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Generalized Extended State Observer Based Control
for Systems with Mismatched Uncertainties

Abstract—The standard extended state observer based control
(ESOBC) method is only applicable for a class of single-input-
single-output (SISO) integral chain systems with matched uncer-
tainties. It is noticed that systems with non-integral-chain form
and mismatched uncertainties are more general and widely exist
in practical engineering systems, where the standard ESOBC
method is no longer available. To this end, it is imperative to
explore new ESOBC approach for these systems to extend its
applicability. By appropriately choosing a disturbance compen-
sation gain, a generalized extended state observer based control
(GESOBC) method is proposed for non-integral-chain systems
subject to mismatched uncertainties without any coordinate
transformations. The proposed method is able to extend to multi-
input-multi-output (MIMO) systems with almost no modification.
Both numerical and application design examples demonstrate the
feasibility and efficacy of the proposed method.

Index Terms—Generalized extended state observer based con-
trol, mismatched uncertainties, MIMO system, non-integral-
chain system, disturbance rejection, disturbance compensation
gain.

I. INTRODUCTION

VARIOUS uncertainties including unmodeled dynamics,
parameter perturbations, and external disturbances, al-

ways bring adverse effects on modern industrial control sys-
tems. With the growing interest in high-precision control, the
utilization of the disturbance rejection technique is generally
required in the controller design. It is well-known that feedfor-
ward compensation control, which requires the measurement
of the disturbance, is one of the most effective disturbance
rejection method. One fact should be pointed out is that many
uncertainties in control systems are unmeasurable, thus the
disturbance estimation technique is particularly crucial for
disturbance attenuation.

During the past decades, several elegant approaches have
been proposed to estimate disturbances, including the un-
known input observer (UIO) [1], the disturbance observer
(DOB) [2]-[6], the perturbation observer (POB) [7], [8], the
equivalent input disturbance (EID) based estimation [9], [10],
and the extended state observer (ESO) [11]-[15]. Note that
all these methods are designed based on the model of the
plant. A natural doubt may be what does a designer have to
know about the plant in order to build the estimator [12].
Among the above listed approaches, ESO requires the least
amount of plant information [16], in fact, only the system
order should be known. Due to such a promising feature, ESO
based control (ESOBC) schemes, also known as active distur-
bance rejection control (ADRC), have become more and more
popular in recent years. Successful applications of ESOBC
in various industrial systems, including robotic systems [17],
[18], motion control systems [19]-[24], manipulator systems
[25], [26], power converter [27], [28], gyroscopes [29], and

flight control systems [30]-[32], have been reported within the
past decade.

Although the ESOBC has obtained successful achievements
in many practical control systems, it is also noticed that
ESOBC mainly has its roots in motion control systems. The
potential reason is that the standard ESOBC are only available
for integral chain systems which widely exist in motion control
systems. Such integral chain form is not necessarily satisfied
for general systems, and it is required to transfer the system to
meet the standard formulation by coordinate transformations
such that the standard ESOBC method can be used. However,
as pointed out by Han [14], it is generally not easy to
reformulate the problem to satisfy the standard formulation,
which becomes one of the most crucial factor restricting the
applicability of the ESOBC.

Another factor that severely constrains the application of
standard ESOBC method is the uncertainties in many practical
systems may not satisfy the so called matching condition
[33] which implies that the uncertainties act via the same
channel as the control input. For example, in flight control
systems, the lumped disturbance torques caused by unmodeled
dynamics, external winds, and parameter perturbations, etc.,
always affects the states directly rather than through the input
channels [34]. Another example in the MAGLEV suspension
system is that the track input disturbance acts on different
channel from the control input [40]. The problem also appears
in a permanent magnet synchronous motor system, in which
the uncertainties consisting of the parameter variation and
the load torque enter system via different channels from the
control inputs [35].

Note that disturbance based feedforward control for systems
with mismatched uncertainties is a longstanding unresolved
problem [41], [42]. A generalized extended state observer
based control (GESOBC) method is proposed in this paper
to solve the disturbance attenuation problem of a class of
non-integral-chain system with mismatched uncertainties. It is
shown that by properly choosing a disturbance compensation
gain, the mismatched uncertainties can be attenuated from
the system output. A systematic method is developed for the
disturbance compensation gain design. Parameter selection of
the proposed method is discussed in detail. In addition, feasible
conditions for extending the proposed GESOBC to multi-
input-multi-output (MIMO) systems without any coordinate
transformations are also investigated. The proposed GESOBC
method largely extends the applicability of the ESOBC since it
exhibits many superiorities over the standard ESBOC method,
which are listed in Table I where the essential-integral-chain
systems refers to the systems that can be converted into
integral chain systems by transformation.

The remainder of the paper is organized as follows. In
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TABLE I
APPLICABILITY OF THE PROPOSED GESOBC AND THE ESOBC

Method Disturbance type Variable type System type
GESOBC mismatched/matched MIMO non-integral-chain
ESOBC matched SISO essential-integral-chain

Section II, preliminary results regarding the formulation of
the standard ESOBC are presented. Section III investigates
the newly proposed GESOBC for general systems with mis-
matched uncertainties. In Section IV, some related problems
about the proposed method are further discussed. Application
example and simulations are studied to demonstrate the ef-
ficiency of the proposed method in Section V. Finally, the
concluding remarks are summarized in Section VI.

II. PRELIMINARY-STANDARD ESOBC

An uncertain system with the order of n under the standard
consideration is usually a integral chain system, described by
[11] 




ẋ1 = x2,
ẋ2 = x3,

...
ẋn = f(x1, · · · , xn, ω(t), t) + bu.
y = x1.

(1)

where x1, · · · , xn are the states, u is the control input, y is
the output, ω(t) is the external disturbance, b is the system
parameter, and f(x1, · · · , xn, ω(t), t) represent the uncertain
function, also known as lumped disturbance.

In the framework of ESOBC, an augmented variable[13]

xn+1 = f(x1, · · · , xn, ω(t), t), (2)

is introduced to linearize system (1). Combining (1) with (2),
the extended state equation is given by





ẋ1 = x2,
ẋ2 = x3,

...
ẋn = xn+1 + bu.
ẋn+1 = h(t).
y = x1,

(3)

with h(t) = ḟ(x1, · · · , xn, ω(t), t)
In order to estimate the states, a linear ESO is designed as

[11] 



ż1 = z2 − β1(z1 − y),
ż2 = z3 − β2(z1 − y),

...
żn = zn+1 − βn(z1 − y) + bu,
żn+1 = −βn+1(z1 − y),

(4)

where z1, z2, · · · , zn, and zn+1 are estimates of states
x1, x2, · · · , xn, and xn+1, respectively, β1, β2, · · · , βn+1 are
the observer gains.

Subtracting (3) from (4), the error system is written as



ė1 = e2 − β1e1,
ė2 = e3 − β2e1,

...
ėn = en+1 − βne1,
ėn+1 = −βn+1e1−h(t),

(5)

where ei = zi − xi (i = 1, 2, · · · , n + 1) represents
estimation error. By properly choosing the observer gains
β1, β2, · · · , βn+1, the bounded stability of (5) is guaranteed
under the assumption that h(t) is bounded [26].

The standard ESOBC control law is usually designed as
[13], [14]

u = Kxx− zn+1

b
, (6)

where Kx is the feedback control gain.

III. GENERALIZED EXTENDED STATE OBSERVER BASED
CONTROL

A. Problem Statement
The standard ESOBC method is possibly not available for

the following simple second-order system{
ẋ1 = x1 − 2x2 + f(x1, x2, ω(t), t),
ẋ2 = x1 + x2 + u.

(7)

System (7) does not satisfy the standard formulation as
(1) in the following two aspects. On the one hand, (7)
does not satisfy the integral chain form. On the other hand,
the uncertainties f(x1, x2, ω(t), t) enter the system with a
different channel from the control input u, i.e., the so called
matching condition is not satisfied. For the above mentioned
case, the standard ESOBC law (6) is no longer available. Thus
it is imperative to develop generalized extended state observe
based control (GESOBC) for general systems which do not
satisfy the standard formulation of system (1).

For the sake of simplicity, the following single-input-single-
output (SISO) system with mismatched uncertainties is con-
sidered 




ẋ = Ax + buu + bdf(x, ω(t), t),
ym = Cmx,
yo = cox,

(8)

where x ∈ Rn, u ∈ R, ω ∈ R, ym ∈ Rr, and yo ∈ R
are the state vector, input, external disturbance, measurable
outputs and controlled output, respectively. f(x, ω(t), t) is the
uncertain function in terms of x and ω. A with dimension
n × n, bu with dimension n × 1, bd with dimension n × 1,
Cm with dimension r × n, and co with dimension 1× n are
system matrices, respectively.

Remark 1: In (8), uncertainty function f(x, ω(t), t) repre-
sents the lumped disturbance, which is a generalized concept,
possibly including external disturbances, unmodeled dynam-
ics, parameter variations, and complex nonlinear dynamics
which may be difficult for the feedback part to handle. ¤

Remark 2: Eq. (8) represents a more general class of
systems as compared with that of system (1) since system
(8) is not confined to integral chain form and may subject to
mismatched uncertainties [37]. The matching case is a special
case of (8), by simply taking bu = λbd, λ ∈ R. ¤
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B. Composite Control Design

Similar to the standard case in Section II, adding an ex-
tended variable

xn+1 = d = f(x, ω(t), t), (9)

to linearize system (8), the extended system equation is
obtained {

˙̄x = Āx̄ + b̄uu + Eh(t),
ym = C̄mx̄,

(10)

where variables

x̄ =
[

x
xn+1

]
,

h(t) =
df(x, ω(t), t)

dt
,

and matrices

Ā =
[

An×n (bd)n×1

01×n 01×1

]

(n+1)×(n+1)

,

b̄u =
[

(bu)n×1

01×1

]

(n+1)×1

,

E =
[

0n×1

11×1

]

(n+1)×1

,

C̄m = [Cm, 0r×1]r×(n+1) .

Assumption 1: (A, bu) is controllable, and
(
Ā, C̄m

)
is

observable. ¤
Remark 3: A necessary condition of

(
Ā, C̄m

)
observable

is that (A, Cm) observable. The details can be found in
Appendix A. ¤

For system (10), the extended state observer is designed as
follows { ˙̄̂x = Ā ˆ̄x + b̄uu + L(ym − ŷm)

ŷm = C̄m ˆ̄x,
(11)

where ˆ̄x =
[
x̂T , x̂n+1

]T
, x̂, and x̂n+1 are the estimates of the

state variable x̄, x, and xn+1 in (10), respectively. Matrix L
with dimension (n+1)×r is the observer gain to be designed.

In the presence of mismatched uncertainties, the standard
ESOBC law, u = Kxx−d̂ (where d̂ = x̂n+1, Kx the feedback
control gain), can not effectively compensate the uncertainties
in system (8).

Remark 4: It should be pointed out that the mismatched
uncertainties can not be attenuated completely from the state
equation no matter what controller is designed [43]. In this
case, one of the most achievable goal is to remove the
uncertainties from the output channel in steady state. ¤

The composite control law in this paper is designed as

u = Kxx + Kdd̂, (12)

or
u = Kxx̂ + Kdd̂, (13)

where Kx is the feedback control gain, and Kd is the
disturbance compensation gain, designed as

Kd = −[co(A + buKx)−1bu]−1co(A + buKx)−1bd. (14)

Remark 5: Note that the disturbance compensation gain Kd

in (14) is a general case and suitable for both matching and
mismatching cases. For the matching case, i.e., bu = λbd,
λ ∈ R, it can be obtained from (14) that the disturbance
compensation gain reduces to Kd = −1/λ, which is the same
as the standard ESOBC law (6) in most previous literatures.
¤

The configuration of the proposed generalized extended
state observer based control is shown by Fig. 1.
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Fig. 1. Configuration of the proposed GESOBC method.

It will be shown next that the mismatched uncertainties can
be eliminated from the output channel in steady state by the
proposed control law.

C. Stability and Disturbance Rejection Analysis

Assumption 2: The lumped disturbances are bounded
and have constant values in steady state, i.e., lim

t→∞
ḋ(t) =

lim
t→∞

h(t) = 0 and lim
t→∞

d(t) = Dc. ¤
The state and disturbance estimation errors are defined as

ex = x̂− x, (15)

ed = d̂− d, (16)

where d̂ = x̂n+1 represents the estimate of system uncertain-
ties.

Combining Eqs. (10), (11), (15), with (16), the estimation
error equation is given by

ė = Aee−Eh(t), (17)

where

e =
[

ex

ed

]
, Ae = Ā−LC̄m. (18)

The bounded stability of the ESO can be obtained from the
following conclusion.

Lemma 1 [38]: Assuming that the observer gain vector L
in (11) is chosen such that Ae is a Hurwitz matrix, then the

ttwc2
Inserted Text
This shall be added as a Remark. 

It shall be highlighted that although there are similarities between  ESOBC (or the disturbance observer based on control)   and other observer techniques including sliding mode based unknown input observers, they have different focuses so different design philosophies as the motivations are different. The main objective in ESOBC is to minimise the influence of the disturbance and uncertainty on the output; whether or not the unknown disturbances are precisely estimated or whether they are observable from the output is not important. In unknown input observer approaches including sliding mode observer technique, it mainly concerns that whether an unknown disturbance can be accurately reconstructed so this in general impose a more restricted condition such as observer matching condition [a1].   
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observer error, e for the ESO is bounded for any bounded
h(t). ¤

Lemma 2: The following single-input linear system

ẋ = Ax + Bu, (19)

is asymptotically stable if A is a Hurwitz matrix, u is bounded
and satisfies lim

t→∞
u(t) = 0. The proof can be found in

Appendix B. ¤
Lemma 3: For system (19), if matrix A is Hurwitz and

lim
t→∞

u(t) = Uc 6= 0, the state converges to a constant vector

−A−1BUc, i.e., lim
t→∞

x(t) = −A−1BUc. The result can be
easily followed from Lemma 2 by coordinate transformations.
¤

1) In the Case of Known States: If the states are available,
the composite control law is designed as (12). The stability and
disturbance rejection performance is analyzed by the following
theorems.

Theorem 1: Suppose that Assumption 1 is satisfied. The
bounded stability of system (8) under the proposed GESOBC
law (12) for any bounded h(t) and d(t) is guaranteed if the
observer gain L in (11) and the feedback control gain Kx in
(12) are selected such that Ae in (18) and Af = A + buKx

are Hurwitz matrices, respectively.
Proof : Combining system (8), composite control law (12),

with error system (17), the closed-loop system in the presence
of known states is given as

[
ẋ
ė

]
=

[
Af buK̄
0 Ae

] [
x
e

]

+
[

0 bd + buKd

−E 0

] [
h
d

]
,

(20)

where K̄ = [01×n, Kd].
Since both Af and Ae are Hurwitz matrices, it is obtained

that [
Af buK̄
0 Ae

]
,

is also Hurwitz matrix.
It can be concluded from Lemma 1 that the closed-loop

system (26) is bounded-input-bounded-output (BIBO) stable
for any bounded h(t) and d(t) if K and L are properly
selected. ¤

Theorem 2: Suppose that Assumptions 1 and 2 are satisfied,
also the observer gain L and the feedback control gain Kx

are chosen such that matrices Ae in (18), Af Hurwitz, and
coA

−1
f bu invertible. For system (8) under the control law (12),

the lumped disturbances can be attenuated from the output
channel in steady state under the proposed GESOBC law (12).

Proof : Substituting control law (12) into system (8) and
considering (16), the state is expressed as

x = (A + buKx)−1[ẋ− buKded − (buKd + bd)d]. (21)

Combining (8), (14), with (21), gives

yo = co(A + buKx)−1ẋ + co(A + buKx)−1bded. (22)

It can be observed from (22) that the lumped disturbances
are removed from the output channels. Under the given con-
ditions, the following results are obtained from Lemmas 2 and

3,
lim

t→∞
ẋ(t) = 0, lim

t→∞
e(t) = 0. (23)

Combining (22) with (23), yields

lim
t→∞

yo(t) = 0. (24)

¤
2) In the Case of Unknown States: If the state variables are

unmeasurable, the estimate of both the lumped disturbance
and states can be used for control design. In this case, the
composite control law is designed as (13). By denoting K =
[Kx, Kd], a compact expression of the control law (13) can
be obtained

u = K ˆ̄x. (25)

Theorem 3: Suppose that Assumption 1 is satisfied. The
bounded stability of system (8) under the proposed GESOBC
law (13) for any bounded h(t) and d(t) is guaranteed if the
observer gain L in (11) and the feedback control gain Kx in
(13) are selected such that Ae and Af are Hurwitz matrices,
respectively.

Proof : Combining system (8), composite control law (13),
with error system (17), the closed-loop system is written as

[
ẋ
ė

]
=

[
Af buK
0 Ae

] [
x
e

]

+
[

0 bd + buKd

−E 0

] [
h
d

]
.

(26)

Since both Af and Ae are Hurwitz matrices, it is easy to
prove that matrix [

Af buK
0 Ae

]
,

is also Hurwitz matrix. The proof is completed by using the
result in Lemma 1. ¤

Theorem 4: Suppose that Assumptions 1 and 2 are satisfied,
also the observer gain L and the feedback control gain Kx

are chosen such that matrices Ae in (18), Af Hurwitz, and
coA

−1
f bu invertible. For system (8) under control law (13),

the lumped disturbances can be attenuated from the output
channel in steady state with the proposed GESOBC law (13).

Proof : Combining (8) with (13), gives

x = (A + buKx)−1[ẋ− buKe− (buKd + bd)d]. (27)

Based on (8), (27) and (14), the output can be represented
as

yo = co(A+buKx)−1(ẋ−buKxex)+co(A+buKx)−1bded.
(28)

Considering (23), the same result as (24) can be obtained
from (28). ¤

IV. FURTHER DISCUSSIONS

A. Extension to MIMO System

For the purpose of comparison with the standard ESOBC,
only a SISO system with uncertainties in single channel is
considered in Section III. Actually, the proposed GESOBC
method is able to extend to multi-input-multi-output (MIMO)
system with almost no modification. Here the MIMO system
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may include multiple disturbances in different channels. A
general MIMO system is described as





ẋ = Ax + Buu + Bdf(x,ω(t), t),
ym = Cmx,
yo = Cox,

(29)

where x ∈ Rn, u ∈ Rm, ym ∈ Rr, yo ∈ Rp, and f ∈ Rq.
1) Solvability of the Disturbance Compensation Gain: The

disturbance compensation gain in (14) is no longer available
since Co(A+BuKx)−1Bu is possibly noninvertible or even
not a square matrix. In this case, it can be verified that an
alternative but more general condition

Co(A + BuKx)−1BuKd = −Co(A + BuKx)−1Bd, (30)

must be satisfied to guarantee the feasibility of the proposed
method.

The disturbance compensation gain Kd can be solved from
(30) if the following condition holds

rank(Co(A + BuKx)−1Bu)) =
rank([Co(A + BuKx)−1Bu,−Co(A + BuKx)−1Bd].

(31)
2) Conditions in Assumption 1: Another factor that possi-

bly influences the feasibility of the proposed GESOBC for
MIMO systems is the condition in Assumption 1 may not
be satisfied with the increased number of the lumped distur-
bances. Consider a system with multiple lumped disturbances,
depicted by





ẋ1 = x2 + f1(x1, x2, ω, t),
ẋ2 = −2x1 − x2 + u + f2(x1, x2, ω, t),
ym = x1.

(32)

It can be easily verified that (Ā, C̄m) is not observable for
(32) and the proposed GESOBC is unavailable. However, it is
also noticed that the problem becomes feasible as more output
information is accessible, which is shown by the following
example that similar with (32) but with more measurable
outputs





ẋ1 = x2 + f1(x1, x2, ω, t),
ẋ2 = −2x1 − x2 + u + f2(x1, x2, ω, t),
y1m = x1,
y2m = x2.

(33)

It can be demonstrated that (Ā, C̄m) is observable for (33)
now.

Generally speaking, besides the conditions in Assumption 1,
condition (31) should be satisfied to guarantee feasibility of
the GESOBC for MIMO system. If (Ā, C̄m) is not observable,
one may make the problem feasible by seeking more output
information.

B. Parameter Design for GESOBC

As for the proposed GESOBC method, there are mainly
three parameters, including feedback control gain Kx, ob-
server gain L, and disturbance compensation gain Kd, to be
designed. A fixed way to determine Kd has been given in (14).

The most important designing parameters are Kx and L. As
discussed in Theorems 1-4, the necessary conditions are L and

Kx should be designed to guarantee the stability of the closed-
loop system. However, these conditions are not sufficient.
The reason lies in that the lumped disturbances would be a
function of the states, which can only be estimated if the
observer dynamics is faster than the closed-loop dynamics.
The same argument for the state observer based control method
is available.

It can be found from Section III that the poles of ESO
and the closed-loop system are eigenvalues of matrix Ae =
Ā − LC̄m and Af = A + buKx, respectively. If (A, bu)
is controllable and (Ā, C̄m) is observable, the poles of both
the closed-loop system and ESO can be placed arbitrarily.

To make the observer dynamic quicker than that of the
closed-loop system, poles of ESO should be placed much more
far away from the origin than those of the closed-loop system.

V. APPLICATION EXAMPLE AND SIMULATIONS

A. A simple numerical example

To demonstrate the efficiency of the proposed GESOBC
scheme, a second-order uncertain nonlinear system with mis-
matching condition is considered





ẋ1 = x2 + ex1 + w,
ẋ2 = −2x1 − x2 + u,
y = x1.

(34)

By denoting A =
[

0 1
−2 −1

]
, bu =

[
0
1

]
, bd =

[
1
0

]
,

Cm = co = [1 0], f(x, w(t), t) = ex1 +w, it can be observed
that system (34) has the formulation of (8).
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Fig. 2. Response curves of real and estimated values of state x1.

To guarantee the convergence of ESO, the observer gain
vector in (11) is chosen as L =

[
14 −66 125

]T
such

that the related ESO poles are peso =
[ −5 −5 −5

]T
.

The feedback control gain in this example is designed as
Kx =

[ −4 −4
]
. The poles of the closed-loop system

regardless of the uncertainties are pcl =
[ −2 −3

]T
under

such feedback control gain. The disturbance compensation
gain can be calculated according to (14), giving as Kd = −5.
Considering that the states are unmeasurable, the composite
control law (13) is employed. The initial states of system (34)
are x0 =

[
1 0

]T
. The external disturbance ω = 3 acts on
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Fig. 3. Response curves of real and estimated values of state x2.
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Fig. 4. Response curves of real and estimated disturbance x3 = d.
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the system at t = 6 sec. The control objective is to remove the
uncertainties from the output channel. Here the setpoint of the
output is zero during the simulation. The response curves of
the real, estimated states and their estimate errors are shown
in the Figs. 2-4. The corresponding time history of the control
input is shown in Fig. 5.

It can be observed from Fig. 2 that the output converges
to the setpoint quickly in the presence of both uncertainties
and external disturbances. As shown in Figs. 2-4, estimation
errors of ESO converge to zero for all the states in such case
of uncertainties.

B. An application example

Disturbance rejection of a MAGnetic LEViation (MA-
GLEV) system is studied in this part. The dynamic model
of the MAGLEV system is given by [40].

1) Nonlinear Model: The complete nonlinear model for the
MAGLEV suspension system is given by,

B = Kb
I

G
, (35)

F = KfB2, (36)

dI

dt
=

Vcoil − IRc + NcApKb

G2 (dzt

dt − dZ
dt )

NcApKb

G + Lc

, (37)

d2Z

d2t
= g − Kf

Ms

I2

G2
, (38)

dG

dt
=

dzt

dt
− dZ

dt
, (39)

where variables I , zt, Z, dzt

dt , dZ
dt , G, B and F denote the

current, the rail position, the electromagnet position, the rail
vertical velocity, the electromagnet vertical velocity, the air
gap, the flux density and the force, respectively. Signal Vcoil

is the voltage of the coil. Other symbols in Eqs. (35)-(39) are
system parameters listed in Table II.

TABLE II
PARAMETERS OF MAGLEV SUSPENSION SYSTEM

Parameters Meaning Value
Ms Carriage Mass 1000kg
Fo Nominal force 9810 N
Go Nominal air gap 0.015m
Rc Coil’s Resistance 10Ω
Bo Nominal flux density 1T
Lc Coil’s Inductance 0.1H
Io Nominal current 10A
Nc Number of turns 2000
Vo Nominal voltage 100V
Ap Pole face area 0.01m2

2) Linearized MAGLEV Suspension Model: The lineariza-
tion of the MAGLEV suspension is based on small perturba-
tions around the operating points. The following definitions are
used in which the lower case letters define a small variation
around the operating point and the subscript ’o’ refers to the
operating condition.

B = Bo + b, (40)

F = Fo + f, (41)
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I = Io + i, (42)

G = Go + (zt − z), (43)

Vcoil = Vo + ucoil, (44)

Z = Zo + z. (45)

The linearized state-space equation of the MAGLEV sus-
pension model is expressed as





ẋ = Ax + Buu + Bdd,
ym = Cmx,
yo = cox,

(46)

where the states are the linearized current, vertical electro-
magnet velocity and air gap, i.e., x = [i ż (zt − z)]T , the
input u = ucoil is the voltage, the track input d = żt is
the rail vertical velocity. Suppose that the measurable outputs
are the air gap and the vertical velocity, i.e., ym1 = zt − z,
ym2 = ż. The controlled variable is the variation of air gap,
i.e., y = zt − z. The detailed linearization procedure can be
found in [40], here the state matrix A, the input matrix Bu,
the disturbance matrix Bd, the output matrices Cm and co are
given directly

A =




−Rc

Lc+KbNc
Ap
Go

−KbNcApIo

G2
o(Lc+KbNc

Ap
Go

)
0

−2Kf
Io

MsG2
o

0 2Kf
I2

o

MsG3
o

0 −1 0


 ,

(47)

Bu =




1

Lc + KbNc
Ap

Go

0
0


 , (48)

Bd =




KbNcApIo

G2
o(Lc + KbNc

Ap

Go
)

0
1


 , (49)

Cm =
[

0 0 1
0 1 0

]
, (50)

co =
[

0 0 1
]
. (51)

The major external disturbance in MAGLEV system is the
deterministic inputs to the suspension in the vertical direction.
Such deterministic inputs are the transitions onto the track
gradients. The deterministic input components considered here
are referred to [40] and shown in Fig. 6. They represent a
gradient of 5% at a vehicle speed of 15 m/s while the jerk
level is 1 m/s3.

It can be observed from Eqs. (46), (48) and (49) that
the disturbances enter the system via different channel from
that of the control input. In other words, the disturbances
in the MAGLEV system are mismatching ones. The control
specifications of the MAGLEV system under consideration of
the deterministic track input are given in Table III [40].
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Fig. 6. Track input to the suspension with a vehicle speed of 15 m/s and
5% gradient.

TABLE III
CONSTRAINTS FOR MAGLEV SUSPENSION SYSTEM

Constraints Value
Maximum air gap deviation, ((zt − z)p) ≤0.0075m
Maximum input coil voltage, ((ucoil)p) ≤300V(3IoRc)
Settling time, (ts) ≤3s
Air gap steady state error, ((zt − z)ess ) =0

In the proposed GESOBC method, the observer gain is
chosen as

L =




79516 −2370
62.3 125.2
130 −1
4000 0


 . (52)

The feedback control gain is designed as Kx =[ −60.6 591 40061
]
. The disturbance compensation gain

can be calculated according to (14), giving as Kd = −591.2.
Response curves of both the output and input of the suspen-

sion system under the proposed GESOBC method are shown
in Fig. 7. Response curves of the corresponding states are
shown in Fig. 8. The disturbance and its estimate are shown
in Fig. 9.

It can be observed from Fig. 7(a) that the maximum air
gap deviation is less than 0.005m, the settling time is shorter
than 2.4s and there is no steady-state error. All of these
performances satisfy the design requirements listed in Table
III. As shown in Fig. 7(b), the maximum input voltage in
such case is about 30V . Response curves in Fig. 8 show
that both the current and the vertical electromagnet velocity
vary smoothly and approach to the desired equilibrium points
quickly. As shown in Fig. 9, the ESO can estimate the
disturbance timely and accurately. The results demonstrate
that the proposed GESOBC method has achieved satisfying
performance in rejecting such practical disturbance.

VI. CONCLUSION

The standard extended state observer based control (ES-
OBC) method is only available for a class of single-input-
single-output (SISO) integral chain systems with distur-
bances/uncertainties satisfying the so called matching condi-
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Fig. 7. Response curves of the input and output in the presence of
deterministic track input: (a) the air gap, zt − z, (b) voltage of the coil,
ucoil.

tion. By appropriately developing a disturbance compensation
gain, a generalized extended state observer based control
(GESOBC) method has been proposed for general systems
with mismatched uncertainties and non-integral-chain form.
The proposed method can be extended to multi-input-multi-
output (MIMO) systems with almost no modification. Both
numerical and application examples have been designed and
simulated to demonstrate the feasibility and efficiency of the
proposed method.

APPENDIX

A. Detailed Interpretation of Remark 3

The observability matrices of (A,Cm) and (Ā, C̄m) are

Po =




Cm

CmA
...
CmAn−1


 , (53)

(a)
0 1 2 3 4 5 6

−1

0

1

2

3

4

Time (sec)

C
ur

re
nt

, A

(b)
0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

Time (sec)

V
er

tic
al

 v
el

os
ity

, m
/s

Fig. 8. Response curves of the states in the presence of deterministic track
input: (a) the current, i, (b) the vertical electromagnet velocity, ż.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

Time, sec

D
is

tu
rb

an
ce

 a
nd

 e
st

im
at

ed
 v

al
ue

 

 

Real value
Estimated value

Fig. 9. Curves of the disturbance and its estimated value.
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and

P̄o =




Cm 0
CmA Cmbd

CmA2 CmAbd

...
...

CmAn−1 CmAn−2bd

CmAn CmAn−1bd




. (54)

Assume that (A,Cm) is not observable. Without loss of
generality, CmAn−1 in matrix Po can be expressed as

CmAn−1 = λ1Cm + λ2CmA + · · ·+ λn−1CmAn−2, (55)

where λi(i = 1, · · · , n− 1) are constant coefficients.
Combining (54) with (55), gives

[
CmAn CmAn−1bd

]
= λ1 [CmA Cmbd]
+ λ2

[
CmA2 CmAbd

]
+ · · ·

+ λn−1

[
CmAn−1 CmAn−2bd

]
.

(56)
From (54) and (56), it can be derived that rank(P̄o) < n. ¤

B. Proof of Lemma 2

According to Final-value Theorem [39], if all poles of
sX(s) lie in the left half s plane, lim

t→∞
x(t) exists. Since u(t)

is bounded and satisfies lim
t→∞

u(t) = 0, all poles of sU(s) lie

in the left half s plane. In addition, all poles of (sI − A)−1

also lie in the left half s plane since A is a Hurwitz matrix. To
this end, all poles of sX(s) lie in the left half s plane. Thus,
lim

t→∞
x(t) exists.

Using Final-value theorem, yields

lim
t→∞

x(t) = lim
s→0

sX(s)

= lim
s→0

s(sI −A)−1U(s)

= lim
s→0

(sI −A)−1 · lim
s→0

sU(s)

= lim
s→0

(sI −A)−1 · lim
t→∞

u(t).

(57)

Since A is a Hurwitz matrix, lim
s→0

(sI−A)−1 is bounded. Using
the condition lim

t→∞
u(t) = 0, it can be obtained from (57) that

lim
t→∞

x(t) = 0. (58)
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