that decision boundaries ought to fall in low-density re-
gions (corresponding to an assumption of class separability) and thus fit discriminative models with
this objective in mind. Clearly, if the cluster assumption is violated (i.e., the classesare not widely
separable), assigning decision boundaries to low density regions is a poor choice. One illustrative
example is entropy regularization (Grandvalet and Bengio, 2004), where a traditional conditional
label log-likelihood objective function is augmented with an additional term thatminimizes the

2. Conveyed in personal communication.
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entropy of the label distribution on the unlabeled data:

O(θ;D,U) = L(θ;D)+H(θ;U)

= ∑
d∈D

logp(yd|xd)−λ ∑
u∈U

∑
y

p(y|xu) logp(y|xu).

This objective function favors parameter settings where the model is certainof the labels on given
unlabeled data. In entropy regularization, the hyper-parameterλ has a dramatic effect on the per-
formance of the learner, since it must be tuned with regards to the amount oflabeled and unlabeled
data. Entropy regularization is particularly difficult to apply in cases of very small amounts of la-
beled data, since in one degenerate case, the model could select one output label for all possible
inputs. Studies on structured output models in Jiao et al. (2006) experimentally demonstrate that
careful tuning ofλ is mandatory.

Transductive support vector machines (TSVMs) (Joachims, 1999) add a constraint to the SVM
optimization function in order to preserve the margin over unknown test labels:

({yu},θ) = argmin
{yu},θ

1
2
||θ||2 subject to

{

∀xi∈D yi[θ · xi +b]≥ 1
∀xu∈D yu[θ · xu +b]≥ 1

.

It is combinatorially intractable to do a brute-force search over all possiblelabelings{yu}, so an ap-
proximation search must be undertaken. Even with these approximations, thealgorithm as originally
proposed has running timeO(n3). Sindhwani and Keerthi (2006) propose a method for speeding up
training in some cases. In our experience, like entropy regularization, TSVMs also require extensive
and delicate tuning of meta-parameters. We note that Sindhwani and Keerthi(2006) report results
with meta-parameters tuned on test data. Benchmark tests have shown that entropy regularization
performs as well as TSVMs (when the SVM is given a linear kernel) (Chapelle et al., 2006). Another
related method is information regularization (Corduneanu and Jaakkola, 2003), which measures dis-
tance via the mutual information between a classifier and the marginal distributionp(x).

2.1.5 GRAPH-BASED METHODS

Graph-based (manifold) methods can be very accurate when applied to semi-supervised learning.
In these methods, a graph, typically with weighted edges, is constructed spanning the labeled and
unlabeled instances. Thereafter, unlabeled instances are assigned labels according to their neigh-
bors. Zhu and Ghahramani (2002) propose label propagation, where labels propagate from labeled
instances to unlabeled instances (see Algorithm 2). In this formulation, thereare two significant

Algorithm 2 Label propagation
repeat
∀xu∈U : p(y(t)

u |x
(t)
u ) = 1

Z ∑ j∈N (xu) q( j→ u)p(y(t−1)
j |x j)

until p(y(t)
u |x

(t)
u ) converges

choices that must be made: the graph structure (the neighborhoodN (x) for each instance) and the
transition functionq( j→ i). Szummer and Jaakkola (2002) present a closely related approach which
uses random walks through the graph to assign labels. More distantly related, Li and McCallum
(2004) examine a method which performs an implicit clustering over points, as itsimultaneously
estimates pair-wise distance and classification boundaries.
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As originally proposed, graph-based methods are slow, requiring timeO(n3) or on average
O(kn2) wherek is the number of neighbors (similar to TSVMs). By sub-sampling unlabeled data,
one can reduce run-time fromO(n3) to O(m2n), wherem is the subsampled number of unlabeled
data points (Delalleau et al., 2006), but subsampling does not take full advantage of available unla-
beled data. Zhu and Lafferty (2005) propose alternative methods for reducing the time compleity
to O(m3),m < n, but these may also impact performance. For structured output spaces,Lafferty
et al. (2004) and Altun et al. (2005) have looked at approaches usingthese methods. However, the
high running time of these methods has prevented wide-scale adoption, and they have been tested
predominantly on synthetic or toy examples (e.g., with 5 labeled examples). Recently, Baluja et al.
(2008) proposed a method for performing graph-based semi-supervised learning in parallel.

Since these are non-parametric models, they do not build a compact encoding of the model,
and so it is not always clear how to apply them inductively (on new unlabeled data). At the very
least, labeled and unlabeled data must be stored in order to classify new examples. In this paper
we compare against a representative graph-based label propagationmethod called Quadratic Cost
Criterion (QC) (Bengio et al., 2006) whose results are reported in Chapelle et al. (2006).

2.1.6 DIFFICULT APPLICATIONS

There are cases of semi-supervised learning being used in application settings, however, not without
difficulty. In fact, a broad survey of semi-supervised learning methods (Chapelle et al., 2006) found
that they do not uniformly beat supervised methods and that there is no clear winner from among the
methods. This conclusion reflects the experimental evidence and theoretical support from a large
span of work.

Expectation-maximization is notoriously fickle for semi-supervised learning. In a classic result
(Merialdo, 1994) attempts semi-supervised learning to improve HMM part-of-speech tagging and
finds that EM with unlabeled data reduces accuracy. Ng and Cardie (2003) also apply EM but finds
that it fails to improve performance, as do Grenager et al. (2005) (without their tricky initialization).
Cozman and Cohen (2006) discuss use cases where EM might fail to work.

Krogel and Scheffer (2004) use transductive SVMs for the functional genomics KDD Cup chal-
lenge and find that not only does it fails to improve performance but it evendeteriorates perfor-
mance. Ifrim and Weikum (2006) also find that TSVMs deteriorate performance. Kockelkorn et al.
(2003) use transductive SVMs for text classification, but complain that itis computationally costly.
Zhang and Oles (2000) discuss theoretical reasons why TSVMs might fail to work in various sce-
narios.

Macskassy and Provost (2006) apply harmonic mixing to classification of relational data, how-
ever the running time of harmonic mixing proves to be a barrier to its use. In the case of word
sense disambiguation, Niu et al. (2005) has looked at label propagation,and found that the metric
for graph construction has a dramatic effect on performance. Chen etal. (2005) look at combining
manifold methods (e.g., ISOMAP) with semi-supervised learning, but finds thatthe methods are too
fragile in their tuning parameters to be effective. Blum and Chawla (2001) also cite fragility in the
tuning parameters as a problem for their graph-based method.
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2.2 Semi-supervised Learning with Weakly Labeled Data

As an alternative to semi-supervised learning with labeled and unlabeled data, a number of methods
have investigated semi-supervised learning with weakly labeled data or side information, though
none with the expressiveness in labeling allowed by GE criteria.

Graph-based methods have used class proportions for post-processing to set thresholds on label
propagation (Zhu et al., 2003). Schuurmans (1997) uses predicted label distributions on unlabeled
data for model structure selection (as opposed to parameter estimation). More distantly, conditional
harmonic mixing (Burges and Platt, 2006) minimizes over each point the KL-divergence between
the currently predicted label distribution and the distribution predicted by its neighbors. Wang et al.
(2004) also look at methods for incorporating class proportions into classification. In their model,
they pseudolabel instances and provide them as constraints for the modelto handle.

The use of side information to train a parametric classifier has been exploredbefore by Schapire
et al. (2002) who uses a boosted ensemble of weak learners set from human-generated expected
distributions. There are significant differences between GE and this work, in particular, Schapire
et al. (2002) match distributions on a per-instance basis, while generalizedexpectation criteria match
a global distribution. Thus in the model proposed by Schapire et al. (2002), every example has to
match the distribution given as input.3 Graca et al. (2008) integrates similar types of instance-
based constraints into EM learning, where the constraints restrict the space over which the model
calculates the expectations of the hidden variables.

Like Schapire et al. (2002), Jin and Liu (2005) present a model for incorporating class pro-
portions into discriminative models which places a expected class distribution over each instance.
Unlike Schapire et al. (2002), these distributions start from a fixed point and then are allowed to
change during training.

In contrastive estimation (Smith and Eisner, 2005), EM is performed over a restricted log-
likelihood function, where instead ofL(θ) = ∑i logp(xi;θ), the contrastive estimation log-likelihood
function isLCE(θ) = ∑i logp(xi|N (xi);θ). The neighborhood functionN (xi) must be highly tuned,
and even slight variations in it can have significant impact on error. Morecrucially, the bias intro-
duced by choosingN (xi) is difficult to predict and unintuitive.

Haghighi and Klein (2006b) take prototypes as input to their method, and then uses SVD to link
up words to prototypes with similar co-occurrence patterns (e.g., “Inner Richmond” has the label
NEIGHBORHOOD). Haghighi and Klein (2006a) extends this framework to context-free grammar
induction. Another group that has investigated integrating constraints into structure output learning
is Chang et al. (2007) which integrates constraints into unsupervised learning with HMM. In their
method, they reranking candidate labelings by constraint violations and thenuse a threshold set of
these candidates for re-training in a Viterbi-like approximation to expectation maximization.

Generalized expectation criteria are unique in that it uses the expected distribution as the sole
criterion for optimizing the model parameters on one set of unlabeled data (though it may also use
labeled data). Most other methods do not try to directly fit these expectations, but use them instead
as heuristics within a more complicated semi-supervised learning model. When wecompare with
techniques that use the label distribution (e.g., naı̈ve Bayes with a fixed label prior), we find they do
worse than GE, which demonstrates that GE is able to use these class distributions more effectively
than other methods.

3. Label regularization is impossible under the Schapire et al. (2002) model, since if the model exactly matched the
label expectation on a per-instance basis, in application it would assign all instances to the majority class.

961



MANN AND MCCALLUM

3. Generalized Expectation Criteria

When a person is designing a classifier, they frequently have intuitions about the data they are trying
to classify. For example, someone designing a part-of-speech tagger might know that ‘nouns’ are
quite frequent, whereas ‘conjunctions’ are much less common. Manually labeling data can be a
round-about way of providing this information to the machine learning model, and weak labeling
provides another route for biasing the model with this information. It would bedifficult to hypoth-
esize priors overmodel parameters to capture this intuition. With GE the designer sets priors over
model expectations, and since these expectations have a relatively transparent interpretation to the
human designer, they provide an appealing route for injecting bias into the classifier. GE can effec-
tively learn from a wide variety of side information, including expectation constraints which hold
over global properties of the classifier (e.g., label marginals in label regularization), constraints over
individual instances, and expectation constraints which are more expressive than the base model can
model directly (e.g., a three label sequence in a markov order 1 CRF).

A generalized expectation (GE) criterionis a term in a parameter estimation objective func-
tion that assigns scores to values of a model expectation. First some standard notation: x is the
input,y the output, andθ the parameters for a given model. Given a set of unlabeled dataU = {x}
and a conditional modelp(y|x;θ), a GE criterionG(θ;U) is defined by a score functionS and a
constraint functionG(x,y):

G(θ;U) = S(EU [Ep(y|x;θ)[G(x,y)]]).

In this light, GE criteria can be viewed as an replacement for a maximum likelihoodestimator
and can be maximized alone to yield a parameter estimateθ. For a particular choice of model
family and parameterization, many different choices for score functions and constraint functions
may be explored. In this paper we consider a subset of GE criteria which express a preference for
a particular value of a constraint ˜gx,y, and apply the KL-divergence to compute model divergence
from this constraint:

G(θ;U) = D(g̃x,y||EU [p(y|x;θ)G(x,y)]).

Other work has considered squared loss and constraint functions which are more and less expressive
than the model parameterization (Druck et al., 2009a).

GE criteria can be used as a sole criterion for an objective function (e.g., Mann and McCallum
2008). In this work, we combine it the log-likelihood,L(θ) to form a composite objective function:

O(θ;U,D) = L(θ;D)+G(θ;U).

Alternatively, an entropy regularization term (Grandvalet and Bengio, 2004)4 can be combined into
the above objective function in the same manner:

O(θ;U,D) = L(θ;D)+G(θ;U)+H(θ;U).

GE criteria can be interpreted as a generalization of traditional maximum likelihood. First, GE
allows a variety of scoring functions (e.g., KL-divergence or mean-squared error from a reference

4. Entropy regularization cannot be framed as a instance of GE, but a generalization could encompass both:G(θ;U) =
S(EU [Ep(y|x;θ)[F(x,y)]]), whereF is an arbitrary function over a particular(x,y) tuple (e.g., for entropy regularization
F = logp(y|x;θ).
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distribution) and thus can incorporate information from a source other thanempirical feature counts
derived from the training data (e.g., human intuition, empirical counts derived from alternative data
sources). Second, there need not be a one-to-one relationship between GE terms and features. For
example, we can express preferences on a subset of model features(and leave others unconstrained),
or on marginal distributions larger than model factors. In this paper, we apply a constraint for only
one feature obtained from human intuition about the problem.

We explorelabel regularization, where the constraints ˜g are expectations of model marginal
distributions on the expected output labels. We look at functionsG(x,y) = 1(y), and use various
estimated label marginal distributions:

g̃x,y = p̃(y).

The effect of adding this term is to ensure that the model applied to the unlabeled data matches the
label proportions.5 Note that this does not force the conditional label distribution for each instance
to conform to this constraint, but rather it encourages the model to meet this constraint in aggregate
over all instances.

Similar to label regularization, Quadrianto et al. (2008) uses label proportions to learn classifiers,
though there are some interesting differences from our work. Their method relies on having multiple
training subsets with very different class distributions, whereas we only use one data set with a
single set of label proportions. Their work concentrates on non-structured classification, whereas
we extend our method to the structured output case.

3.1 Recent Work on GE Criteria and Related Methods

Since the initial proposal of GE criteria (under the nameexpectation regularization) in Mann and
McCallum (2007), there has been a flurry of recent work on generalized expectation criteria and
related methods which apply expectation constraints for weak learning.

In a set of user experiments, Druck et al. (2008) compares traditional labeled data andlabeled
features (which can be used to build feature marginal distributions). That study finds that given the
same amount of time, human annotation in the form of labeled features and classifiers trained using
GE criteria outperform human annotation of traditional labeled instances andmaximum likelihood
training. For the structured output case, Mann and McCallum (2008) hasshown that expectations
over features for CRF learning, similar to the prototypes proposed in Haghighi and Klein (2006b),
are more effective when used with GE than similar numbers of labeled tokens used to train a CRF.
Druck et al. (2009a) extends these methods to conditional random field dependency parsing models,
and shows that in that case as well feature marginal distributions can be effectively used to guide
training.

A few groups have investigated related methods for incorporating expectation constraints.
Ganchev et al. (2009) use expectation constraints over aligned sentences and a source-language
parser induce dependency grammar on a target language, using a generative method related to
expectation-maximization and a discriminative model closely related to GE criteria.Bellare et al.
(2009) presents an alternative objective function to learn using expectation constraints over unla-
beled data.

Since the emphasis is on reducing human annotation time, it is a clear question as towhether
active learning can be applied to help choose labeled features or expectation constraints. Druck

5. The mathematics is unchanged for expectation constraints over any single features, but the experiments concern only
this simple scenario.
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et al. (2009b) pursues this question and uses active learning to choosewhich features to use with
GE criteria. Along those lines, Liang et al. (2009) proposes a notion of ’measurements’ to encap-
sulate the variety of weakly labeled data, and uses active learning to guide which measurements are
provided from the human annotator to guide learning.

4. GE Criteria for Log-linear Models

In this section, we describe how to apply the GE criteria proposed above to conditionally trained
log-linear models, starting with conditional maximum-entropy models, aka multinomial logistic
regression models (Berger et al., 1996). In these models, there arek scalar feature functionsψk(z,y),
and the probability of the labely for input x is calculated by

p(y|x;θ) =
1

Z(x)
exp

(

∑
k

θkψk(x,y)

)

,

whereZ(x) = ∑y′ exp(∑k θkψk(x,y′)) is the partition function. Given training dataD, the model is
trained by maximizing the log-likelihood of the labels (with a Gaussian prior for regularization):

O(θ;D) = logL(θ;D)

= ∑
d∈D

logp(yd |xd;θ)−
∑k θ2

k

2σ2 .

This can be done by gradient methods (Malouf, 2002), where the gradient of the likelihood is

∂
∂θk

O(θ;D) = ∑
d

(

ψk(xd,yd)−∑
y

p(y|xd;θ)ψk(xd ,y)

)

+
θk

σ2 .

For semi-supervised discriminative training, we augment the objective function by adding the
generalized expectation criteria objective function terms.

O(θ;D,U) = L(θ;D)+G(θ;U)

= ∑
d

logp(yd |xd);θ)−
∑k θ2

k

2σ2 −λD(g̃x,y||EU [Ep(y|x;θ)[G(x,y)]]).

Note that here the side information comes in the expectation constraints ˜gx,y which specify partic-
ular priors for model marginal. In practice, we find that the hyper-parameters do not need to be
extensively tuned. In particular,λ does not need tuning for each data set, and can be set simply to
λ = 10×# labeled examples.6

The form of the GE criteria lends itself to optimization by gradient based methods. After drop-
ping terms which are constant with respect to the partial derivative, we are left with:

∂
∂θk

G(θ;U) ∝
∂

∂θk
∑
y

g̃x,y log ∑
x∈U

p(y|x;θ)G(x,y)

=∑
y

(

g̃x,y

∑x∈U p(y|x;θ)G(x,y)

)

∑
x∈U

∂
∂θk

p(y|x;θ)G(x,y)

=∑
y

(

g̃x,y

∑x∈U p(y|x;θ)G(x,y)

)

∑
x∈U

p(y|x;θ)G(x,y)

(

ψk(x,y)−∑
y′

p(y′|x;θ)ψk(x)

)

.

6. As support for this value ofλ, notice that the KL-divergence is significantly smaller than the likelihood as the likeli-
hood is proportional to the number of examples, while the KL-divergence is not.
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GE criteria aren’t convex, and this can be shown by a contradictory example. Take a simple version
of the GE criteria:G(θ;U) = ∑y log∑x p(y|x;θ). In this setting, for an arbitrary labelyi you can
find parameter settings where∀x, p(yi|x) = 1, by having a parameterθ = {θk = ∞, ∀ j 6= k,θ j = 0}
whereψk(x,y) = 1{y = yi}. In this setting, it’s pretty clear that multiple optima exist, and that other
settings ofθ yield smaller values ofG(θ;U).

Label regularization can occasionally find a degenerate solution where,rather than the expec-
tation of all instances matching the input distribution, instead, the distribution over labels foreach
instance will match the given distribution on every example. For example, given a threeclass clas-
sification task, if the labeled class distribution ˆp j(y) = {.5, .35, .15}, it will find a solution such that
p̃(y;θ) = {.5, .35, .15} for every instance. As a result, all the test instances will be assigned the
same label.

One solution, appealing to 0/1 loss, would be to simply measure and match the expectation over
winning class counts, but this is not differentiable. So instead, we makep(y|x;θ) more peaked using
a less than 1.

p(y|x;θ) ∝ exp

(

1
T ∑

k

θkψk(x)

)

.

This is differentiable and thus amenable to many gradient ascent methods. Inpractice we find that
this meta-parameter does not require fine-tuning. Across all data sets we simply useT = 0.1 for
multi-class problems andT = 1 for binary classification problems, and we find this to work well.

4.1 CRF Training

The previous section has shown the application of generalized expectationcriteria to classification
models. However, GE can additionally be applied to structured models. In this section, we examine
the case of linear chain structured conditional random fields (Lafferty et al., 2001), and derive the
GE gradient for this model.

Linear-chain CRFs are a discriminative probabilistic model over sequences x = 〈x1..xn〉 of fea-
ture vectors and label sequencesy = 〈y1..yn〉, where|x| = |y| = n, and each labelyi ∈ s. This
model is analogous to maximum entropy models for structured outputs, where expectations can be
efficiently calculated by dynamic programming. For a linear-chain CRF of Markov order one

p(y|x;θ) =
1

Z(x)
exp

(

∑
k

θkΨk(x,y)

)

,

where Ψk(x,y) = ∑i ψk(x,yi,yi+1, i), and the partition functionZ(x) = ∑y′ exp(∑k θkΨk(x,y′)).
Given training dataD, the model is trained by maximizing the log-likelihood,

O(θ;D) = ∑
d

logp(yd |xd ;θ)−
∑k θ2

k

2σ2 ,

by gradient-based methods where the gradient of the likelihood is (similar to thenon-structured
case):

∂
∂θk

O(θ;D) = ∑
d

(

Ψk(xd ,yd)−∑
y

p(y|xd ;θ)Ψk(xd ,y)

)

+
θk

σ2.
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The second term (the expected counts of the features given the model) can be computed in a tractable
amount of time, since according to the Markov assumption, the feature expectations can be rewrit-
ten:

∑
y

p(y|x;θ)Ψk(x,y) = ∑
i

∑
yi,yi+1

p(yi,yi+1|x;θ)ψk(x,yi,yi+1, i).

A dynamic program (the forward/backward algorithm) then computes in timeO(n|s|2) all the needed
probabilitiespθ(yi,yi+1), wheren is the sequence length, and|s| is the number of labels.

4.2 Semi-supervised training with Generalized Expectation Criteria

To add unlabeled data regularization to the CRF training, just as with the maximum entropy model,
we augment the objective function with the regularization term:

O(θ;D,U) =L(θ;D)+G(θ;U)

=∑
d

logp(yd |xd ;θ)−
∑k θ2

k

2σ2 −λD(g̃x,y||EU [Ep(y|x;θ)[∑
i

G(x,yi)]]).

Note that we restrict the constraint function to functions over one output label,G(x,yi). Druck et al.
(2009a) has looked at extending the method to arbitrary constraint functions G(x,y), but here we
only consider constraint functions over functions of one label.

The derivation of the gradient forG(θ;U) is somewhat more complicated than in the unstruc-
tured case, but follows roughly the same line.s is the set of permissible output labels.y(m=s) = {y :
ym = s}. The gradient is then:

∂
∂θk

G(θ;U) ∝
∂

∂θk
∑

s
g̃x,s log ∑

x∈U
∑
m

∑
y(m=s)

p(y(m=s)|x)G(x,s)

=∑
s

(

g̃x,s

∑x∈U,m,y(m=s)
p(y(m=s)|x)G(x,s)

)

∑
x∈U

∑
m

∑
y(m=s)

∂
∂θk

p(y(m=s)|x)G(x,s)

Now define:
g̃
G

=

(

g̃x,s

∑x∈U,m,y(m=s)
p(y(m=s)|x)G(x,s)

)

=∑
s

g̃
G ∑

x∈U
∑
m

∑
y(m=s)

p(y(m=s)|x)G(x,s)

(

Ψk(x,y(m=s))−∑
y′

p(y′|x)Ψk(x,y)

)

=∑
s

g̃
G ∑

x∈U
∑
m

∑
y(m=s)

p(y(m=s)|x)G(x,s)Ψk(x,y(m=s))

−∑
s

g̃
G ∑

x∈U
∑
m

∑
y(m=s)

p(y(m=s)|x)G(x,s)∑
y′

p(y′|x)Ψk(x,y)

)

=∑
s

g̃
G ∑

x∈U

(

∑
i

∑
yi,yi+1

ψk(x,yi,yi+1, i)∑
m

p(yi,yi+l,ym = s|x)G(x,s)

)

−∑
s

g̃
G ∑

x∈U

(

∑
i

∑
yi,yi+1

ψk(x,yi,yi+1, i)

)(

∑
m

p(ym = s|x)G(x,s)

)

.
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After combining terms and rearranging we arrive at the final form of the gradient:

= ∑
x∈U

∑
i

∑
yi,yi+1

ψk(x,yi,yi+1, i)×

∑
s

g̃
G

(

∑
m

p(yi,yi+1,ym = s|x;θ)G(x,s)− p(yi,yi+1|x;θ)∑
m

p(ym = s|x;θ)G(x,s)

)

.

Here, the second term is easily obtainable from forward/backward, butthe first term is a little more
complicated to compute. Computing this term naively would require multiple runs of constrained
forward/backward. Here we propose a more efficient method that requires only one run of for-
ward/backward.7 For the sake of simplicity, we omit the constraint functionG(x,s); its addition is
trivial. First we decompose the probability into two parts:

∑
m

p(yi,yi+1,ym = s|x;θ) =
i

∑
m=1

p(yi,yi+1,ym = s|x;θ)+
n

∑
m=i+1

p(yi,yi+1,ym = s|x;θ).

Similar to forward/backward we build a lattice of intermediate results that then canbe used to
calculate the quantity of interest:

i

∑
m=1

p(yi,yi+1,ym = s|x;θ)

= p(yi,yi+1|x;θ)δ(yi,s)+
i−1

∑
m=1

p(yi,yi+1,ym = s|x;θ)

= p(yi,yi+1|x;θ)δ(yi,s)+

(

∑
yi−1

i−1

∑
m=1

p(yi−1,yi,ym = s|x;θ)

)

p(yi+1|yi,x;θ).

For each labels, it requires one pass to create a lattice with∑i−1
m=1 p(yi−1,yi,ym = s|x;θ) for all pairs

(yi,yi+1). ∑n
m=i+1 p(yi−1,yi,ym = s|x;θ) can be computed in the same fashion. To compute the

lattices it takes timeO(n|s|2), and one lattice must be computed for each label so the total time is
O(n|s|3).

5. Experimental Results for Classifiers

We present two sets of experiments: experiments on maximum entropy models and conditional
random fields for the special case of generalized expectation criteria,label regularization. For this
set of experiments, we evaluate on five different data sets, and compareagainst seven different semi-
supervised and supervised-only methods. We present learning curves, where the amount of labeled
training data is gradually increased from one instance per class up to thousands of instances and
demonstrate that generalized expectation criteria are able to show improvements for both types of
scenarios. We present experiments with noisy expected distributions, andshow that the method
is robust with respect to a variety of settings forλ and temperature. We do not vary the gaussian
regularizer, but leave a default value. Unpublished experiments by G. Druck8 have suggested that

7. Kakade et al. (2002) present a related method that computesp(y1..i = s1..i|yi+1 = s).
8. Conveyed in personal communication.
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Name # Test Examples # Unlabeled Examples # features # classes
SRAA 20k 20k 77,494 4
POS 20k 20k 11,520 44
SecStr 1000 83k 314 (45,436) 2
BIOII 100k 100k 54,958 3
CoNLL03 100k 100k 114,264 9

Table 1: The data sets are complex: they have dramatic class skews, highly inter-dependent fea-
tures, and large amounts of data. The SecStr data set has 315 atomic features, and 45k
features when pairwise feature conjunctions are used.

while gaussian regularization can have an effect for label regularization, for more complicated GE
variants it doesn’t dramatically affect performance. We begin training withparameters set at 0 (even
though the objective function may not be convex).

5.1 Experimental Set-up

First, we examine a protein secondary structure prediction task (SecStr), as extensively evaluated
in Chapelle et al. (2006), compare with the published results and show that label regularization is
able to outperform previous methods. Next, we examine three especially difficult natural language
processing tasks: the CoNLL03 named-entity recognition task (CoNLL03), Part of speech tagging
of the Wall Street Journal (POS), and the 2007 BiocreativeII evaluation (BIOII ), using a sliding
window classifier.9 Finally, one of the main targets for semi-supervised learning is text classifica-
tion (Nigam et al., 2006), and we evaluate on the simulated/real auto/aviation (SRAA) task. The
tasks are large in scale, with up to hundreds of thousands of instances and features (see Table 1).
They have complex characteristics such as heavily inter-dependent features and highly skewed class
distributions.

Across all of the experiments, for supervised comparisons, we comparewith näıve Bayes and
maximum entropy models, for semi-supervised comparisons we compare with naı̈ve Bayes trained
with EM and maximum entropy models trained with entropy regularization. On some tasks, in
particular the sliding window NLP tasks, the number of features per instancevaried dramatically,
and so we used document length normalization for the naı̈ve Bayes approaches as we found it to
significantly improve accuracy. On the secondary structure prediction (SecStr), we had access to
published results for a supervised SVM using a radial-basis function (RBF) kernel, a Cluster Kernel
(Weston et al., 2006) and a graph based-method, the Quadratic Cost Criterion with Class Mean
Normalization (Bengio et al., 2006) trained using various data sub-sampling schemes (Delalleau
et al., 2006): a random sampler and two smarter variations. Presumably, training a graph-based
method on the entire unlabeled training set would have been technically infeasible.

For CoNLL03, POS, BIOII , andSRAA, we performed inductive learning, splitting the data
randomly into two sections, training and test. From the training set, we randomly chose some
instances to be labeled and set the remainder to be hidden. Out of those hidden, we then select a

9. The sliding window classifier makes independent decisions for each element in the sequence. While finite-state
methods could also be applied in these cases, the cost of training label regularization would be prohibitive, and we
found that these methods work well.
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# Labeled Instances
2 100 1000

SVM (supervised) 55.41 66.29
Cluster Kernel 57.05 65.97

QC randsub (CMN) 57.68 59.16
QC smartonly (CMN) 57.86 59.29
QC smartsub (CMN) 57.74 59.16

Naive Bayes (supervised) 52.42%(± 0.4) 57.12%(± 0.7) 64.47%(± 0.2)

Naive Bayes EM 50.79%(± 1.5) 57.34%(± 1.1) 57.60%(± .009)

MaxEnt (supervised) 52.42%(± 0.5) 56.74%(± 1.1) 65.43%(± 0.3)

MaxEnt + Ent. Min. 49.40%(± 2.1) 54.45%(± 1.8) 58.28%(± 0.1)

MaxEnt + GE 57.08% (± .03) 58.51% (± 0.4) 65.44%(± 0.3)

Table 2: Label regularization outperforms other semi-supervised learning methods at 100 labeled
data points. At one instance per class, its performance is better than thesupervised SVM
and maximum entropy model at 100. Standard error is reported for experiments that were
run locally. Other experimental performance is taken from the literature.

fixed number to use for unsupervised learning. We then evaluate the model on the hidden test data.
We repeat this evaluation five times for each of the models.

TheSecStrtask was set up in what is commonly called transductive learning, where the model
is evaluated on hidden training data. For this task, the labeled/unlabeled splits were provided with
the data from Chapelle et al. (2006) and evaluation is on hidden training data. In order to provide a
somewhat more fair comparison with the RBF kernels used by the other methodson this task, the
feature set used by the maximum entropy model and naı̈ve Bayes models is augmented by pairwise
feature conjunctions.10

For the maximum entropy model trained with entropy regularization, after some experimenta-
tion, we weighted its contribution to the objective function with

λ = # labeled data points / # unlabeled data points.

This was shown to yield relatively good performance. For the first set ofexperiments, we use la-
bel proportions estimated from all of the data, corresponding to a use-case where a user gives this
knowledge to the system during training. Section 5.3 presents experiments showing robustness to
noisy label proportions both when smoothed towards a uniform distribution and when sampled from
a limited number of training examples. Across the experiments, we observed that label regulariza-
tion trains in time linear in the amount of unlabeled data, and since the resulting model is parametric,
it is linear in the number of features for evaluation.

5.2 Learning Curves

For the first set of experiments, we experimented with varying the number ofsupervised training
example, while keeping the unlabeled data set size the same (with sizes of the unlabeled data shown

10. Though, as one anonymous reviewer noted, this makes them strictly more expressive then kernel methods with
quadratic features.
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Figure 1: BIOII: Label regularization (GE) outperforms all other methods. The x-axis represents
increasing numbers of labeled data instances. The y-axis is the F-measuremicro average
across all classes.

in Table 1). We added examples in a balanced way, going from 1 example perclass up to 500 exam-
ples per class (when possible). For each data point we ran 5 trials, where the data was partitioned
into training/test/unlabeled uniformly at random. The sole exception was for theSecStrdata where
the data splits and tests were pre-specified.

As Table 2 shows, forSecStr, label regularization outperforms the other methods at 100 labeled
points, and approaches the cluster kernel method on 1000 points. While performance results were
not available for the other methods for two instances per class, we ran label regularization for this
case and found that it outperforms thesupervised SVM and maximum entropy model when they
are trained with 100 labeled points. In these experiments QC is not run over the complete data
(presumably because of scalability problems), but operates on a subset,either selected randomly
(randsub) or in a smarter fashion (smartonly and smartsub), while the labelregularization method
uses the complete data.

Figures 1, 2, 3, and 4 show classifier performance using a fixed amountof unlabeled data as
greater amounts of labeled data is added. Label regularization yields significant benefits over the
other methods forPOS, BIOII , andCoNLL03 for all amounts of labeled data. Label regularization
on SRAA shows a benefit over the fully supervised maximum entropy model but its accuracy is
not as high as that obtained by the EM-trained naı̈ve Bayes learner. This may be partly explained
by the fact that the baseline performance of the discriminative maximum entropy model is much
lower than the generative naı̈ve Bayes model, so that label regularization starts off at a considerable
deficit.

While alternative methods often result in degredations of performance overtheir supervised
counter parts (EM, entropy regularization, cluster kernels), in these experiments label regularization
consistently yielded improved accuracy. Additionally, the benefit of label regularization is more ap-
parent as the feature sets and numbers of unlabeled instances increase, with the least improvements
on one of the simplest tasks, theSRAA text classification task.

These experiments demonstrate that label regularization can at least match,and in many cases
beat, alternative methods of semi-supervised learning, given minimal additional information and
access to large samples of unlabeled data. The successes of GE suggest more investigation of addi-
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Figure 2: CoNLL03: Label regularization (GE) outperforms all other methods. The x-axis repre-
sents increasing numbers of labeled instances per class, and the y-axis isaccuracy.

Figure 3: POS: Label regularization (GE) outperforms all other methods,though performance im-
provements over supervised maximum entropy methods appear to level off at 1300 la-
beled instances.

tional, alternative modalities of supervision which will generate data that can be added to supervised
classifiers and combined with unlabeled data in order to improve performance.

5.3 Noisy Priors

The previous section assumes that the system has accurate knowledge ofthe distributions over
the labels. In this section, we perform a sensitively analysis by gradually smoothing the class
distribution until it reaches a uniform distribution. We add noisy countsν to the true countsc(y):

p̂ j(y)(y) =
c(y)+ν

∑y′ (c(y′)+ν)
.

As more noise is added, the input distribution converges to uniform.
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Figure 4: SRAA: Label regularization (GE) outperforms its supervised maximum entropy counter-
part and entropy regularization and is the winner at one labeled instance per lass. After
that, näıve Bayes EM is the clear winner.

Figure 5 demonstrates the effect of increasing noise in the system. Atν = 1,000, the majority
class probability drops from 84% to 80% and there is almost no loss of performance. Atν = 10,000
are added, the majority class probability drops to 61% and there is only a slightloss of performance.
At ν = 1e07 the majority class probability has dropped to 11%, a virtually uniform distribution, and
performance has leveled off. These results are encouraging as they suggest that relatively large
changes (of 20% absolute, 27% relative) can be tolerated without major losses in accuracy. Even
when the human has no domain knowledge to contribute, label distribution estimates of sufficient
accuracy should be obtainable from a reasonably small number of labeledexamples.

To test this assumption, we performed another set of experiments, where instead of smoothing
the input distributions towards a uniform distribution, we sampled them from thedata, varying
the number of instances used in the sample. These points were sampled from the data, and then
the data was partitioned into test/train/unlabel splits. Figure 6 and 7 demonstrate the effect of
sampled distributions, as opposed to distributions smoothed towards a uniformdistribution. For the
CoNLL3 data set, as can be seen in Figure 6, after sampling from 1000 points, the performance of
the classifier doesn’t get worse, suggesting that only a small amount of prior knowledge or labeling
is necessary for determining accurate input distributions. With thePOS data, it appears that as
you increase the number of points used to compute the sample performance improves, though it
appears to begin to level out at 1000 points. Because this data set is significantly smaller, we were
unable to continue running experiments with larger numbers of sampled points toevaluate when the
performance begins to level out.

5.4 Robustness

Along with robustness in the face of noise from the estimated label proportions, the model is robust
to changes inλ and temperature. As can be seen in Figure 8,λ and temperature have a wide
plateau over which their performance is stable. At some extreme values ofλ and temperature,
the performance degrades, and can drop below supervised performance. This trend was observed
for 500 labeled examples (shown in the figure), as well as in cases when there as little as one
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Figure 5: CoNLL03: The x-axis represents increasing amount of noisetowards a uniform distri-
bution. On this data set, the majority class is 84% of the instances, and so the uniform
distribution is an extremely poor approximation. Performance suffers little when the ma-
jority class proportion is erroneously given as 61%(ν = 10,000)
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Figure 6: CoNLL03: An input label distribution with sampling noise. After 1000 points, sampling
from more points doesn’t appear to lead to performance improvements.

labeled example for a number of the data sets. For other semi-supervised techniques such as entropy
regularization, extensive tuning is required across for each individual data set and labeled/unlabeled
data set sizes in order to improve upon supervised-only performance (Jiao et al., 2006).
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Figure 7: POS: An input label distribution with sampling noise. Since POS has many classes (44),
access to an accurate sampling distribution has a larger impact on performance, and the
graph suggests that even higher precision in sampling would lead to higher accuracy.
Note that we were unable to sample as many points as in the previous example beause of
limited amounts of available data.

Figure 8: CoNLL03: For a wide range ofλ and temperature the performance is similar and sur-
passes the purely supervised performance.

5.5 Running Time

Figure 9 shows the running time per optimization iteration for the two largest tasks, CoNLL and
BIOII . The slope variation between the running times can be accounted for by the number of fea-
tures in each of the data sets.

5.6 Mechanism of Effect

One question that needs to be addressed is whether label regularization isimproving performance
solely by adjusting the label proportions or operating in some other fashion.Though certainly cor-
recting label proportions is one pathway for improved performance we have two pieces of evidence
that additional learning is happening in the model. First, when we allow other classifiers access to
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Figure 9: Label regularization is linear in the number of unlabeled examples,without requiring
sub-sampling.

the label proportions, they are unable to reach the same gains as achievedwith GE. For example, in
all of the experiments the naı̈ve Bayes classifier has its label prior fixed to the input distribution as
it is subsequently trained with EM, yet it typically fails to reach the same level ofperformance as
achieved with the GE methods. Second, Druck et al. (2008) reports results of experiments using GE
criteria where the input distributions were only allowed to affect the features they were conditioned
on (corresponding to only being able to adjust the label proportions). Inthese experiments, when
GE could only adjust the features specified by the input distributions it achieved significantly worse
results, thus indicating that learning parameter values for features not directly conditioned by the
input distributions has a dramatic effect on classifier accuracy.

5.7 Combining Label Regularization and Entropy Regularization

Generalized expectation criteria can often be easily combined with other models. Any semi-supervised
model in the parametric model family, such as expected gradient methods (Salakhutdinov et al.,
2003), can be easily combined with GE, and certain generative models suchas näıve MRFs (Druck
et al., 2007) can be simply combined as well. More distantly, just as various models can be aug-
mented with regularization terms (as in ridge regression for linear regression models), GE may be
augmented in the same way. In this paper we used a Gaussian prior and minimizedKL-divergence
from input distributions with gradient methods here, in other cases it might require an alternative
penalty term from the input distributions and a different minimization technique.

Here we examine combining label regularization with entropy regularization where the objective
function is augmented with more than one regularization criterion. For many of the experiments,
combining label regularization and entropy regularization does not lead to improvements. Two
exceptions were experiments onSRAA and theSecStrdata sets. Notably, onSecStr, combined
entropy regularization and label regularization yields a performance of 66.30, a level which matches
the performance of the supervised radial-basis SVM and beats all other unsupervised methods. For
SRAA, Figure 10 shows that when entropy regularization is added to label regularization, there
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Figure 10: SRAA: Combining label regularization and entropy regularization can be easily accom-
plished, and yields improvements over label regularization alone for this dataset.

Figure 11: CoNLL03: On this data set, combining label regularization and entropy regularization
does not lead to any benefit. The GE+Entropy regularization curve exactly overlaps the
GE curve.

can sometimes be a benefit over the use of label regularization or entropy regularization alone.
In comparison, Figure 11 shows that there is little or no difference in performance when entropy
regularization is combined with label regularization in the case ofCoNLL03.

6. Experimental Results for Conditional Random Fields

In this section, we examine the performance of label regularization for conditional random fields.
We look at two data sets, Craigslist Apartment listings, and citation data. We compare against two
previous methods for semi-supervised learning of conditional random fields, entropy regularization
and the clustering method proposed by Miller et al. (2004) in Section 6.3. We demonstrate that label
regularization can achieve higher accuracy than purely supervised training, and can beat or match
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MRF (prototypes) 53.7%
MRF (prototypes) + cluster 71.5%
HMM supervised only (100) 74.4%
CRF supervised only (100) 75.8%(± 0.3)

CRF supervised (100) + Ent. Reg. (2k)76.7%(± 0.4)

CRF supervised (100) + GE (2k) 77.1%(± 0.3)

Table 3: APT: A CRF trained semi-supervised with 100 labeled examples and 2k unlabeled exam-
pled has the highest performance, beating the strictly supervised CRF andthe CRF trained
semi-supervised with entropy regularization. Standard error is shown in parentheses for
experiments run locally.

the performance of entropy regularization or clustering. We do not varythe gaussian regularizer, but
leave a default value. We begin training with parameters set at 0 (even though the objective function
may not be convex). Later experiments start from a model initialized by a non-structured classifier
trained with GE, which we observed to yield higher accuracy (Mann and McCallum, 2008).

6.1 Apartment Listings

First we examine performance on the apartment data set (APT) initially presented by Grenager et al.
(2005) and later examined by Haghighi and Klein (2006b), with label regularization. This data was
collected in June 2004 from craigslist.com, and consists of 302 hand-labeled ads where each ad is
labeled with 12 fields (e.g.,SIZE, RENT, NEIGHBORHOOD, FEATURES). The average ad has 119
tokens in 8.7 fields.

For this task, sliding window models perform poorly as the fields are “sticky,” (i.e., the best way
to predict the next label is from the previous label). We set label regularizationλ as before, but set
the entropy regularizationλ to 0.01 times the number of labeled examples divided by the number of
unlabeled examples. For these experiments we used 2,000 unlabeled apartments listings.

We performed minimal feature engineering, using only standard capitalizationand word class
features (e.g., “digits”). We additionally used a feature that is the exact token string of the previous
word. The use of flexible, non-independent features demonstrates thebenefit of the greater expres-
sive power of discriminatively trained CRFs; with these features alone, theCRF out-performs the
supervised HMM.

Table 3 compares the performance of our system relative to previous supervised and semi-
supervised systems,11 where at the maximum amount of training data, label regularization achieves
a 1.3% accuracy improvement over the purely supervised CRF, and a 0.4%accuracy improvement
over semi-supervised learning via entropy regularization.

Table 4 shows learning curve performance for the CRF with a variety of different settings.
With accurate input distributions, the CRF trained with label regularization achieves the highest
performance, for all but with one example, where entropy regularizationis the highest performer.
Label regularization gives a 8% absolute accuracy improvement at the lower levels of training data
and a 1.3% boost (a 5% relative error reduction) for a highly trained sequence model. Unlike entropy

11. We did not implement the ad-hoc boundary pre-processing and post-processing as is performed by the unsupervised
MRF. These boundary features gave a 3% improvement for Haghighiand Klein (2006b).
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# Supervised Supervised Entropy Regularization GE: Estimated Priors GE: Accurate Priors
1 41.2%(± 1.7) 44.3%(± 0.3) 41.3%(± 1.7) 45.7% (± 1.7)
5 48.4%(± 1.8) 45.8%(± 1.1) 51.9%(± 1.6) 56.2% (± 0.6)
10 55.9%(± 1.3) 58.0%(± 2.5 ) 57.5%(± 1.2) 63.0 % (± 0.2)
50 71.7%(± 0.5) 74.1 % (± 0.2) 73.7 %(± 0.4) 74.0 %(± 0.6)
100 75.8%(± 0.3) 76.7 %(± 0.4) 77.4 % (± 0.2) 77.1 %(± 0.3)

Table 4: APT: Use of input distributions estimated from limited labeled data yields smaller im-
provements over the true distributions, but still improves over the strictly supervised accu-
racy, and at large levels of training data, nearly matches the accuracy achieved by the true
distributions. Standard error is shown in parentheses for the experiments.

# Supervised Supervised Entropy Regularization GE: Estimated Priors GE: Accurate Priors
1 24.9%(± 3.6) 17.5%(± 3.2) 25.5%(± 3.8) 37.3% (± 2.1)
5 52.4%(± 0.5 ) 27.0%(± 2.7) 52.4%(± 5.6) 54.7% (± 0.5)
10 56.1%(± 0.6) 35.2%(± 3.3) 55.5%(± 0.7) 57.9% (± 0.4)
50 67.8%(± 0.6) 66.5%(± 0.8) 67.5%(± 0.3) 68.0% (± 0.6)
100 72.7%(± 0.5) 73.5% (± 0.5) 72.4%(± 0.3) 72.0%(± 0.6)

Table 5: CITE: Label regularization (GE) is able to significantly improve on the purely supervised
cases at very low levels of training data. At higher levels of training data, itmakes less of
an impact. Standard error is shown in parentheses for the experiments.

regularization, label regularization improves over supervised learning across all amounts of training
data.

In addition to testing with accurate proportions, we also examined performance when input
distributions were read directly off of the minimal training label sequence. When these noisy input
distributions were used, the performance was less than with entropy regularization at lower levels
of training data, but it still provided consistent gains in performance across all training settings.

6.2 Citation Data

In addition to experiments on apartment data, we also ran experiments on citationdata (CITE ) as
given by Grenager et al. (2005). This data set consists of 500 hand-annotated citations taken from
the reference sections of different computer science papers. Each citation is annotated with 13 fields
(e.g.,AUTHOR, TITLE , DATE, JOURNAL), and on average the citation has 35 tokens annotated with
5.5 fields. For this experiment we used 1,000 unlabeled examples, withλ = 1 times the number of
unlabeled data points, and the entropy regularizer set as before. On thisset of data, as shown in
Table 5, label regularization gives a slight win at low levels of training data,but at higher levels,
it does not provide any improvement. Entropy regularization unfortunatelyconsistently decreases
performance. Here, estimating the input distributions from the minimal training data leads to per-
formance decreases beyond supervised training. The difference between the two data sets suggest
that more work is needed to understand in what situations label regularization can be expected to
work well.
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# Supervised Supervised Supervised + Clustering GE GE + Clustering
1 41.2%(± 1.7) 44.5%(± 0.9) 45.7%(± 1.7) 50.0% (± 0.3)

5 48.4%(± 1.8) 54.3%(± 1.8) 56.2%(± 0.6) 58.9% (± 1.1)

10 55.9%(± 1.3) 61.2%(± 1.5) 63.0 %(± 0.2) 64.4% (± 0.9 )

50 71.7%(± 0.5) 74.1% (± 0.5) 74.0 %(± 0.6) 74.1% (± 0.3)

100 75.8%(± 0.3) 77.6% (± 0.1) 77.1 %(± 0.3) 77.6% (± 0.2)

Table 6: APT: Using clustering features gives an additional gain to label regularization for low
levels of training data, but it doesn’t provide any additional benefit at higher levels of
training data. Standard error is shown in parentheses for the experiments.

One thing to note from the experiments, is that as training data increases, the performance gap
between the true distributions and estimated input distributions diminishes, until at100 supervised
examples, it almost matches the accuracy achieved by the true distributions. These results are at
once encouraging and surprising, and suggest two possible reasonsfor improvement. First, perhaps
the CRF isn’t matching the proportions implicit in the labeled data, even though it has access to this
information. Second, it suggests that the unlabeled data does have an effect beyond that of helping
to readjust the classifier towards the input distributions. In particular, perhaps new features are being
brought in by inclusion of the unlabeled examples.

The strengths of label regularization over entropy regularization are two-fold. First, GE gives an
overall win in performance across many different levels of training data.Second, GE gives consis-
tent gains. GE rarely performs worse than purely supervised training (when the input distributions
are accurate), whereas the performance of entropy regularization is erratic, sometimes yielding a
gain in performance, in other cases leading to a severe decrease in performance.

6.3 Clustering Features

Miller et al. (2004) proposes a method of using unsupervised clusters to improve performance.
In his method, the unlabeled data undergoes word clustering, and then features corresponding to
clusters are added during supervised training. A similar method can be applied here, in which fea-
tures corresponding to unsupervised word clusters are added duringsemi-supervised training. We
applied this method to the apartment data, and for very low level of training, found encouraging
performance gains. Table 6 shows that for one labeled example, 2,000 unlabeled examples, and
unsupervised clustering, the system achieves almost a 5% improvement by using these unsuper-
vised cluster features (45.7% to 50.0%). At higher levels of training data, label regularization and
clustering features interact poorly, and using them together lead to no improvement. While at lower
levels of training data, label regularization is able to achieve more gains than the clustering method,
at higher levels of performance, it only matches performance. We have also attempted to use sim
features as proposed in Haghighi and Klein (2006b), but found thesemethods difficult to tune (e.g.,
what SVD rank to retain).
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7. Conclusion

This paper has presentedgeneralized expectation criteria, a simple, robust, scalable method for
semi-supervised learning. This method penalizes models by divergence between the model’s ex-
pectations over the unlabeled data and input conditional probabilities, whichcan be estimated from
labeled data or given as a priori knowledge by a human annotator. An important special case,label
regularization is empirically explored for the case of maximum entropy models where we find it to
provide accuracy improvements over entropy regularization, naı̈ve Bayes EM, Quadratic Cost Cri-
terion (a representative graph-based method) and a cluster kernel SVM. We show that the method
is robust to noise in the estimates of the input conditional probabilities, the meta-parameters need
little or no tuning, and that it runs in linear time with increasing numbers of unlabeled examples.

We additionally present extensions of the method to conditional random fields. In this case, the
gradient computation is complicated and requires the use of a specialized dynamic program which
computes∑ j p(yi,yi+1,y j = l|x;θ). Conditional random fields trained with label regularization out-
perform alternative methods for semi-supervised training such as entropy regularization, and can
achieve 1% to 8% improvement over supervised only approaches.

The simplicity of these methods, their robustness, and their high performance give promise that
they may have a wide application and impact in use for semi-supervised machinelearning.
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