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ABSTRACT

Learning-based methods for blind single image super
resolution (SISR) conduct the restoration by a learned map-
ping between high-resolution (HR) images and their low-
resolution (LR) counterparts degraded with arbitrary blur
kernels. However, these methods mostly require an indepen-
dent step to estimate the blur kernel, leading to error accu-
mulation between steps. We propose an end-to-end learning
framework for the blind SISR problem, which enables image
restoration within a unified Bayesian framework with either
full- or semi-supervision. The proposed method, namely
SREMN, integrates learning techniques into the generalized
expectation-maximization (GEM) algorithm and infers HR
images from the maximum likelihood estimation (MLE).
Extensive experiments show the superiority of the proposed
method with comparison to existing work and novelty in
semi-supervised learning.

Index Terms— Blind SISR, blur kernel, Bayesian model,
GEM algorithm, semi-supervision.

1. INTRODUCTION

Single image super resolution (SISR) refers to the restora-
tion of the plausible and detailed high-resolution (HR) im-
age from the corresponding low-resolution (LR) image, with
a wide range of applications [1, 2]. A widely-adopted model
for SISR is as a degradation process where the LR image is
a blurred, decimated, and noisy version of its HR counterpart
[3, 4]. Since real-world distributions of these variables are
difficult to access, restoring HR images is a classic ill-posed,
inverse problem without a closed-form solution.

Learning-based methods for SISR represent to be a popu-
lar trend due to their superiority in dealing with complicated
manifold-like image distributions. Pioneered by SRCNN [5],
these methods learn the mapping between LR and HR im-
age pairs with developed neural networks, such as residual
networks (ResNets) [6] and generative adversarial networks
(GANs) [7]. However, existing works typically synthesize
LR images via a bicubic degradation model, and cannot gen-
eralize well to practical cases with complicated degradation
settings.

Recently, learning-based methods for blind SISR has been
proposed to address such problem [8, 9, 10]. Most works de-
compose SISR into two sequential steps, and independently
estimate the blur kernel from LR images before inferring the
HR images [11, 12, 13]. Such separation of kernel estimation
and HR image restoring may not be compatible and result in
error accumulation. [14] proposes an end-to-end network for
blind SISR where both blur kernel and HR image can be ob-
tained simultaneously. However, the proposed method lacks a
unified theoretic framework in modeling, making the estima-
tion for real-world blur kernel remains challenging. Besides,
existing techniques on the blind SISR problem are supervised
and requires LR-HR image pairs, leading to a waste of un-
paired LR data.

We propose a unified framework based on the general-
ized expectation-maximization (GEM) algorithm for blind su-
per resolution (SREMN), which can conduct the blind SISR
problem in either supervised or semi-supervised manner. Our
contributions are summarized as follows:

• We present a Bayesian model for image degradation.
The model inherits a transparent interpretation and is
flexible to scale to multiple types of degradations with
theoretical backbone.

• We propose an end-to-end GEM-based network for
blind SISR, which is applicable both in supervised
schemes, and in the novel semi-supervised scheme.

• The proposed method shows potential capability of
deep neural networks on complex problems involving
latent variables by employing statistical techniques.

• The proposed method shows competitive results against
state-of-the-art methods on blind SISR under different
settings, showing the superiority in practical use.

2. EXPECTATION-MAXIMIZATION FRAMEWORK

SISR can be modeled as a degradation process where the LR
image y is a blurred, decimated, and noisy version of an HR
image x:

y = (x⊗ k) ↓s +n, (1)
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where ⊗ represents the convolution of x with kernel k, ↓s
denotes the standard s-fold downsampler, and n represents
environment noise commonly modeled as AWGN with given
variance σ2

nI . The key challenge lies in the latent distribution
over blur kernel k, which is hard to be either pre-known or
fully simulated by training data.

2.1. Mixture blur kernel

Suppose the blur kernel k can be approximated by a mixture
of L Gaussian kernels with a spectrum of bandwidths, where
the bandwidths b2l for the lth kernel is a random variable of an
exponential distribution, i.e.,

k(px, py;b
2) = 1/L

L∑
l=1

1

2πb2l
exp

−
p2x+p2y

2b2
l := kb,

p(b2l ) = E(b2l ;λl), l = 1, . . . , L.

(2)

where px, py are the distances from the origin in the hori-
zontal and vertical axes, respectively. Denote the bandwidth
vector b2 = (b21, . . . , b

2
L)

T ∈ RL and the vector of the ex-
ponential parameters λ = (λ1, . . . , λL)

T ∈ RL. Therefore,
such blur kernel can represent the effort of a wide range of
blurry types. We denote a mixture blur kernel with bandwidth
vector b2 as kb.

2.2. Bayesian Model

We assume that the blur kernel can be approximated by the
mixture Gaussian kernel defined above. The prior distribution
for the bandwidth vector is given as:

p(b2) = E(b2;λ). (3)

where E(·;λ) denotes an exponential distribution with param-
eter λ, arbitrarily given by experience in practice.

According to Eq. (1), we have the likelihood distribution
of the observed LR data as follows:

p(y|x,b2) = N (y; (x⊗ kb) ↓s, σ2
nI), (4)

where N (·;µ, σ2) denotes an Gaussian distribution with
mean and variance being µ and σ2, respectively.

Additionally, we assume independence between the HR
image and the bandwidth vector distributions, i.e.,

p(x, b2) = p(x)p(b2). (5)

Thus, a full Bayesian model for the problem can be ob-
tained from Eqs. (3)-(4).

Due to its intractability, we take the mixture kernel band-
width b2 as latent data. The complete data of the blind SISR
problem is thus (y,b2). The goal then turns to infer the poste-
rior distribution of unknown parameter x conditioned on the
observed data y as well as the latent data b2, i.e., p(x|y,b2).

2.3. GEM Algorithm

With the complete data being (y,b2) and unknown parameter
being x, the unknown HR image can be obtained from the
maximum likelihood estimate (MLE) of the parameter. Such
likelihood can be written as:

log p(y|x)

≥
∫
b2

q(b2) log
p(y,b2|x)
q(b2)

db2

= Eq(b2)

[
log p(y|b2,x)

]
−DKL

(
q(b2)

∣∣∣∣p(b2)
)

:= F
(
q,x;y

)
,

(6)

where DKL is the Kullback-Leibler divergence, the inequality
is resulted from the Jensen’s inequality and achieves equality
if and only if q(b2) = p(b2|y,x).

The GEM algorithm seeks to find the MLE of the marginal
likelihood by iteratively applying the following two steps:

• Expectation step: q(n) = argmaxq F
(
q,x(n);y

)
• Maximization step: x(n+1) = argmaxx F

(
q(n),x;y

)
.

3. NETWORK LEARNING SCHEMES

In conventional cases of GEM, the two steps are conducted
alternatively by optimizing the analytical expression of
F
(
q,x;y

)
in Eq. (6). However, it is hardly possible in blind

SISR as the distribution of image data gets more complex
and intractable. We construct two neural modules to learn the
optimization results for the two steps.

3.1. Neural Modules

In E-step, the optimization of q is required. Following the
mixture kernel assumption in Eq. (2), we assume that q is
exponential with hyper-parameter λ̂ learned by the E-Net,

q(b2) = E(b2; λ̂), λ̂ = fϕE
(y) (7)

Fig. 1. The architecture of SREMN, consisting of an E-Net
for blur kernel bandwidths and an M-Net for HR images.



where fϕE
(·) : y → λ denotes a vector-valued function pa-

rameterized by ϕE learned with the E-Net.
In M-step, the estimation of HR image x is achieved by

x̂ = gϕM
(y,kb) (8)

where gϕM
(·) : y,kb → x denotes a vector-valued function

parameterized by ϕM learned with the M-Net.
Therefore, the objective function of neural modules with

respect to parameters ϕE and ϕM can be expressed as:

F̄(ϕE ,ϕM ;y)

= EE(b2;λ̂)

[
log p(y|b2, x̂)

]
−DKL

(
E(λ̂)

∣∣∣∣E(λ)) (9)

where λ̂ = fϕE
(y) and x̂ = gϕM

(y,kb), b2 ∼ E(b2; λ̂).
Unfolded into an end-to-end learning network in Fig. 1,

the optimization w.r.t. ϕE ,ϕM can be expressed as follows,

ϕE ,ϕM = arg max
ϕE ,ϕM

F̄(ϕE ,ϕM ;y) (10)

3.2. Supervised and Semi-supervised Learning Schemes

Suppose we are given a labeled dataset D1(X,Y) with N
i.i.d. sample pairs {xi,yi}Ni=1. Additionally we are given
an unlabeled dataset D2(Ȳ), with M i.i.d. LR image sam-
ples {ȳj}Mj=1. Other than the common supervised learning on
dataset D1, the proposed SREMN can utilize both data sets.

The overall loss function over the two datasets of the
SREMN network is as follows:

L(ϕE ,ϕM ;X,Y, Ȳ)

= αg · LGEM (ϕE ,ϕM ;Y, Ȳ) + αr · LREG(ϕE ;X,Y),
(11)

where αg, αr are fine-tuning weights to balance the effect
of the GEM term and the regularization term over the given
datasets. It can be seen that the amount of supervision can be
safely adjusted by the number of samples in the two datasets.

The first term LGEM (ϕE ,ϕM ;Y, Ȳ) is unsupervised,
set to be the negative expectation of the GEM objective func-
tion over the given datasets, expressed as:

LGEM (ϕE ,ϕM ;Y, Ȳ) = −Ey∼Y,Ȳ

[
F̄(ϕE ,ϕM ;y)

]
.

(12)
The second term is a supervised one on D1 for regulariza-

tion, expressed as:

LSUP (ϕM ;X,Y) = Ex,y∼X,Y

[
∥x− gϕM

(y)∥2
]
. (13)

Note that if there exist ground-truth kernels in the train-
ing set, i.e., Dk(K) = {ki}Ni=1 paired with D1(X,Y) =
{xi,yi}Ni=1 is given, the supervised term can include the con-
straint on estimated kernels, expressed as:

LSUP (ϕM ;X,Y,K) =Ex,y∼X,Y

[
∥x− gϕM

(y)∥2
]

+ Ek∼K

[
∥k− kb∥2

]
.

(14)

4. EXPERIMENTS

4.1. Experimental Setup

We adopt the experimental setting for training and testing first
introduced in [8] and utilized in [14]. The training set in-
cludes 3450 HR images from DIV2K [22] and Flick2K [23],
with LR images synthesized by anisotropic Gaussian kernels.
Benchmark dataset DIV2KRK is utilized as the testing set.

The Adam [24] optimizer is adopted for training. The
learning rate is 0.0002, and the decay of first and second mo-
mentum of gradients are β1 = 0.9, β2 = 0.99, respectively.
All models are trained for 1000 epochs with batch size 16 on
a single RTX1080Ti GPU.

We apply PSNR and SSIM metircs for image quality as-
sessment, calculated on the Y-channel of transformed YCbCr
space. We compare our method with competitors from four
different classes four completeness, shown in Table 1.

Fig. 2. Results of img 001 and 002 in Set5 (bandwidth 3.2).

Fig. 3. Results of img 003 in Set5 with the kernel bandwidths
in [1.8, 2.2, 2.6, 3.0, 3.2]. It can be seen that the proposed
SREMN is more robust over different settings.

4.2. Quantitative Results

Our method outperforms SOTA SR results of Blind SR with
sequential steps while achieves similar results as DAN [14], a
single step Blind SR method. Quantitative results are shown
in Table 1. Our method gets nice ranks in both evaluation
metrics, as it encourages diverse outputs with semantic vari-
ables and also has a well-defined objective function to regu-



Table 1. Quantitative comparisons with SOTA SR methods. Best results are highlighted in red and blue respectively.
TYPES METHOD SCALE ×2 SCALE ×4

PSNR SSIM PSNR SSIM
CLASS 1 BICUBIC 28.73 0.8040 25.33 0.6795

BICUBIC KERNEL + ZSSR [15] 29.10 0.8215 25.61 0.6911
EDSR [16] 29.17 0.8216 25.64 0.6928
RCAN [14] 29.20 0.8223 25.66 0.6936

CLASS 2 PDN [17] - 1ST IN NTIRE’19 TRACK4 / / 26.34 0.7190
WDSR [18]- 1ST IN NTIRE’19 TRACK2 / / 21.55 0.6841
WDSR [18]- 1ST IN NTIRE’19 TRACK3 / / 21.54 0.7016
WDSR [18]- 2ND IN NTIRE’19 TRACK4 / / 25.64 0.7144
JI et al. [19] - 1ST IN NTIRE’20 TRACK1 / / 25.43 0.6907

CLASS 3 CORNILLERE et al. [20] 29.46 0.8474 / /
MICHAELI et al. [21] + SRMD [11] 25.51 0.8083 23.34 0.6530
MICHAELI et al. [21] + ZSSR [15] 29.37 0.8370 26.09 0.7138
KERNELGAN [8] + SRMD [11] 29.57 0.8564 25.71 0.7265

KERNELGAN [8] + USRNET [13] / / 20.06 0.5359
KERNELGAN [8] + ZSSR [15] 30.36 0.8669 26.81 0.7316

CLASS 4 DAN [14] 32.56 0.8997 27.55 0.7582
SREMN (OURS) 32.25 0.9370 27.74 0.8015

larize the generation. Though a little inferior to DAN in some
cases, the proposed method shows some improvements in the
qualitative perspective, as illustrated in Fig. 2. The inferior-
ity may result from the following reasons: 1) We use a single
RTX1080Ti GPU for training, while authors of DAN use dis-
tributed training with 8 RTX2080Ti GPUs. 2) Our model is
trained with the batch size of 16, while DAN is trained with
the batch size of 64, enabled by distributed training. There-
fore, the proposed method is considered to have comparable
and more robust performance compared to DAN.

4.3. Semi-supervised Learning

Additional to N samples of LR-HR pairs claimed above, we
introduce M LR samples without according HR samples to
the training to see if our method can utilize such informa-

Fig. 4. Learning curves under different unsupervised rates.
A higher rate results in a more challenging convergence of
training.

Table 2. Quantitative results of the proposed method with
different unsupervised rates.

METHODS PSNR SSIM TIME (H)

Semi-SREMN (η = 0) 30.4240 0.9252 40.7
Semi-SREMN (η = 0.5) 30.4901 0.9262 57.5
Semi-SREMN (η = 0.8) 30.7218 0.9300 82.6

tion. We define the unsupervised rate of the network learning
as η = M/(M + N), which increases with the amount of
additional unlabeled data. We compare performances of the
proposed approach under 3 different supervision rates, i.e.,
η = 0, 0.5, 0.8 for M = 0, N, 4N .

Quantitative results are shown in Table 2. It can be seen
that models trained with higher supervision rate tend to have
better results. This validate the proposed methodology that
the potential of unlabeled data could be excavated by proba-
bilistic modeling.

The learning curves of the proposed SREMN under differ-
ent supervision rates are illustrated in Fig.4. It can be seen that
the learning processes converges at around 600 epochs, while
the methods with higher supervision rates converge slower
though with better ultimate performances, in accordance with
intuition.

5. CONCLUSION

We propose a GEM framework for blind SISR (SREMN),
which embeds the general image degradation model in a
Bayesian model and enables efficient estimation of HR im-
ages. The proposed method leverages benefits from both
model-based methods and learning-based methods, novel in
conducting the blind SISR in a semi-supervised manner. Fu-
ture work would be focused on a more flexible framework on
image enhancing, integrating multiple related tasks.
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