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Recently a new distribution, named as generalized exponential distribution has been
introduced and studied quite extensively by the authors. Generalized exponential
distribution can be used as an alternative to gamma or Weibull distribution in many
situations. In a companion paper, the authors considered the maximum likelihood
estimation of the di�erent parameters of a generalized exponential distribution and
discussed some of the testing of hypothesis problems. In this paper we mainly consider
®ve other estimation procedures and compare their performances through numerical
simulations.
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1. INTRODUCTION

Recently a new two-parameter distribution, named as Generalized

Exponential (GE) Distribution has been introduced by the authors

(Gupta and Kundu, 1999a). The GE distribution has the distribution

function;

F�x;�; �� � �1ÿ eÿ�x��; �; �; x> 0: �1:1�
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Therefore, GE distribution has a density function;

f �x;�; �� � ���1ÿ eÿ�x��ÿ1eÿ�x; �1:2�
survival function

S�x;�; �� � 1ÿ �1ÿ eÿ�x�� �1:3�
and a hazard function

h�x;�; �� � ���1ÿ eÿ�x��ÿ1eÿ�x

1ÿ �1ÿ eÿ�x�� : �1:4�

Here � is the shape parameter and � is the scale parameter. GE

distribution with the shape parameter � and the scale parameter � will

be denoted by GE(�,�). GE(1, �) represents the exponential distribu-

tion with the scale parameter �.

It is observed in Gupta and Kundu (1999a) that the two-parameter

GE(�,�) can be used quite e�ectively in analyzing many lifetime data,

particularly in place of two-parameter gamma and two-parameter

Weibull distributions. The two-parameter GE(�,�) can have increas-

ing and decreasing failure rates depending on the shape parameter.

The main aim of this paper is to study how the di�erent estimators

of the unknown parameter/parameters of a GE distribution behave for

di�erent sample sizes and for di�erent parameter values. Recently in

Gupta and Kundu (1999b), we studied the properties of the maximum

likelihood estimators (MLE's) in great details. In this paper, we mainly

compare the MLE's with the other estimators like method of moment

estimators (MME's), estimators based on percentiles (PCE's), least

squares estimators (LSE's), weighted least squares estimators

(WLSE's) and the estimators based on the linear combinations of

order statistics (LME's), mainly with respect to their biases and mean

squared errors (MSE's) using extensive simulation techniques.

The rest of the paper is organized as follows. In Section 2, we brie¯y

discuss the MLE's and their implementations. In Sections 3 to 6 we

discuss other methods. Simulation results and discussions are provided

in Section 7.
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2. MAXIMUM LIKELIHOOD ESTIMATORS

In this section the maximum likelihood estimators of GE(�,�) are

considered. We consider two di�erent cases. First consider estimation

of � and � when both are unknown. If x1, . . . , xn is a random sample

from GE(�,�), then the log-likelihood function, L(�, �), is

L��; �� � nln��� � nln��� � ��ÿ 1�
Xn

i�1
ln�1ÿ eÿ�xi� ÿ �

Xn

i�1
xi: �2:1�

The normal equations become:

@L

@�
� n

�
�
Xn

i�1
ln�1ÿ eÿ�xi� � 0; �2:2�

@L

@�
� n

�
� ��ÿ 1�

Xn

i�1

xie
ÿ�xi

�1ÿ eÿ�xi� ÿ
Xn

i�1
xi � 0: �2:3�

From (2.2), we obtain the MLE of � as a function of �, say �̂���,
where

�̂��� � ÿ nPn
i�1 ln�1ÿ eÿ�xi� : �2:4�

Putting �̂��� in (2.1), we obtain

g��� � L��̂���; �� � C ÿ nln
Xn

i�1
�ÿln�1ÿ eÿ�xi��

� nln��� ÿ
Xn

i�1
ln�1ÿ eÿ�xi� ÿ �

Xn

i�1
xi: �2:5�

Therefore, MLE of �, say �̂MLE, can be obtained by maximizing (2.5)

with respect to �. It is observed in Gupta and Kundu (1999b) that g(�)

is a unimodal function and the �̂MLE which maximizes (2.5) can be

obtained from the ®xed point solution of

h��� � �; �2:6�

where

h��� �
�Pn

i�1��xie
ÿ�xi�=�1ÿ eÿ�xi��Pn

i�1 ln�1ÿ eÿ�xi� � 1

n

Xn

i�1

xi

�1ÿ eÿ�xi�
�ÿ1

: �2:7�
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Very simple iterative procedure can be used to ®nd a solution of (2.6)

and it works very well. Once we obtain �̂MLE, the MLE of � say �̂MLE

can be obtained from (2.4) as �̂MLE � �̂��̂MLE�.
Now we state the asymptotic normality results to obtain the

asymptotic variances of the di�erent parameters. It can be stated as

follows: � ���
n
p ��̂MLE ÿ ��;

���
n
p ��̂MLE ÿ ��

�! N2�0; Iÿ1��; ��� �2:8�

where I(�,�) is the Fisher Information matrix, i.e.,

I��; �� � ÿ 1

n

E
�
@2L
@�2

�
E
�

@2L
@�@�

�
E
�

@2L
@�@�

�
E
�
@2L
@�2

�24 35:
The elements of the Fisher Information matrix are as follows, for

�> 2;

E

�
@2L

@�2

�
� ÿ n

�2
; E

�
@2L

@�@�

�
� n

�

�
�

�ÿ 1
� ��� ÿ  �1�� ÿ � ��� 1� ÿ  �1��

�
E

�
@2L

@�2

�
� ÿ n

�2

�
1� ���ÿ 1�

�ÿ 2
� 0�1� ÿ  0��ÿ 1�

� � ��ÿ 1� ÿ  �1��2�
�

ÿ n�

�2
�� 0�1� ÿ  ��� � � ��� ÿ  �1��2��

and for 0<�� 2,

E

�
@2L

@�2

�
� ÿ n

�2
; E

�
@2L

@�@�

�
� n�

�

Z 1
0

xeÿ2x�1ÿ eÿx��2dx<1

E

�
@2L

@�2

�
� ÿ n

�2
ÿ n���ÿ 1�

�2

Z 1
0

x2eÿ2x�1ÿ eÿx��ÿ3dx<1:

Now consider the MLE of �, when the scale parameter � is known.
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Without loss of generality we can take �� 1. If � is known the MLE of

�, say �̂MLESCK , is

�̂MLESCK � ÿ nPn
i�1 ln�1ÿ eÿ�xi� : �2:9�

The distribution of �̂MLESCK is same as the distribution of (n�/Y),

where Y follows Gamma(n, 1). Therefore, for n> 2

E��̂MLESCK� � n

nÿ 1
�;

Var��̂MLESCK� � n2

�nÿ 1�2�nÿ 2��
2;

MSE��̂MLESCK� � n� 2

�nÿ 1��nÿ 2��
2:

Clearly �̂MLESCK is not an unbiased estimator of �, although

asymptotically it is unbiased.

From the expression of the expected value, we consider the

following unbiased estimator of �, say �̂USCK ,

�̂USCK � nÿ 1

n
�̂MLESCK � ÿ nÿ 1Pn

i�1 ln�1ÿ eÿxi� �2:10�

where

Var��̂USCK� � MSE��̂USCK� � �2

nÿ 2
�2:11�

Therefore,V��̂USCK� is closer to theCramer-Rao lower bound (� (�2/n))

compared to the MLE.

Now consider the MLE of � when the shape parameter � is known.

For known � theMLE of � say �̂MLESHK can be obtained by maximizing

u��� � nln��� � ��ÿ 1�
Xn

i�1
ln�1ÿ eÿ�xi� ÿ �

Xn

i�1
xi �2:12�

with respect to �. It can be easily shown that u(�) is a unimodal

function of � and �̂MLESHK which maximizes u(�) can be obtained as

the ®xed point solution of

v��� � � �2:13�
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where

v��� �
�
1

n

Xn

i�1

xi�1ÿ �eÿ�xi�
1ÿ eÿ�xi

�ÿ1
:

3. METHOD OF MOMENT ESTIMATORS

In this section we provide the method of moment estimators of the

parameters of a GE distribution. First we consider the case when both

the parameters are unknown. If X follows GE(�,�), then

� � E�X� � 1

�
� ��� 1� ÿ  �1��; �3:1�

�2 � V�X� � ÿ 1

�2
� 0��� 1� ÿ  0�1�� �3:2�

see Gupta and Kundu (1999a). Here  ( � ) denotes the digamma

function and  0( � ) denotes the derivative of  ( � ). From (3.1) and (3.2),

we obtain the coe�cient of variation (C.V.) as

�

�
� C:V : �

�����������
V�X�p

E�X� �
������������������������������������
 0�1� ÿ  0��� 1�p
 ��� 1� ÿ  �1� : �3:3�

The C.V. is independent of the scale parameter �. Therefore, equating

the sample C.V. with the population C.V., we obtain

S
�X
�

������������������������������������
 0�1� ÿ  0��� 1�p
 ��� 1� ÿ  �1� ; �3:4�

where S2 � ��Pn
i�1�Xi ÿ �X�2�=�nÿ 1�� and �X � �1=n�Pi�1 Xi. We

need to solve (3.4) to obtain the MME of �, say �̂MME. Once we

estimate �, we can use (3.1) to obtain the MME of �. We need to use

some iterative procedure to solve (3.4). The extensive table of the

population C.V. for di�erent values � can be obtained from the

authors on request. The table can be used to obtain an initial estimate

of �. Note that the MME's of � and � say �̂MME and �̂MME have the

following asymptotic property.� ���
n
p ��̂MME ÿ ��;

���
n
p ��̂MME ÿ ��

�! N2�0;DAÿ1CAÿ1D�; �3:5�
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where

D � 1 0
0 �

� �
; A � ÿ 0��� 1�  00��� 1�

 ��� 1� ÿ  �1� 2�ÿ 0��� 1� �  0�1��
� �

and

C �
 0�1� ÿ  0��� 1�  00��� 1� ÿ  0�1�
 00��� 1� ÿ  00�1� � �3� ÿ  �3���� 1��

ÿ� 0�1� ÿ  0��� 1��2

24 35:
Here  00( � ) and  (3) are the second and the third derivative of the  ( � ).
The proof of (3.5) is provided in the appendix.

If the scale parameter is known, then the MME of � can be obtained

by solving the non-linear equation

��X �  ��� 1� ÿ  �1�: �3:6�
We need to solve the non-linear Eq. (3.6) by some iterative technique.

Since the population C.V. is independent of �, therefore the C.V. table

can be used to obtain an initial MME of � even if � is known.

Now consider the case when the shape parameter � is known. If the

shape parameter is known, then the MME of � is

�̂MMESHK �  ��� 1� ÿ  �1�
�X

: �3:7�

Note that (3.7) follows easily from (3.1). Although �̂MMESHK is not an

unbiased estimator of � but �1=�̂MMESHK� is an unbiased estimator of

(1/�) and also

V

�
�

�̂MMESHK

�
�  0�1� ÿ  0��� 1�

n� ��� 1� ÿ  �1��2 :

4. ESTIMATORS BASED ON PERCENTILES

Among the most easily obtained estimators of the parameters of the

Weibull distribution are the graphical approximation to the best linear

unbiased estimators. It can be obtained by ®tting a straight line to the

theoretical points obtained from the distribution function and the

sample percentile points. This method was originally explored by Kao
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(1958, 1959), see also Mann, Schafer and Singpurwalla (1974) and

Johnson, Kotz and Balakrishnan (1994). It is possible for the Weibull

case because of the nature of its distribution function.

In case of a GE distribution also it is possible to use the same

concept to obtain the estimators of � and � based on the percentiles,

because of the structure of its distribution function. First let's consider

the case, when both the parameters are unknown. Since

F�x;�; �� � �1ÿ eÿ�x��;
therefore

ÿ 1

�
ln�1ÿ �F�x;�; ����1=��� � x: �4:1�

If pi denotes some estimate of F(x(i);�,�) then the estimate of � and �

can be obtained by minimizing

Xn

i�1

�
x�i� � �ÿ1ln�1ÿ p

�1=��
i ��2 �4:2�

with respect to � and �. (4.2) is a non-linear function of � and �. It is

possible to use some non-linear regression techniques to estimate � and

� simultaneously. These estimators we call as percentile estimators

(PCE's). It may be mentioned that approximating the true least squares

estimators one tacitly and incorrectly assumes that the covariance

matrix of the vector of order statistics is some constant times the identity

matrix, which is not a correct assumption. It is possible to use several pi's

as estimators of F(x(i)). For example pi� (i/(n�1)) is the most used

estimator of F(x(i)), as (i/(n�1)) is the expected value of F(x(i)). We have

also used this pi here. Some of the other choices of pi's are pi� ((iÿ (3/
8))/(n� (1/4))) or pi� ((iÿ (1/2))/n), (see Mann, Schafer and Singpur-

walla (1974)) although they have not pursued here.

Now let's consider the case when one parameter is known. If the

shape parameter � is known, then the estimator of � can be obtained

by minimizing (4.2) with respect to � only. The percentile estimator of

� for known �, say �̂PCESHK , becomes

�̂PCESHK � ÿ
Pn

i�1�ln�1ÿ p
�1=��
i ��2Pn

i�1 x�i�ln�1ÿ p
�1=��
i �

: �4:3�

It is an explicit form unlike MLE.
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If the scale parameter � is known, without loss of generality we can

assume �� 1. With �� 1, the distribution function of GE(�, 1)

becomes

F�x;�� � �1ÿ eÿx��

or

ln�F�x;��� � �ln�1ÿ eÿx�: �4:4�
Therefore, similarly as before the percentile estimator of � for known

�, say �̂PCESCK , can be obtained by minimizingXn

i�1
�ln�pi� ÿ �ln�1ÿ eÿx�i� ��2 �4:5�

with respect � and it becomes

�̂PCESCK �
Pn

i�1 ln�pi�ln�1ÿ eÿx�i� �Pn
i�1�ln�1ÿ eÿx�i� ��2 : �4:6�

Interestingly �̂PCESCK is also in a closed form like �̂MLESCK . Note that,

as one of the referees had properly mentioned, the percentile estimator

of � for known � is very much like a least sqaures estimator.

5. LEAST SQUARES AND WEIGHTED LEAST

SQUARES ESTIMATORS

In this section we provide the regression based method estimators of

the unknown parameters, which was originally suggested by Swain,

Venkatraman and Wilson (1988) to estimate the parameters of beta

distributions. It can be used some other cases also. Suppose Y1, . . . ,Yn

is a random sample of size n from a distribution function G( � ) and
suppose Y(i); i� 1, . . . , n denotes the ordered sample. The proposed

method uses the distribution of G(Y(i)). For a sample of size n, we have

E�G�Y�j��� � j

n� 1
; V�G�Y�j��� � j�nÿ j � 1�

�n� 1�2�n� 2�
and

Cov�G�Y�j��;G�Y�k��� � j�nÿ k � 1�
�n� 1�2�n� 2� ; for j < k;
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see Johnson, Kotz and Balakrishnan (1995). Using the expectations

and the variances, two variants of the least squares methods can be

used.

Method 1 (Least Squares Estimators) Obtain the estimators by

minimizing

Xn

j�1

�
G�Y�j�� ÿ j

n� 1

�2

: �5:1�

with respect to the unknown parameters. Therefore in case of GE

distribution the least squares estimators of � and �, say �̂LSE, �̂LSE

respectively, can be obtained by minimizing

Xn

j�1

�
�1ÿ eÿ�x�j� �� ÿ j

n� 1

�2

: �5:2�

with respect to � and �.

Method 2 (Weighted Least Squares Estimators) The weighted least

squares estimators can be obtained by minimizing

Xn

j�1
wj

�
G�Y�j�� ÿ j

n� 1

�2

; �5:3�

with respect to the unknown parameters, where wj� (1/

(V(G(Y(j)))))� ((n�1)2(n�2))/(j(nÿ j�1))). Therefore, in case of GE

distribution the weighted least squares of � and �, say �̂WLSE and �̂WLSE

respectively, can be obtained by minimizing

Xn

j�1
wj

�
�1ÿ eÿ�x�j� �� ÿ j

n� 1

�2

: �5:4�

with respect to � and � only.

6. L-MOMENT ESTIMATORS

In this section we propose a method of estimating the unknown

parameters of a GE distribution based on the linear combination of
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order statistics, see for example David (1981) or Hosking (1990). The

estimators obtained by this method are popularly known as L-moment

estimators (LME's). The LME's are analogous to the conventional

moment estimators but can be estimated by linear combinations of

order statistics, i.e., by L-statistics. The LME's have theoretical

advantages over conventional moments of being more robust to the

presence of outliers in the data. It is observed that LME's are less

subject to bias in estimation and sometimes more accurate in small

samples than even the MLE's.

First we discuss the case how to obtain the LME's when both the

parameters of a GE distribution are unknown. If x(1)< � � � < x(n)
denote the ordered sample then using the same notation as Hosking

(1990), we obtain ®rst and second sample L-moments as

l1 � 1

n

Xn

i�1
x�i�; l2 � 2

n�nÿ 1�
Xn

i�1
�i ÿ 1�x�i� ÿ l1: �6:1�

and ®rst two population L-moments are

�1 � 1

�
� ��� 1� ÿ  �1��; �2 � 1

�
� �2�� 1� ÿ  ��� 1��; �6:2�

respectively. Note that (6.2) follows from the distribution function of

the ith order statistic of a GE random variable (see Gupta and Kundu,

1999a). Now to obtain the LME's of the unknown parameters � and

�, we need to equate the sample L-moments with the population L-

moments. Therefore, the LME's can be obtained from

l1 � 1

�
� ��� 1� ÿ  �1��; �6:3�

l2 � 1

�
� �2�� 1� ÿ  ��� 1��: �6:4�

First we obtain LME of �, say �̂LME as solution of the following non-

linear equation

 �2�� 1� ÿ  ��� 1�
 ��� 1� ÿ  �1� � l2

l1
: �6:5�

Once �̂LME is obtained, the LME of �, say, �̂LME, can be obtained from

(6.3) as

�̂LME �  ��̂LME � 1� ÿ  �1�
l1

: �6:6�
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It is interesting to note that if � or � is known, then the LME of � or �

is same as the corresponding moment estimator.

7. NUMERICAL EXPERIMENTS AND DISCUSSIONS

It is very di�cult to compare the theoretical performances of the

di�erent estimators proposed in the previous sections. Therefore, we

perform extensive simulations to compare the performances of the

di�erent methods mainly with respect to their biases and mean

squared errors (MSE's), for di�erent sample sizes and for di�erent

parametric values. All the computations are performed at the

University of New Brunswick, Saint John, using the Sun Work-

stations. Note that the generation of the GE(�,�) is very simple. If U

follows uniform distribution in [0, 1], then X� ((ÿ ln(1ÿU(1/�))/�)

follows GE(�,�). Therefore, if one has a good uniform random

number generator, then the generation of GE random deviate is

immediate. We use the random deviate generator of Press et al. (1993)

for uniform generator. We also use the subroutines of Press et al.

(1993) for computing the minimization or maximization of a function

and Psi function computations.

We consider di�erent sample sizes ranging from very small to large.

Since � is the scale parameter and all the estimators are scale invariant,

we take �� 1 in all our computations and we consider di�erent values

of �. We report the average relative estimates and average relative

MSE's over 10,000 replications for di�erent cases. Note that it will

give the accuracy in the order � (10,000)ÿ .5� � .01 (Karian and

Dudewicz, 1999). Therefore, we report all the results up to three

decimal places. First we observe how the di�erent methods perform in

estimating � if � is known.

7.1. Estimation of a when k is Known

If the scale parameter � is known, the MLE's, PCE's and the unbiased

estimators (UBE's) of � can be obtained directly from (2.9), (4.6) and

(2.10) respectively. The MME's of � can be obtained by solving the

non-linear Eq. (3.6). The LSE's and WLSE's can be obtained by

minimizing (5.2) and (5.4) respectively with respect to � only. If �̂ is an
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estimate (any one of those) then we report the average values of ��̂=��
and also the average MSE's of ��̂=��. We report the results for

�� .2, .6, 1.0, 2.0, 2.5 and for n� 10, (small sample) 20 (moderate

sample), 30, 50 and 100 (very large sample). The results are reported in

Table I. For each method the average value of ��̂=�� is reported in

each box and the corresponding MSE is reported within parenthesis.

Some of the points are very clear from Table I. For each method the

average relative biases and the average relative MSE's decrease as

sample size increases. It indicates that all the methods provide

asymptotically unbiased and consistent estimators of the shape

parameter � for known �. For almost all the methods (except for

TABLE I Average relative estimates and average relative mean squared errors of �
when � is known

n Method �� .2 �� .6 �� 1.0 �� 2.0 �� 2.5

MLE 1.109(0.168) 1.115(0.175) 1.114(0.171) 1.114(0.171) 1.115(0.174)
MME 1.096(0.829) 1.079(0.425) 1.091(0.371) 1.093(0.318) 1.086(0.296)

n� 10 PCE 0.922(0.127) 0.928(0.129) 0.921(0.127) 0.928(0.129) 0.928(0.129)
LSE 1.088(0.230) 1.091(0.244) 1.089(0.216) 1.084(0.230) 1.081(0.237)
WLSE 1.078(0.211) 1.074(0.224) 1.073(0.203) 1.082(0.228) 1.074(0.224)
UBE 0.998(0.137) 1.004(0.142) 1.002(0.138) 1.002(0.138) 1.004(0.142)

MLE 1.056(0.066) 1.049(0.062) 1.052(0.063) 1.052(0.064) 1.049(0.062)
MME 1.027(0.329) 1.037(0.179) 1.036(0.141) 1.037(0.120) 1.040(0.120)

n� 20 PCE 0.929(0.063) 0.923(0.061) 0.929(0.062) 0.923(0.061) 0.923(0.061)
LSE 1.033(0.080) 1.036(0.082) 1.038(0.083) 1.035(0.086) 1.040(0.087)
WLSE 1.029(0.073) 1.032(0.076) 1.035(0.076) 1.032(0.076) 1.032(0.076)
UBE 1.003(0.060) 0.997(0.056) 1.000(0.057) 1.000(0.057) 0.997(0.056)

MLE 1.030(0.038) 1.035(0.040) 1.037(0.040) 1.037(0.040) 1.035(0.040)
MME 1.028(0.220) 1.024(0.109) 1.021(0.093) 1.022(0.078) 1.026(0.073)

n� 30 PCE 0.930(0.042) 0.935(0.042) 0.930(0.041) 0.935(0.042) 0.935(0.042)
LSE 1.028(0.052) 1.024(0.051) 1.026(0.051) 1.026(0.052) 1.021(0.051)
WLSE 1.025(0.047) 1.022(0.046) 1.025(0.046) 1.018(0.048) 1.022(0.046)
UBE 0.996(0.036) 1.000(0.037) 1.002(0.038) 1.002(0.038) 1.000(0.037)

MLE 1.020(0.022) 1.020(0.022) 1.020(0.023) 1.020(0.023) 1.020(0.022)
MME 1.012(0.125) 1.016(0.063) 1.014(0.051) 1.014(0.043) 1.016(0.041)

n� 50 PCE 0.944(0.025) 0.946(0.026) 0.944(0.026) 0.946(0.026) 0.946(0.026)
LSE 1.014(0.029) 1.012(0.028) 1.013(0.029) 1.016(0.029) 1.018(0.029)
WLSE 1.013(0.025) 1.011(0.025) 1.013(0.026) 1.014(0.026) 1.012(0.025)
UBE 1.000(0.021) 0.999(0.021) 1.000(0.022) 1.000(0.022) 0.999(0.021)

MLE 1.008(0.010) 1.009(0.011) 1.009(0.010) 1.009(0.010) 1.010(0.010)
MME 1.008(0.060) 1.009(0.031) 1.007(0.025) 1.009(0.021) 1.007(0.021)

n� 100 PCE 0.960(0.013) 0.961(0.013) 0.962(0.013) 0.961(0.013) 0.961(0.013)
LSE 1.008(0.014) 1.007(0.014) 1.005(0.014) 1.008(0.014) 1.006(0.014)
WLSE 1.007(0.013) 1.006(0.013) 1.004(0.012) 1.007(0.013) 1.006(0.012)
UBE 0.998(0.010) 0.999(0.010) 0.999(0.010) 0.999(0.010) 1.000(0.010)
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MME) the average values of ��̂=�� and the MSE's of ��̂=�� remain

constant for di�erent choices of � at di�erent sample sizes. The same

phenomena is observed even for gamma and Weibull also. Most of the

methods (except PCE) usually overestimate �, whereas PCE under-

estimates � in all the cases considered. Although, we would say that

the biases are not that severe in all the methods considered. For

example, when the sample size is small (n� 10), the relative bias varies

between .2% to 11.5%, and when the sample size is very large

(n� 100), the relative bias varies between 0% to 4%.

Comparing all the six methods, it is clear that as far as bias is

concerned, UBE works the best for all choices of � and for all sample

sizes. With respect to the minimum relative mean squared errors, PCE

works the best for small (n� 10) sample size and otherwise the UBE

outperforms the rest. The performance of MME is quite bad

particularly in terms of the MSE's. Between LSE and WLSE, WLSE

works better than LSE in all cases, as expected. Now as far as

computations are concerned, UBE's, MLE's and PCE's are easiest to

implement (do not involve any non-linear equation solving), whereas,

MME's, LSE's and WLSE's involve either non-linear equation solving

or minimizing certain function. Performances of the UBE's are quite

good in general and they are quite close to the best performed cases in

most of the times. Considering all the points, we recommend to use

UBE's for estimating �, when � is known.

7.2. Estimation of k when a is Known

In this subsection we present the results of the di�erent methods of

estimating �, for known �. In this situation, the MLE of � can be

obtained by maximizing (2.12) or equivalently solving for the ®xed

point solution of (2.13). The MME and PCE can be obtained directly

from (3.7) and (4.3) respectively. The LSE and the WLSE can be

obtained by minimizing (5.2) and (5.4) respectively with respect to �

only. Since � is the scale parameter, we take �� 1 throughout without

loss of generality. We consider di�erent sample sizes namely,

n� 10, 20, 30, 50, 100 and di�erent �� .5, 1.5, 2.5. For a given sample

we estimate � by di�erent methods and report the average values of �̂

and the average MSE's of �̂ over 10,000 replications. The results are

reported in Table II. Similarly as in Table I, in each box corresponds
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to di�erent methods the average values of �̂ are reported and their

MSE's are reported within brackets.

Some of the points are clear from the experiments. As sample size

increases for all the methods the biases and the MSE's decrease. It

indicates that all the methods provide asymptotically unbiased and

consistent estimators of � when � is known. If �̂ denotes any one of

those estimators, then it is clear that ��̂=�� is not independent of �. The
bias and the MSE decrease as � increases. For small �, the biases are

quite severe for all themethods. For example, when the sample size is 10,

the bias of MLE is around 24%. Some bias correction techniques, like

Jackkni®ng, may be used to reduce the bias, although it is not pursued

here. When � is large or when the sample size is large the bias is not that

severe. From Table II, it is clear that for known �, the estimation of � is

less accurate for small values of �, particularly if �< 1. It is observed

that all the methods (except PCE) over estimate �, where as PCE under

estimates �.

TABLE II Average relative estimates and average relative mean squared
errors of � when � is known

n Method �� .5 �� 1.5 �� 2.5

MLE 1.244(0.524) 1.073(0.100) 1.043(0.057)
MME 1.234(0.510) 1.076(0.101) 1.049(0.058)

n� 10 PCE 0.996(0.321) 0.967(0.084) 0.969(0.054)
LSE 1.234(1.174) 1.053(0.122) 1.029(0.065)
WLSE 1.215(1.125) 1.049(0.115) 1.028(0.062)

MLE 1.111(0.162) 1.032(0.040) 1.023(0.026)
MME 1.107(0.161) 1.034(0.044) 1.027(0.026)

n� 20 PCE 0.959(0.122) 0.960(0.040) 0.972(0.027)
LSE 1.091(0.251) 1.023(0.049) 1.016(0.029)
WLSE 1.081(0.219) 1.021(0.046) 1.016(0.028)

MLE 1.072(0.089) 1.025(0.026) 1.015(0.017)
MME 1.069(0.089) 1.026(0.026) 1.016(0.017)

n� 30 PCE 0.955(0.076) 0.968(0.028) 0.973(0.018)
LSE 1.062(0.145) 1.017(0.031) 1.011(0.019)
WLSE 1.056(0.124) 1.016(0.029) 1.010(0.018)

MLE 1.043(0.047) 1.013(0.015) 1.008(0.009)
MME 1.041(0.047) 1.013(0.015) 1.009(0.009)

n� 50 PCE 0.958(0.044) 0.972(0.017) 0.978(0.011)
LSE 1.037(0.073) 1.007(0.018) 1.005(0.010)
WLSE 1.034(0.062) 1.007(0.016) 1.005(0.010)

MLE 1.022(0.021) 1.006(0.007) 1.004(0.005)
MME 1.022(0.021) 1.007(0.007) 1.005(0.004)

n� 100 PCE 0.968(0.022) 0.980(0.008) 0.985(0.006)
LSE 1.020(0.033) 1.004(0.009) 1.003(0.005)
WLSE 1.020(0.029) 1.004(0.008) 1.003(0.005)
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Comparing the biases, it is observed that PCE works the best for

small (n� 10) and moderate (n� 20) sample sizes and for all values of

�. For large or very large sample sizes (n� 30) and if �> 1, WLSE

works very well. But for �< 1, PCE performs better than the other

proposed methods. Similarly comparing the MSE's, it is observed that

PCE works the best for small and moderate sample sizes and also for

all choices of �. PCE works very well even for large sample sizes if

�< 1. If �> 1, for large sample sizes MME works better than the

other methods. Since PCE and MME are very simple to implement

and there is not much di�erence in the performances between PCE and

WLSE for large sample and when �> 1, we recommend as follows.

Use PCE for small and moderate sample sizes at all the times. If

sample size is large and �< 1, use PCE and if �> 1, use MME.

7.3. Estimation of a and k when Both are Unknown

In this subsection, we present the results of the di�erent methods when

both the parameters are unknown. The �̂MLE can be obtained from the

®xed point solution of (2.6) and �̂MLE can be obtained from (2.4). The

�̂MME or �̂LME can be obtained by solving the non-linear Eq. (3.4) or

(6.5), and then �̂MME or �̂LME can be obtained from (3.7) or (6.6). The

PCE's, LSE's and WLSE's can be obtained by minimizing (4.2), (5.2)

and (5.4) respectively with respect to � and �. We consider di�erent

sample sizes and di�erent values of �. We take n� 15, 20, 30, 50, 100

and �� .2, .5, 1.0, 2.0, 2.5. Throughout, we consider �� 1. For each

combination of n and � we generate a sample of size n from GE(�, 1)

and estimate � and � by di�erent methods. We report the average

values of ��̂=�� and �̂ and also the corresponding average MSE's. All

the reported results are based on 10,000 replications. The results are

presented in Tables III and IV. In Table III, we report the average

values of ��̂=�� for each method and the corresponding MSE's are

reported within brackets. Similar results for �̂ are reported in Table IV.

For a quick understanding, the relative biases and the relative MSE's

of the di�erent estimators of the scale parameter when the shape

parameter is also unknown is presented in Figures 1 ± 4 for sample

sizes 20 and 100. The other cases are similar in nature and not

provided for space restrictions.
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From the Tables III and IV it is immediate that even when both the

parameters are unknown the average biases and the average MSE's

decrease as sample size increases. It veri®es the asymptotic unbiased-

ness and the consistency of all the estimators. It is observed that the

average biases and the average MSE's of ��̂=�� and �̂ depend on �.

For all the methods as � increases the average relative MSE's of �̂

decrease and the same thing is true for the average biases also for most

of the methods. On the other hand there is no pattern observed for the

average biases of ��̂=�� and the corresponding average MSE's. It may

be mentioned that for most of the methods the biases are quite severe

for small sample sizes (n� 15) for both ��̂=�� and �̂. Considering only

MSE's it can be said that the estimation of �'s are more accurate for

TABLE III Average relative estimates and average relative mean squared errors of �
when � is unknown

n Method �� .2 �� .5 �� 1.0 �� 2.0 �� 2.5

MLE 1.145(0.153) 1.180(0.230) 1.237(0.436) 1.338(0.857) 1.356(0.907)
MME 1.602(0.990) 1.396(0.679) 1.383(0.871) 1.455(1.624) 1.465(1.466)

n� 15 PCE 1.192(0.670) 1.043(0.416) 1.019(0.420) 1.015(0.508) 1.016(0.637)
LSE 1.059(0.217) 1.065(0.362) 1.118(1.952) 1.161(1.880) 1.214(9.838)
WLSE 1.068(0.178) 1.069(0.316) 1.123(2.433) 1.168(1.575) 1.205(2.099)
LME 1.064(0.334) 1.089(0.306) 1.145(0.446) 1.226(0.842) 1.235(0.800)

MLE 1.108(0.102) 1.132(0.141) 1.160(0.199) 1.223(0.343) 1.244(0.424)
MME 1.458(0.644) 1.314(0.448) 1.285(0.479) 1.318(1.675) 1.338(0.791)

n� 20 PCE 1.113(0.464) 1.009(0.309) 0.988(0.277) 0.980(0.306) 0.972(0.328)
LSE 1.044(0.110) 1.033(0.154) 1.064(0.316) 1.103(0.565) 1.113(0.622)
WLSE 1.058(0.111) 1.041(0.132) 1.069(0.248) 1.102(0.597) 1.120(0.907)
LME 1.041(0.230) 1.071(0.203) 1.101(0.245) 1.149(0.376) 1.167(0.454)

MLE 1.063(0.053) 1.084(0.075) 1.100(0.100) 1.129(0.146) 1.145(0.178)
MME 1.305(0.354) 1.218(0.248) 1.191(0.242) 1.197(0.293) 1.213(0.357)

n� 30 PCE 1.033(0.315) 0.969(0.206) 0.957(0.181) 0.955(0.190) 0.952(0.190)
LSE 1.029(0.068) 1.021(0.089) 1.034(0.124) 1.050(0.209) 1.054(0.229)
WLSE 1.045(0.062) 1.030(0.078) 1.048(0.184) 1.063(0.166) 1.071(0.251)
LME 1.014(0.136) 1.050(0.113) 1.062(0.126) 1.082(0.164) 1.099(0.204)

MLE 1.039(0.028) 1.048(0.038) 1.054(0.045) 1.077(0.068) 1.082(0.077)
MME 1.203(0.199) 1.134(0.131) 1.112(0.117) 1.123(0.145) 1.125(0.157)

n� 50 PCE 0.983(0.207) 0.949(0.136) 0.955(0.115) 0.946(0.111) 0.944(0.113)
LSE 1.017(0.036) 1.010(0.043) 1.016(0.060) 1.023(0.073) 1.027(0.101)
WLSE 1.030(0.032) 1.018(0.037) 1.025(0.053) 1.032(0.074) 1.044(0.086)
LME 1.012(0.079) 1.028(0.063) 1.031(0.062) 1.052(0.082) 1.056(0.090)

MLE 1.019(0.012) 1.022(0.016) 1.027(0.020) 1.035(0.027) 1.038(0.030)
MME 1.107(0.090) 1.065(0.060) 1.056(0.053) 1.058(0.061) 1.061(0.066)

n� 100 PCE 0.949(0.120) 0.948(0.078) 0.952(0.063) 0.954(0.060) 0.954(0.061)
LSE 1.011(0.017) 1.006(0.021) 1.009(0.027) 1.011(0.033) 1.016(0.043)
WLSE 1.023(0.015) 1.013(0.018) 1.017(0.023) 1.019(0.028) 1.024(0.036)
LME 1.005(0.039) 1.011(0.029) 1.016(0.029) 1.023(0.036) 1.026(0.039)
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smaller �, whereas the estimation of �'s are more accurate for larger �.

Most of the estimators overestimate both � and � at all the times

considered, except PCE, which usually underestimates the correspond-

ing parameters, particularly for moderate and large sample sizes.

Now comparing the performances of all the methods it is clear that

as far as the minimum bias is concerned, PCE works the best in almost

all the cases considered for estimating both � and �, followed by the

LSE's and WLSE's. The performances of the MME's are the worst as

far as the bias is concerned. Now with respect to the MSE's it is clear

that MLE's work the best in almost all the cases considered for

estimating both the parameters. The performances of the LME's are

also quite close to that of the MLE's. In fact for small sample sizes,

TABLE IV Average relative estimates and average relative mean squared errors of �
when � is unknown

n Method �� .2 �� .5 �� 1.0 �� 2.0 �� 2.5

MLE 1.644(3.034) 1.264(0.455) 1.187(0.222) 1.148(0.148) 1.134(0.135)
MME 2.108(6.064) 1.390(0.716) 1.239(0.317) 1.170(0.194) 1.153(0.173)

n� 15 PCE 1.219(4.577) 0.946(0.392) 0.925(0.215) 0.928(0.144) 0.925(0.125)
LSE 1.488(9.842) 1.078(0.556) 1.021(0.256) 1.005(0.156) 1.006(0.140)
WLSE 1.465(7.920) 1.088(0.501) 1.034(0.235) 1.019(0.148) 1.019(0.131)
LME 1.493(2.925) 1.167(0.431) 1.112(0.216) 1.088(0.142) 1.077(0.129)

MLE 1.421(1.184) 1.132(0.287) 1.160(0.143) 1.222(0.097) 1.244(0.086)
MME 1.730(2.334) 1.306(0.461) 1.179(0.221) 1.129(0.134) 1.114(0.118)

n� 20 PCE 1.062(1.107) 0.924(0.281) 0.920(0.162) 0.925(0.104) 0.917(0.096)
LSE 1.306(2.956) 1.044(0.324) 1.064(0.171) 1.103(0.113) 1.113(0.100)
WLSE 1.320(2.585) 1.058(0.284) 1.029(0.153) 1.019(0.097) 1.014(0.086)
LME 1.300(1.153) 1.134(0.284) 1.081(0.152) 1.065(0.098) 1.057(0.088)

MLE 1.256(0.477) 1.121(0.141) 1.088(0.082) 1.068(0.056) 1.063(0.049)
MME 1.459(0.936) 1.201(0.239) 1.127(0.129) 1.086(0.081) 1.077(0.073)

n� 30 PCE 0.961(0.486) 0.912(0.177) 0.919(0.108) 0.927(0.073) 0.931(0.063)
LSE 1.173(1.051) 1.027(0.173) 1.013(0.099) 1.001(0.065) 0.998(0.061)
WLSE 1.114(0.965) 1.041(0.151) 1.025(0.088) 1.016(0.059) 1.011(0.054)
LME 1.180(0.501) 1.083(0.151) 1.057(0.089) 1.040(0.059) 1.037(0.054)

MLE 1.138(0.189) 1.074(0.073) 1.046(0.041) 1.043(0.030) 1.037(0.026)
MME 1.268(0.381) 1.126(0.127) 1.072(0.067) 1.057(0.047) 1.047(0.041)

n� 50 PCE 0.925(0.258) 0.917(0.110) 0.931(0.068) 0.940(0.045) 0.942(0.040)
LSE 1.092(0.339) 1.017(0.094) 1.001(0.054) 0.997(0.038) 0.997(0.034)
WLSE 1.111(0.278) 1.031(0.080) 1.016(0.046) 1.008(0.032) 1.011(0.029)
LME 1.098(0.214) 1.052(0.083) 1.028(0.047) 1.028(0.034) 1.022(0.029)

MLE 1.068(0.072) 1.035(0.030) 1.025(0.019) 1.020(0.014) 1.019(0.012)
MME 1.136(0.143) 1.061(0.054) 1.038(0.033) 1.027(0.022) 1.024(0.020)

n� 100 PCE 0.916(0.121) 0.935(0.058) 0.948(0.036) 0.958(0.024) 0.960(0.021)
LSE 1.045(0.128) 1.010(0.044) 1.004(0.026) 1.003(0.021) 1.001(0.017)
WLSE 1.062(0.103) 1.020(0.036) 1.013(0.022) 1.010(0.018) 1.009(0.014)
LME 1.049(0.091) 1.024(0.038) 1.016(0.023) 1.012(0.016) 1.012(0.015)

18 R. D. GUPTA AND D. KUNDU

I164T001070 . 164
T001070d.164



sometimes the performances of the LME's are better than MLE's. The

MSE's of the PCE's are also quite close to that of the MLE's and

LME's and they are sometimes smaller than both of them at least for

the small sample sizes. The MSE's of the WLSE's are usually smaller

than that of the LSE's, where as the MSE's of the MME's are usually

FIGURE 1 Average relative biases of the di�erent estimators of � for sample size 20.

FIGURE 2 Average relative MSE's of the di�erent estimators of � for sample size 20.
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the maximum in most of the cases. Now if we consider the

computational complexities, it is observed that MLE's, MME's and

LME's involve one dimensional minimization, where as PCE's, LSE's

and WLSE's involve two dimensional minimization. Another point it

FIGURE 3 Average relative biases of the di�erent estimators of � for sample size 100.

FIGURE 4 Average relative MSE's of the di�erent estimators of � for sample size 100.
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is worth mentioning that to compute MME's or LME's we need to

evaluate  ( � ) function at di�erent points. Therefore, we need to use

some series expansion for this purpose. Considering all the points, we

recommend to use PCE's for small sample sizes, where as MLE's for

moderate or large sample sizes.
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APPENDIX

The asymptotic distribution of the MME's can be obtained as follows.

In the appendix we use �̂ � �̂MME and �̂ � �̂MME for brevity. Let's

de®ne
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f1��; �� � �X ÿ  ��� 1� ÿ  �1�
�

;

f2��; �� � S2 ÿÿ 
0��� 1� �  0�1�

�2
:

Consider f(�,�)� ( f1(�,�), f2(�,�)) and expand f ��̂; �̂� by Taylor

series around the true value of (�,�), we obtain

f ��̂; �̂� ÿ f ��; �� � ��̂ÿ �; �̂ÿ �� �@f1=@�� �@f2=@��
�@f1=@�� �@f2=@��
� �

��;������; ���
:

Here ���; ��� is a point between ��̂; �̂� and (�,�). Note that f ��̂; �̂� � 0

and as n!1, ��̂; �̂� ! ��; ��, so ���; ��� ! ��; ��. Therefore as n!1,

the distribution of � ���np ��̂ÿ ��; ���
n
p ��̂ÿ ��� is same as

ÿ� ���np ��X ÿ E�X��; ���
n
p �S2 ÿ E�S2��� �@f1=@�� �@f2=@��

�@f1=@�� �@f2=@��
� �ÿ1

:

Now using the central limit theorem we obtain

���
n
p ��X ÿ E��X�� ! N

�
0;
 0�1� ÿ  0��� 1�

�2

�
���
n
p �S2 ÿ E�S2��

! N

�
0;
� �3��1� ÿ  �3���� 1�� ÿ � 0�1� ÿ  0��� 1��2

�4

�
cov� ���np ��X ÿ E��X��; ���

n
p �S2 ÿ E�S2���

! N

�
0;
 00��� 1� ÿ  00�1�

�3

�
;

therefore, (3.5) follows immediately.
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