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Abstract. In this paper we present applications of a special class of homogeneous monogenic polynomials constructed, in the
framework of hypercomplex function theory, in order to be an Appell set of polynomials. In Particular, we derive important
properties of an associated exponential function fiohto R3 and propose a generalizationk8™2.
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1. PRELIMINARIES

Let {e1,e,---,en} be an orthonormal base of the Euclidean vector sfg&tewith a product according to the
multiplication rulesexg + gex = —2d, kI =1,---,n, where§y is the Kronecker symbol. This non-commutative
product generates the'-Blimensional Clifford algebr&lp, over R and the sefea : AC {1,---,n}} with ea =
€n,6ny - Eh, 1<y <--- < hy <n, e =g =1, forms a basis a€lo . The real vector spad™?! will be embedded
in Clo,y by identifying the elemen{xg,X,--- ,Xn) € R™1 with the elemeni = Xo + x of the algebra, wherg =
e1X1 + - - - +EnXn. The conjugate of is X = Xo — x and the nornix| of x is defined by{x|2 = xX= XX= X3 + X3+ - - +X2.

Denote byw(x) = % € S, whereS' is the unit sphere iiR".

In what follows we consideClg p-valued functions defined in some open sulf3et R™1 je., functions of the
form f(2) = YA fa(z)ea, where fa(z) are real valued. We suppose thiais hypercomplex differentiable i@ in
the sense of [1], [2], i.e. has a uniquely defined areolar derivdtivie each point ofQ (for the definition of an
areolar derivative see [3]). Thehis real differentiable (even real analytic) afdcan be expressed in terms of the
partial derivatives with respect tq as f’ = 1/2(dp — ) f, wheredp := &, Ok = elalxl +o eha%n. If now
D := do+ d is the usual generalized Cauchy-Riemann differential operator, then, obvidusly/2Df. Since in [1]
it has been shown that a hypercomplex differentiable function belongs to the kerel.ef satisfies the property
Df = 0 (f is amonogenic functioin the sense of Clifford Analysis), then it follows that in fafét= dp f like in the
complex case. For our purpose we use monogenic polynomials in terms of the hypercomplex monogenic variables
Zo = X — Xo& = — 8% k= 1,2,.--,n, which leads togeneralized powersf degreen that are by convention
symbolically written as{l x ---zpn and defined as amnarysymmetric product by{l Xz = % > igsoin) Z1 " Zins
where the sum is taken ovell permutations ofis, .. .,in), (see [2] and [3]).

2. THECASEn=2

As usual, we identify each elemert= (xo,x1,%2) € R® with the paravector (also calledreduced quaternion
Z= X9+ X = Xo+X1€1 + X&. In this section, we consider a special set of monogenic basis functions defined and
studied to some extend with respect to its algebraic properties in [4], namely functions of the form
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wherea;) denotes the Pochhammer symbol, &g, :=a(a+1)(a+2)---(a+r—1)= r(r"’(‘;r) , for any integer > 1,
anday) := 1. In terms of generalized powers these polynomials are of the form

n n
f@k(x) = Pk(Z]_,Zz) = Ck Z Z?7k X ZE(k) e?’k X %, (2)
k=0
where
7“! if kis odd
k TR
Ck e ZOTsk(fl)S: (k+ 1) (3)
S= . .
Ck—1, if kis even

In [5], it was proved that the sequence of such polynomials forepsagernionic Appell sequenchflore precisely,
these polynomials behave like monomial functions in the sense of the complex Ewefsg + ix1)¥; k= 1,2, -
and the power rule of complex differentiation in the foﬁ;zk kZ1is extended with respect to the hypercomplex
derivative of these special monomial functions, siRte- kR._1. Moreover

Pu(%0) = X5, Pi(X) = G
and
k K .
P(xo+X%) = Z)( )xo‘s%(X).
&H\s
For the above reasons, it is natural to propose the following monogenic function (see [4]),

o Zk(X)

Exp) 1= Y 50 )

k=

as ageneralized exponentifiinction inIR3. This Exp-function, as in the real and complex case, is a solution of the
differential equation

f'=1, f(0)=1 (5)
and satisfies also
Exp (Ax) = AExp(Ax), 2 € R (6)
and
Exp(xo +X) = €9EXp(x). @)

Another important property of the real and complex exponential function is that it should be different from zero
everywhere. We will prove this property for the exponential function (4) by first writing it in closed form.

Theorem 1 TheExp-function(4) can be written in terms of Bessel functions of the first kiggk)J for integer orders
a=0,1las
Exp(Xo +X) = €°(Jo(|X]) + o (x) 1 (|x])- €)

Proof. We start by first considering the expression of Bx@), fori = 1,2, i.e.

1
Exp(xie)) = ZK,Z)T (xie) (—xa)® zk'Z)T

and applying relation (3) to obtain

1 © 1
Exp(xe) Z i L oxkel = Z i S (-)"+e Y mszlxml(—l)m-
m=0

After some calculation we end up with

Exp(xie) = zam ey me )™,



where
(2m—1)!t 1 22m+1)t 1

= Gmiemn ~ Znmz - 9 = o ieme 2 ~ i

Therefore,
o (=DMx2m X & (=DM x2m

Bxpa) = ) ez T922 mmeDiz ©

Recalling the expression of the Bessel functions of the first 8jrahdJ; we can conclude that
Exp(xie) = Jo(%i) +&ad(x); i=1,2. (10)
We note that it is possible to express Expalmost in the same way. In fact, let

X161 + Xo€

X= X818 = = X = o (x)[x].
Sincew(x)? = —1, then it follows from (9) and (10):
IR N R G L
Exp(x) —”ZO (M2 2 +0(x)3 2 mmeI) 2 = Jo([X]) + @(x) I ([x])
The final result follows at once from (7). O

Straightforward calculations lead to the following important properties of the exponential function (4).

Corollary 1

1. Exp(x) has no zeros.
2. If 3(Exp(x)) denotes the jacobian of the functi&mp(x), then

—TZTXSJl(le) (Jo(1x)I2(IXD1X] = Jo(|X)In (X)) — Ju(X)?[x]) , ifx#0
J(Exp(xo+X)) =
%e%, ifx=0

We underline that the zeros of the jacobian of Bypare exactly the zeros dk(|x|) and therefore they are all
laid on concentric cylinders with radius corresponding to de zerak(¢f|). In particular, the flrst posmve zero is
¢1~3.831705970. Thus, we can conclude, for example, that on the cylifider{ (xo, X1, X2) € R®: x1+x2 < Cl} the
Exp-function can be treated as a mapping function fivhio R3. Images of some domains R? by this exponential
function can be found in [4].

3. AGENERALIZED EXPONENTIAL FUNCTION FROM R™1! TO R"!

In the casex = Xg+ X = Xo+ X1€1 + X2€2 + - - - + Xn€n, We denote by} (x) the homogeneous monogenic polynomial
of degreek, generalizing the particular= 2 case in (1). It can be proved that for arbitrary 1, the polynomials

k nil n-1
- ;)Tsk(n)xk’sis, with  TX(n) = (;‘;k( 2 ()|(<k S;)( z)e, (11)

form an Appell sequence. In terms of generalized powers these polynomials are of the form

PN =Pular )=o) T 7w el 12)



wherev = (v1,---,vy) is a multindex and

I
Ko+l 1 it kisodd
0\ 2/ ) (!
5 o(=1)5T¥(n) 212
C(n) = T ok TRk (13)
Ysols (n) kI /n+1 e
— | — o if kis even
i\ 2/ (3)
Now if we define = Pn(x)
. k(X
Exp,(X) := i (14)

then we can prove the following result.

Theorem 2 The Exp,-function (14) can be written in terms of Bessel functions of the first kinéx)J for orders
a=5-170as
n/2\2+1
Exmn00-+) =€or(3) ()" (5-10%) + 0 5()) (15)

Forn=1 andn = 2, (15) gives the ordinary complex exponential and the reduced quaternion valued Exp-function
(4), respectively. Moreover, it is easy to conclude that this function is different from zero everywhere and fulfills
properties (5)-(7), for any arbitrary> 1.

For the particular case= 3, (15) leads to

sin(|x|)
X

am%+@=@(
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This Exp;-function coincides with the one referred by Sprossig in [6], based on results of [7, 8, 9, 10] which are
generalizations of Fueter’s approach.

We would like to point out that the homogeneous monogenic polynomials (1) constructed so that they form an
Appell sequence, are particularly easy to handle and can play an important role in 3D-mapping problems. For a case
study of such approach, see for example [11].
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