
Generalized File System Dependencies

C hr i stopher Fr ost ∗ Mike Mammarella∗ Eddi e Kohl er ∗

Andrew de los Reyes† Shant Hovsepian∗ Andrew Matsuoka‡ Lei Zhang†
∗UCLA †Google ‡UT Austin
http://featherstitch.cs.ucla.edu/

Abstract
Reliable storage systems depend in part on “write-before” relation-
ships where some changes to stable storage are delayed until other
changes commit. A journaled file system, for example, must com-
mit a journal transaction before applying that transaction’s changes,
and soft updates [9] and other consistency enforcement mecha-
nisms have similar constraints, implemented in each case in system-
dependent ways. We present a general abstraction, the patch, that
makes write-before relationships explicit and file system agnostic.
A patch-based file system implementation expresses dependencies
among writes, leaving lower system layers to determine write or-
ders that satisfy those dependencies. Storage system modules can
examine and modify the dependency structure, and generalized file
system dependencies are naturally exportable to user level. Our
patch-based storage system, Featherstitch, includes several impor-
tant optimizations that reduce patch overheads by orders of mag-
nitude. Our ext2 prototype runs in the Linux kernel and supports
asynchronous writes, soft updates-like dependencies, and journal-
ing. It outperforms similarly reliable ext2 and ext3 configurations
on some, but not all, benchmarks. It also supports unusual configu-
rations, such as correct dependency enforcement within a loopback
file system, and lets applications define consistency requirements
without micromanaging how those requirements are satisfied.

Categories and Subject Descriptors: D.4.3 [Operating Sys-
tems]: File Systems Management; D.4.5 [Operating Systems]:
Reliability—Fault-tolerance; D.4.7 [Operating Systems]: Orga-
nization and Design
General Terms: Design, Performance, Reliability
Keywords: dependencies, journaling, file systems, soft updates

1 Introduction
Write-before relationships, which require that some changes be
committed to stable storage before others, underlie every mecha-
nism for ensuring file system consistency and reliability from jour-
naling to synchronous writes. Featherstitch is a complete storage
system built on a concrete form of these relationships, a simple,
uniform, and file system agnostic data type called the patch. Feath-
erstitch’s API design and performance optimizations make patches
a promising implementation strategy as well as a useful abstraction.

A patch represents both a change to disk data and any dependen-
cies between that change and other changes. Patches were initially

§Contact authors.
This work was completed while all authors were at UCLA.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’07, October 14–17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010 . . . $5.00.

inspired by BSD’s soft updates dependencies [9], but whereas soft
updates implement a particular type of consistency and involve many
structures specific to the UFS file system [18], patches are fully gen-
eral, specifying only how a range of bytes should be changed. This
lets file system implementations specify a write-before relationship
between changes without dictating a write order that honors that
relationship. It lets storage system components examine and mod-
ify dependency structures independent of the file system’s layout,
possibly even changing one type of consistency into another. It also
lets applications modify patch dependency structures, thus defining
consistency policies for the underlying storage system to follow.

A uniform and pervasive patch abstraction may simplify imple-
mentation, extension, and experimentation for file system consis-
tency and reliability mechanisms. File system implementers cur-
rently find it difficult to provide consistency guarantees [18, 34]
and implementations are often buggy [40, 41], a situation fur-
ther complicated by file system extensions and special disk inter-
faces [5, 20, 23, 28, 30, 32, 38]. File system extension techniques
such as stackable file systems [10, 24, 42, 43] leave consistency
up to the underlying file system; any extension-specific ordering
requirements are difficult to express at the VFS layer. Although
maintaining file system correctness in the presence of failures is
increasingly a focus of research [7, 29], other proposed systems for
improving file system integrity differ mainly in the kind of consis-
tency they aim to impose, ranging from metadata consistency to full
data journaling and full ACID transactions [8, 16, 37]. Some users,
however, implement their own end-to-end reliability for some data
and prefer to avoid any consistency slowdowns in the file system
layer [36]. Patches can represent all these choices, and since they
provide a common language for file systems and extensions to dis-
cuss consistency requirements, even combinations of consistency
mechanisms can comfortably coexist.

Applications likewise have few mechanisms for controlling
buffer cache behavior in today’s systems, and robust applications,
including databases, mail servers, and source code management
tools, must choose between several mediocre options. They can ac-
cept the performance penalty of expensive system calls like fsync
and sync or use tedious and fragile sequences of operations that as-
sume particular file system consistency semantics. Patchgroups, our
example user-level patch interface, export to applications some of
patches’ benefits for kernel file system implementations and exten-
sions. Modifying an IMAP mail server to use patchgroups required
only localized changes. The result both meets IMAP’s consistency
requirements on any reasonable patch-based file system and avoids
the performance hit of full synchronization.

Production file systems use system-specific optimizations to
achieve consistency without sacrificing performance; we had to im-
prove performance in a general way. A naive patch-based storage
system scaled terribly, spending far more space and time on depen-
dency manipulation than conventional systems. However, optimiza-
tions reduced patch memory and CPU overheads significantly. A
PostMark test that writes approximately 3.2 GB of data allocates

297307

http://featherstitch.cs.ucla.edu/

75 MB of memory throughout the test to store patches and soft
updates-like dependencies, less than 3% of the memory used for file
system data and about 1% of that required by unoptimized Feather-
stitch. Room for improvement remains, particularly in system time,
but Featherstitch outperforms equivalent Linux configurations on
many of our benchmarks; it is at most 30% slower on others.

Our contributions include the patch model and design, our opti-
mizations for making patches more efficient, the patchgroup mech-
anism that exports patches to applications, and several individual
Featherstitch modules, such as the journal.

In this paper, we describe patches abstractly, state their behavior
and safety properties, give examples of their use, and reason about
the correctness of our optimizations. We then describe the Feather-
stitch implementation, which is decomposed into pluggable mod-
ules, hopefully making it configurable, extensible, and relatively
easy to understand. Finally, our evaluation compares Featherstitch
and Linux-native file system implementations, and we conclude.

2 Related Work
Most modern file systems protect file system integrity in the face of
possible power failure or crashes via journaling, which groups op-
erations into transactions that commit atomically [26]. The content
and the layout of the journal vary in each implementation, but in
all cases, the system can use the journal to replay (or roll back) any
transactions that did not complete due to the shutdown. A recovery
procedure, if correct [40], avoids time-consuming file system checks
on post-crash reboot in favor of simple journal operations.

Soft updates [9] is another important mechanism for ensuring
post-crash consistency. Carefully managed write orderings avoid
the need for synchronous writes to disk or duplicate writes to a
journal; only relatively harmless inconsistencies, such as leaked
blocks, are allowed to appear on the file system. As in journaling,
soft updates can avoid fsck after a crash, although a background fsck
is required to recover leaked storage.

Patches naturally represent both journaling and soft updates, and
we use them as running examples throughout the paper. In each
case, our patch implementation extracts ad hoc orderings and op-
timizations into general dependency graphs, making the orderings
potentially easier to understand and modify. Soft updates is in some
ways a more challenging test of the patch abstraction: its dependen-
cies are more variable and harder to predict, it is widely considered
difficult to implement, and the existing FreeBSD implementation is
quite optimized [18]. We therefore frequently discuss soft updates-
like dependencies. This should not be construed as a wholesale en-
dorsement of soft updates, which relies on a property (atomic block
writes) that many disks do not provide, and which often requires
more seeks than journaling despite writing less data.

Although patches were designed to represent any write-before
relationship, implementations of other consistency mechanisms,
such as shadow paging-style techniques for write anywhere file
layouts [11] or ACID transactions [37], are left for future work.

CAPFS [35] and Echo [17] considered customizable application-
level consistency protocols in the context of distributed, parallel file
systems. CAPFS allows application writers to design plug-ins for a
parallel file store that define what actions to take before and after
each client-side system call. These plug-ins can enforce additional
consistency policies. Echo maintains a partial order on the locally
cached updates to the remote file system, and guarantees that the
server will store the updates accordingly; applications can extend
the partial order. Both systems are based on the principle that not
providing the right consistency protocol can cause unpredictable
failures, yet enforcing unnecessary consistency protocols can be

extremely expensive. Featherstitch patchgroups generalize this sort
of customizable consistency and brings it to disk-based file systems.

A similar application interface to patchgroups is explored in Sec-
tion 4 of Burnett’s thesis [4]. However, the methods used to imple-
ment the interfaces are very different: Burnett’s system tracks de-
pendencies among system calls, associates dirty blocks with unique
IDs returned by those calls, and duplicates dirty blocks when nec-
essary to preserve ordering. Featherstitch tracks individual changes
to blocks internally, allowing kernel modules a finer level of con-
trol, and only chooses to expose a user space interface similar to
Burnett’s as a means to simplify the sanity checking required of
arbitrary user-submitted requests. Additionally, our evaluation uses
a real disk rather than trace-driven simulations.

Dependencies have been used in BlueFS [21] and xsyncfs [22]
to reduce the aggregate performance impact of strong consistency
guarantees. Xsyncfs’s external synchrony provides users with the
same consistency guarantees as synchronous writes. Application
writes are not synchronous, however. They are committed in groups
using a journaling design, but additional write-before relationships
are enforced on non-file system communication: a journal transac-
tion must commit before output from any process involved in that
transaction becomes externally visible via, for example, the termi-
nal or a network connection. Dependency relationships are tracked
across IPC as well. Featherstitch patches could be used to link file
system behavior and xsyncfs process dependencies, or to define
cross-network dependencies as in BlueFS; this would remove, for
instance, xsyncfs’s reliance on ext3. Conversely, Featherstitch ap-
plications could benefit from the combination of strict ordering and
nonblocking writes provided by xsyncfs. Like xsyncfs, stackable
module software for file systems [10, 24, 31, 38, 39, 42, 43] and
other extensions to file system and disk interfaces [12, 27] might
benefit from a patch-like mechanism that represented write-before
relationships and consistency requirements agnostically.

Some systems have generalized a single consistency mechanism.
Linux’s ext3 attempted to make its journaling layer a reusable com-
ponent, although only ext3 itself uses it. XN enforces a variant of soft
updates on any associated library file system, but still requires that
those file systems implement soft updates again themselves [13].

Featherstitch adds to this body of work by designing a primitive
that generalizes and makes explicit the write-before relationship
present in many storage systems, and implementing a storage system
in which that primitive is pervasive throughout.

3 Patch Model
Every change to stable storage in a Featherstitch system is repre-
sented by a patch. This section describes the basic patch abstraction
and describes our implementation of that abstraction.

3.1 Disk Behavior
We first describe how disks behave in our model, and especially how
disks commit patches to stable storage. Although our terminology
originates in conventional disk-based file systems with uniformly-
sized blocks, the model would apply with small changes to file
systems with non-uniform blocks and to other media, including
RAID and network storage.

We assume that stable storage commits data in units called
blocks. All writes affect one or more blocks, and it is impossi-
ble to selectively write part of a block. In disk terms, a block is a
sector or, for file system convenience, a few contiguous sectors.

A patch models any change to block data. Each patch applies to
exactly one block, so a change that affects n blocks requires at least n
patches to represent. Each patch is either committed, meaning writ-
ten to disk; uncommitted, meaning not written to disk; or in flight,

298308

p a patch
blk[p] patch p’s block

C,U,F the sets of all committed, uncommitted, and in-flight
patches, respectively

CB,UB,FB committed/uncommitted/in-flight patches on block B

q � p q depends on p (p must be written before q)
dep[p] p’s dependencies: {x | p � x}
q → p q directly depends on p

(q � p means either q → p or ∃x : q � x → p)
ddep[p] p’s direct dependencies: {x | p → x}

Figure 1: Patch notation.

meaning in the process of being written to disk. The intermediate in-
flight state models reordering and delay in lower storage layers; for
example, modern disks often cache writes to add opportunities for
disk scheduling. Patches are created as uncommitted. The operating
system moves uncommitted patches to the in-flight state by writing
their blocks to the disk controller. Some time later, the disk writes
these blocks to stable storage and reports success; when the oper-
ating system receives this acknowledgment, it commits the relevant
patches. Committed patches stay committed permanently, although
their effects can be undone by subsequent patches. The sets C, U,
and F represent all committed, uncommitted, and in-flight patches,
respectively.

Patch p’s block is written blk[p]. Given a block B, we write
CB for the set of committed patches on that block, or in notation
CB = {p ∈ C | blk[p] = B}. FB and UB are defined similarly.

Disk controllers in this model write in-flight patches one block
at a time, choosing blocks in an arbitrary order. In notation:

1. Pick some block B with FB �= ∅.
2. Write block B and acknowledge each patch in FB.
3. Repeat.

Disks perform better when allowed to reorder requests, so operating
systems try to keep many blocks in flight. A block write will gener-
ally put all of that block’s uncommitted patches in flight, but a file
system may, instead, write a subset of those patches, leaving some
of them in the uncommitted state. As we will see, this is sometimes
required to preserve write-before relationships.

We intentionally do not specify whether the storage system writes
blocks atomically. Some file system designs, such as soft updates,
rely on block write atomicity, where if the disk fails while a block B
is in flight, B contains either the old data or the new data on recovery.
Many journal designs do not require this, and include recovery pro-
cedures that handle in-flight block corruption—for instance, if the
memory holding the new value of the block loses coherence before
the disk stops writing [33]. Since patches model the write-before
relationships underlying these journal designs, patches do not pro-
vide block atomicity themselves, and a patch-based file system with
soft updates-like dependencies should be used in conjunction with
a storage layer that provides block atomicity. (This is no different
from other soft updates implementations.)

3.2 Dependencies
A patch-based storage system implementation represents write-
before relationships using an explicit dependency relation. The
disk controller and lower layers don’t understand dependencies; in-
stead, the system maintains dependencies and passes blocks to the
controller in an order that preserves dependency semantics. Patch q
depends on patch p, written q � p, when the storage system must
commit q either after p or at the same time as p. (Patches can be
committed simultaneously only if they are on the same block.) A file

system should create dependencies that express its desired consis-
tency semantics. For example, a file system with no durability guar-
antees might create patches with no dependencies at all; a file system
wishing to strictly order writes might set pn � pn−1 � · · · � p1.
Circular dependencies among patches cannot be resolved and are
therefore errors; for example, neither p nor q could be written first if
p � q � p. (Although a circular dependency chain entirely within
a single block would be acceptable, Featherstitch treats all circu-
lar chains as errors.) Patch p’s set of dependencies, written dep[p],
consists of all patches on which p depends; dep[p] = {x | p � x}.
Given a set of patches P, we write dep[P] to mean the combined
dependency set

⋃
p∈P dep[p].

The disk safety property formalizes dependency requirements
by stating that the dependencies of all committed patches have also
been committed:

dep[C] ⊆ C.

Thus, no matter when the system crashes, the disk is consistent in
terms of dependencies. Since, as described above, the disk controller
can write blocks in any order, a Featherstitch storage system must
also ensure the independence of in-flight blocks. This is precisely
stated by the in-flight safety property:

For any block B, dep[FB] ⊆ C∪FB.

This implies that dep[FB]∩dep[FB′]⊆ C for any B′ �= B, so the disk
controller can write in-flight blocks in any order and still preserve
disk safety. To uphold the in-flight safety property, the buffer cache
must write blocks as follows:

1. Pick some block B with UB �= ∅ and FB = ∅.
2. Pick some P ⊆ UB with dep[P] ⊆ P∪C.
3. Move each p ∈ P to F (in-flight).

The requirement that FB = ∅ ensures that at most one version of a
block is in flight at any time. Also, the buffer cache must eventually
write all dirty blocks, a liveness property.

The main Featherstitch implementation challenge is to design
data structures that make it easy to create patches and quick to
manipulate patches, and that help the buffer cache write blocks and
patches according to the above procedure.

3.3 Dependency Implementation
The write-before relationship is transitive, so if r � q and q � p,
there is no need to explicitly store an r � p dependency. To reduce
storage requirements, a Featherstitch implementation maintains a
subset of the dependencies called the direct dependencies. Each
patch p has a corresponding set of direct dependencies ddep[p]; we
say q directly depends on p, and write q→ p, when p∈ ddep[q]. The
dependency relation q � p means that either q → p or q � x → p
for some patch x.

Featherstitch maintains each block in its dirty state, including
the effects of all uncommitted patches. However, each patch carries
undo data, the previous version of the block data altered by the
patch. If a patch p is not written with its containing block, the buffer
cache reverts the patch, which swaps the new data on the buffered
block and the previous version in the undo data. Once the block
is written, the system will re-apply the patch and, when allowed,
write the block again, this time including the patch. Some undo
mechanism is required to break potential block-level dependency
cycles, as shown in the next section. We considered alternate de-
signs, such as maintaining a single “old” version of the block, but
per-patch undo data gives file systems the maximum flexibility to
create patch structures. However, many of our optimizations avoid
storing unnecessary undo data, greatly reducing memory usage and
CPU utilization.

Figure 1 summarizes our patch notation.

299309

d

i

i′

b

bitmap block

inode block

data block

alloc block

clear data

attach block

set size

d

i

i′

b

i2

b2

bitmap block

inode block

data block

alloc
free

block

clear data

attach

size

erase
inode

cmt

dJ iJ

bJ

Journal

journaled
data block

journaled
inode block

journaled
bitmap block

commit/completion
record

bitmap block

inode block

data block

cmp

b

i

i′

d

alloc block

clear data

attach

size

a) Adding a block (soft updates) b) . . . plus removing a file c) Adding a block (journaling)

Figure 2: Example patch arrangements for an ext2-like file system. Circles represent patches, shaded boxes represent disk blocks, and arrows represent
direct dependencies. a) A soft updates order for appending a zeroed-out block to a file. b) A different file on the same inode block is removed before
the previous changes commit, inducing a circular block dependency. c) A journal order for appending a zeroed-out block to a file.

3.4 Examples
This section illustrates patch implementations of two widely-used
file system consistency mechanisms, soft updates and journaling.
Our basic example extends an existing file by a single block—
perhaps an application calls ftruncate to append 512 zero bytes
to an empty file. The file system is based on Linux’s ext2, an FFS-
like file system with inodes and a free block bitmap. In such a
file system, extending a file by one block requires (1) allocating
a block by marking the corresponding bit as “allocated” in the
free block bitmap, (2) attaching the block to the file’s inode, (3)
setting the inode’s size, and (4) clearing the allocated data block.
These operations affect three blocks—a free block bitmap block, an
inode block, and a data block—and correspond to four patches: b
(allocate), i (attach), i′ (size), and d (clear).

Soft updates Early file systems aimed to avoid post-crash disk
inconsistencies by writing some, or all, blocks synchronously. For
example, the write system call might block until all metadata writes
have completed—clearly bad for performance. Soft updates pro-
vides post-crash consistency without synchronous writes by track-
ing and obeying necessary dependencies among writes. A soft up-
dates file system orders its writes to enforce three simple rules for
metadata consistency [9]:

1. “Never write a pointer to a structure until it has been initial-
ized (e.g., an inode must be initialized before a directory entry
references it).”

2. “Never reuse a resource before nullifying all previous pointers
to it.”

3. “Never reset the last pointer to a live resource before a new
pointer has been set.”

By following these rules, a file system limits possible disk incon-
sistencies to leaked resources, such as blocks or inodes marked as
in use but unreferenced. The file system can be used immediately
on reboot; a background scan can locate and recover the leaked
resources while the system is in use.

These rules map directly to Featherstitch. Figure 2a shows a set
of soft updates-like patches and dependencies for our block-append
operation. Soft updates Rule 1 requires that i → b. Rule 2 requires
that d depend on the nullification of previous pointers to the block;
a simple, though more restrictive, way to accomplish this is to let
d → b, where b depends on any such nullifications (there are none
here). The dependencies i → d and i′ → d provide an additional
guarantee above and beyond metadata consistency, namely that no
file ever contains accessible uninitialized data. Unlike Featherstitch,

the BSD UFS soft updates implementation represents each UFS
operation by a different specialized structure encapsulating all of
that operation’s disk changes and dependencies. These structures,
their relationships, and their uses are quite complex [18].

Figure 2b shows how an additional file system operation can
induce a circular dependency among blocks. Before the changes in
Figure 2a commit, the user deletes a one-block file whose data block
and inode happen to lie on the bitmap and inode blocks used by the
previous operation. Rule 2 requires the dependency b2 → i2; but
given this dependency and the previous i → b, neither the bitmap
block nor the inode block can be written first! Breaking the cycle
requires rolling back one or more patches, which in turn requires
undo data. For example, the system might roll back b2 and write
the resulting bitmap block, which contains only b. Once this write
commits, all of i, i′, and i2 are safe to write; and once they commit,
the system can write the bitmap block again, this time including b2.

Journal transactions A journaling file system ensures post-crash
consistency using a write-ahead log. All changes in a transaction
are first copied into an on-disk journal. Once these copies commit, a
commit record is written to the journal, signaling that the transaction
is complete and all its changes are valid. Once the commit record is
written, the original changes can be written to the file system in any
order, since after a crash the system can replay the journal transaction
to recover. Finally, once all the changes have been written to the file
system, the commit record can be erased, allowing that portion of
the journal to be reused.

This process also maps directly to patch dependencies, as shown
in Figure 2c. Copies of the affected blocks are written into the journal
area using patches dJ, iJ, and bJ, each on its own block. Patch cmt
creates the commit record on a fourth block in the journal area; it
depends on dJ, iJ, and bJ. The changes to the main file system all
depend on cmt. Finally, patch cmp, which depends on the main file
system changes, overwrites the commit record with a completion
record. Again, a circular block dependency requires the system to
roll back a patch, namely cmp, and write the commit/completion
block twice.

3.5 Patch Implementation
Our Featherstitch file system implementation creates patch struc-
tures corresponding directly to this abstraction. Functions like
patch_create_byte create patches; their arguments include the
relevant block, any direct dependencies, and the new data. Most
patches specify this data as a contiguous byte range, including an
offset into the block and the patch length in bytes. The undo data for

300310

very small patches (4 bytes or less) is stored in the patch structure
itself; for larger patches, undo data is stored in separately allocated
memory. In bitmap blocks, changes to individual bits in a word can
have independent dependencies, which we handle with a special
bit-flip patch type.

The implementation automatically detects one type of depen-
dency. If two patches q and p affect the same block and have over-
lapping data ranges, and q was created after p, then Featherstitch
adds an overlap dependency q → p to ensure that q is written after
p. File systems need not detect such dependencies themselves.

For each block B, Featherstitch maintains a list of all patches with
blk[p] = B. However, committed patches are not tracked; when patch
p commits, Featherstitch destroys p’s data structure and removes all
dependencies q → p. Thus, a patch whose dependencies have all
committed appears like a patch with no dependencies at all. Each
patch p maintains doubly linked lists of its direct dependencies and
“reverse dependencies” (that is, all q where q → p).

The implementation also supports empty patches, which have no
associated data or block. For example, during a journal transaction,
changes to the main body of the disk should depend on a journal
commit record that has not yet been created. Featherstitch makes
these patches depend on an empty patch that is explicitly held in
memory. Once the commit record is created, the empty patch is
updated to depend on the actual commit record and then released.
The empty patch automatically commits at the same time as the
commit record, allowing the main file system changes to follow.
Empty patches can shrink memory usage by representing quadratic
sets of dependencies with a linear number of edges: if all m patches
in Q must depend on all n patches in P, one could add an empty patch
e and m +n direct dependencies qi → e and e → p j. This is useful
for patchgroups; see Section 5. However, extensive use of empty
patches adds to system time by requiring that functions traverse
empty patch layers to find true dependencies. Our implementation
uses empty patches infrequently, and in the rest of this paper, patches
are nonempty unless explicitly stated.

3.6 Discussion
The patch abstraction places only one substantive restriction on its
users, namely, that circular dependency chains are errors. This re-
striction arises from the file system context: Featherstitch assumes
a lower layer that commits one block at a time. Disks certainly
behave this way, but a dependency tracker built above a more ad-
vanced lower layer—such as a journal—could resolve many circu-
lar dependency chains by forcing the relevant blocks into a single
transaction or transaction equivalent. Featherstitch’s journal mod-
ule could potentially implement this, allowing upper layers to create
(size-limited) circular dependency chains, but we leave the imple-
mentation for future work.

Patches model write-before relationships, but one might instead
build a generalized dependency system that modeled abstract trans-
actions. We chose write-before relationships as our foundation since
they minimally constrain file system disk layout.

4 Patch Optimizations
Figure 3a shows the patches generated by a naive Featherstitch im-
plementation when an application appends 16 kB of data to an ex-
isting empty file using four 4 kB writes. The file system is ext2 with
soft updates-like dependencies and 4 kB blocks. Four blocks are
allocated (patches b1–b4), written (d1–d4 and d′

1–d′
4), and attached

to the file’s inode (i1–i4); the inode’s file size and modification time
are updated (i′1–i′4 and i′′); and changes to the “group descriptor”
and superblock account for the allocated blocks (g and s). Each
application write updates the inode; note, for example, how overlap

dependencies force each modification of the inode’s size to depend
on the previous one. A total of eight blocks are written during the
operation. Unoptimized Featherstitch, however, represents the op-
eration with 23 patches and roughly 33,000 (!) bytes of undo data.
The patches slow down the buffer cache system by making graph
traversals more expensive. Storing undo data for patches on data
blocks is particularly painful here, since they will never need to be
reverted. And in larger examples, the effects are even worse. For
example, when 256 MB of blocks are allocated in the untar bench-
mark described in Section 8, unoptimized Featherstitch allocates an
additional 533 MB, mostly for patches and undo data.

This section presents optimizations based on generic dependency
analysis that reduce these 23 patches and 33,000 bytes of undo data
to the 8 patches and 0 bytes of undo data in Figure 3d. Additional
optimizations simplify Featherstitch’s other main overhead, the CPU
time required for the buffer cache to find a suitable set of patches to
write. These optimizations apply transparently to any Featherstitch
file system, and as we demonstrate in our evaluation, have dramatic
effects on real benchmarks as well; for instance, they reduce memory
overhead in the untar benchmark from 533 MB to just 40 MB.

4.1 Hard Patches
The first optimization reduces space overhead by eliminating undo
data. When a patch p is created, Featherstitch conservatively detects
whether p might require reversion: that is, whether any possible fu-
ture patches and dependencies could force the buffer cache to undo
p before making further progress. If no future patches and depen-
dencies could force p’s reversion, then p does not need undo data,
and Featherstitch does not allocate any. This makes p a hard patch:
a patch without undo data. The system aims to reduce memory us-
age by making most patches hard. The challenge is to detect such
patches without an oracle for future dependencies.

(Since a hard patch h cannot be rolled back, any other patch on its
block effectively depends on it. We represent this explicitly using,
for example, overlap dependencies, and as a result, the buffer cache
will write all of a block’s hard patches whenever it writes the block.)

We now characterize one type of patch that can be made hard.
Define a block-level cycle as a dependency chain of uncommit-
ted patches pn � · · · � p1 where the ends are on the same block
blk[pn] = blk[p1], and at least one patch in the middle is on a dif-
ferent block blk[pi] �= blk[p1]. The patch pn is called the head of
the block-level cycle. Now assume that a patch p ∈ U is not the
head of any block-level cycle. One can then show that the buffer
cache can write at least one patch without rolling back p. This is
trivially possible if p itself is ready to write. If it is not, then p must
depend on some uncommitted patch x on a different block. How-
ever, we know that x’s uncommitted dependencies, if any, are all on
blocks other than p’s; otherwise there would be a block-level cycle.
Since Featherstitch disallows circular dependencies, every chain of
dependencies starting at x has finite length, and therefore contains
an uncommitted patch y whose dependencies have all committed.
(If y has in-flight dependencies, simply wait for the disk controller
to commit them.) Since y is not on p’s block, the buffer cache can
write y without rolling back p.

Featherstitch may thus make a patch hard when it can prove that
patch will never be the head of a block-level cycle. Its proof strat-
egy has two parts. First, the Featherstitch API restricts the creation
of block-level cycles by restricting the creation of dependencies: a
patch’s direct dependencies are all supplied at creation time. Once
p is created, the system can add new dependencies q → p, but will
never add new dependencies p → q.1 Since every patch follows this

1The actual rule is somewhat more flexible: modules may add new
direct dependencies if they guarantee that those dependencies don’t pro-

301311

inode block data blocks bitmap block

i1

i2

i3

i4

i′1

i′2

i′3

i′4

d′
1

d′
2

d′
3

d′
4

d1

d2

d3

d4

b1

b2

b3

b4

i′′

g

s

set size

attach block

set mtime

write data clear data
alloc block

group desc
block

superblock

a) Naive implementation

i1

i2

i3

i4

i′1

i′2

i′3

i′4

d′
1

d′
2

d′
3

d′
4

d1

d2

d3

d4

b1

b2

b3

b4

i′′

g

s

b) With hard patches . . .

i1−4 + i′1−4
+i′′

d′
1

d′
2

d′
3

d′
4

d1

d2

d3

d4

b1

b2

b3

b4

g

s

c) . . . plus hard patch merging . . .

i1−4 + i′1−4
+i′′

d1 +d′
1

d2 +d′
2

d3 +d′
3

d4 +d′
4

b1. . . 4

g

s

d) . . . plus overlap merging

Figure 3: Patches required to append 4 blocks to an existing file, without
and with optimization. Hard patches are shown with heavy borders.

rule, all possible block-level cycles with head p are present in the
dependency graph when p is created. Featherstitch must still check
for these cycles, of course, and actual graph traversals proved expen-
sive. We thus implemented a conservative approximation. Patch p is
created as hard if no patches on other blocks depend on uncommit-
ted patches on blk[p]—that is, if for all y � x with x an uncommitted
patch on p’s block, y is also on p’s block. If no other block depends
on p’s, then clearly p can’t head up a current block-level cycle no
matter its dependencies. This heuristic works well in practice and,
given some bookkeeping, takes O(1) time to check.

Applying hard patch rules to our example makes 16 of the 23
patches hard (Figure 3b), reducing the undo data required by slightly
more than half.

4.2 Hard Patch Merging
File operations such as block allocations, inode updates, and direc-
tory updates create many distinct patches. Keeping track of these
patches and their dependencies requires memory and CPU time.
Featherstitch therefore merges patches when possible, drastically
reducing patch counts and memory usage, by conservatively iden-
tifying when a new patch could always be written at the same time
as an existing patch. Rather than creating a new patch in this case,
Featherstitch updates data and dependencies to merge the new patch
into the existing one.

Two types of patch merging involve hard patches, and the first
is trivial to explain: since all of a block’s hard patches must be
written at the same time, they can always be merged. Featherstitch
ensures that each block contains at most one hard patch. If a new
patch p could be created as hard and p’s block already contains a
hard patch h, then the implementation merges p into h by applying
p’s data to the block and setting ddep[h] ← ddep[h]∪ddep[p]. This
changes h’s direct dependency set after h was created, but since p
could have been created hard, the change cannot introduce any new
block-level cycles. Unfortunately, the merge can create intra-block
cycles: if some empty patch e has p � e � h, then after the merge
h � e � h. Featherstitch detects and prunes any cyclic dependencies
during the merge. Hard patch merging is able to eliminate 8 of the
patches in our running example, as shown in Figure 3c.

Second, Featherstitch detects when a new hard patch can be
merged with a block’s existing soft patches. Block-level cycles may
force a patch p to be created as soft. Once those cycles are broken
(because the relevant patches commit), p could be converted to hard;
but to avoid unnecessary work, Featherstitch delays the conversion,
performing it only when it detects that a new patch on p’s block
could be created hard. Figure 4 demonstrates this using soft updates-
like dependencies. Consider a new hard patch h added to a block
that contains some soft patch p. Since h is considered to overlap
p, Featherstitch adds a direct dependency h → p. Since h could be
hard even including this overlap dependency, we know there are no
block-level cycles with head h. But as a result, we know that there
are no block-level cycles with head p, and p can be transformed into
a hard patch. Featherstitch will make p hard by dropping its undo
data, then merge h into p. Although this type of merging is not very
common in practice, it is necessary to preserve useful invariants,
such as that no hard patch has a dependency on the same block.

4.3 Overlap Merging
The final type of merging combines soft patches with other patches,
hard or soft, when they overlap. Metadata blocks, such as bitmap
blocks, inodes, and directory data, tend to accumulate many nearby

duce any new block-level cycles. As one example, if no patch depends
on some empty patch e, then adding a new e → q dependency can’t
produce a cycle.

302312

directory data inode block

d1

i

d2

id2 i
d3

+d2

a) Block-level cycle b) d1 commits c) After merge

Figure 4: Soft-to-hard patch merging. a) Soft updates-like dependencies
among directory data and an inode block. d1 deletes a file whose inode
is on i, so Rule 2 requires i → d1; d2 allocates a file whose inode is on i,
so Rule 1 requires d2 → i. b) Writing d1 removes the cycle. c) d3, which
adds a hard link to d2’s file, initiates soft-to-hard merging.

and overlapping patches as the file system gradually changes; for
instance, Figure 3’s i1–i4 all affect the same inode field. Even data
blocks can collect overlapping dependencies. Figure 3’s data writes
d′

n overlap, and therefore depend on, the initialization writes dn—
but our heuristic cannot make d′n hard since when they are created,
dependencies exist from the inode block onto dn. Overlap merging
can combine these, and many other, mergeable patches, further
reducing patch and undo data overhead.

Overlapping patches p1 and p2, with p2 � p1, may be merged
unless future patches and dependencies might force the buffer cache
to undo p2, but not p1. Reusing the reasoning developed for hard
patches, we can carve out a class of patches that will never cause
this problem: if p2 is not the head of a block-level cycle containing
p1, then p2 and p1 can always be committed together.

To detect mergeable pairs, the Featherstitch implementation again
uses a conservative heuristic that detects many pairs while limiting
the cost of traversing dependency graphs. However, while the hard
patch heuristic is both simple and effective, the heuristic for over-
lap merging has required some tuning to balance CPU expense and
missed merge opportunities. The current version examines all de-
pendency chains of uncommitted patches starting at p2. It succeeds
if no such chain matches p2 � x � p1 with x on a different block,
failing conservatively if any of the chains grows too long (more than
10 links) or there are too many chains. (It also simplifies the imple-
mentation to fail when p2 overlaps with two or more soft patches
that do not themselves overlap.) However, some chains cannot in-
duce block-level cycles and are allowed regardless of how long they
grow. Consider a chain p2 � x not containing p1. If p1 � x as well,
then since there are no circular dependencies, any continuation of
the chain p2 � x will never encounter p1. Our heuristic white-lists
several such chains, including p2 � h where h is a hard patch on
p1’s block. If all chains fit, then there are no block-level cycles from
p2 to p1, p2 and p1 can have the same lifetime, and p2 can be
merged into p1 to create a combined patch.

In our running example, overlap merging combines all remaining
soft patches with their hard counterparts, reducing the number of
patches to the minimum of 8 and the amount of undo data to the min-
imum of 0. In our experiments, hard patches and our patch merging
optimizations reduce the amount of memory allocated for undo data
in soft updates and journaling orderings by at least 99.99%.

4.4 Ready Patch Lists
A different class of optimization addresses CPU time spent in
the Featherstitch buffer cache. The buffer cache’s main task is to
choose sets of patches P that satisfy the in-flight safety property
dep[P] ⊆ P∪C. A naive implementation would guess a set P and
then traverse the dependency graph starting at P, looking for prob-
lematic dependencies. Patch merging limits the size of these traver-
sals by reducing the number of patches. Unfortunately, even modest
traversals become painfully slow when executed on every block in a

large buffer cache, and in our initial implementation these traversals
were a bottleneck for cache sizes above 128 blocks (!).

Luckily, much of the information required for the buffer cache to
choose a set P can be precomputed. Featherstitch explicitly tracks,
for each patch, how many of its direct dependencies remain un-
committed or in flight. These counts are incremented as patches are
added to the system and decremented as the system receives commit
notifications from the disk. When both counts reach zero, the patch
is safe to write, and it is moved into a ready list on its containing
block. The buffer cache, then, can immediately tell whether a block
has writable patches. To write a block B, the buffer cache initially
populates the set P with the contents of B’s ready list. While moving
a patch p into P, Featherstitch checks whether there exist depen-
dencies q → p where q is also on block B. The system can write q
at the same time as p, so q’s counts are updated as if p has already
committed. This may make q ready, after which it in turn is added
to P. (This premature accounting is safe because the system won’t
try to write B again until p and q actually commit.)

While the basic principle of this optimization is simple, its effi-
cient implementation depends on several other optimizations, such
as soft-to-hard patch merging, that preserve important dependency
invariants. Although ready count maintenance makes some patch
manipulations more expensive, ready lists save enough duplicate
work in the buffer cache that the system as a whole is more efficient
by multiple orders of magnitude.

4.5 Other Optimizations
Optimizations can only do so much with bad dependencies. Just as
having too few dependencies can compromise system correctness,
having too many dependencies, or the wrong dependencies, can
non-trivially degrade system performance. For example, in both the
following patch arrangements, s depends on all of r, q, and p, but
the left-hand arrangement gives the system more freedom to reorder
block writes:

s r q p s r q p

If r, q, and p are adjacent on disk, the left-hand arrangement can be
satisfied with two disk requests while the right-hand one will require
four. Although neither arrangement is much harder to code, in sev-
eral cases we discovered that one of our file system implementations
was performing slowly because it created an arrangement like the
one on the right.

Care must be taken to avoid unnecessary implicit dependencies,
and in particular overlap dependencies. For instance, inode blocks
contain multiple inodes, and changes to two inodes should generally
be independent; a similar statement holds for directories. Patches
that change one independent field at a time generally give the best
results. Featherstitch will merge these patches when appropriate,
but if they cannot be merged, minimal patches tend to cause fewer
patch reversions and give more flexibility in write ordering.

File system implementations can generate better dependency ar-
rangements when they can detect that certain states will never appear
on disk. For example, soft updates requires that clearing an inode de-
pend on nullifications of all corresponding directory entries, which
normally induces dependencies from the inode onto the directory
entries. However, if a directory entry will never exist on disk—for
example, because a patch to remove the entry merged with the patch
that created it—then there is no need to require the corresponding
dependency. Similarly, if all a file’s directory entries will never exist
on disk, the patches that free the file’s blocks need not depend on the
directory entries. Leaving out these dependencies can speed up the
system by avoiding block-level cycles, such as those in Figure 4, and
the rollbacks and double writes they cause. The Featherstitch ext2

303313

module implements these optimizations, significantly reducing disk
writes, patch allocations, and undo data required when files are cre-
ated and deleted within a short time. Although the optimizations are
file system specific, the file system implements them using general
properties, namely, whether two patches successfully merge.

Finally, block allocation policies can have a dramatic effect on
the number of I/O requests required to write changes to the disk. For
instance, soft updates-like dependencies require that data blocks be
initialized before an indirect block references them. Allocating an
indirect block in the middle of a range of file data blocks forces
the data blocks to be written as two smaller I/O requests, since the
indirect block cannot be written at the same time. Allocating the
indirect block somewhere else allows the data blocks to be written
in one larger I/O request, at the cost of (depending on readahead
policies) a potential slowdown in read performance.

We often found it useful to examine patch dependency graphs
visually. Featherstitch optionally logs patch operations to disk; a
separate debugger inspects and generates graphs from these logs.
Although the graphs could be daunting, they provided some evi-
dence that patches work as we had hoped: performance problems
could be analyzed by examining general dependency structures, and
sometimes easily fixed by manipulating those structures.

5 Patchgroups
Currently, robust applications can enforce necessary write-before
relationships, and thus ensure the consistency of on-disk data even
after system crash, in only limited ways: they can force synchronous
writes using sync, fsync, or sync_file_range, or they can assume
particular file system implementation semantics, such as journaling.
With the patch abstraction, however, a process might specify just
dependencies; the storage system could use those dependencies to
implement an appropriate ordering. This approach assumes little
about file system implementation semantics, but unlike synchronous
writes, the storage system can still buffer, combine, and reorder disk
operations. This section describes patchgroups, an example API for
extending patches to user space. Applications engage patchgroups
to associate them with file system changes; dependencies are defined
among groups. A parent process can set up a dependency structure
that its child process will obey unknowingly. Patchgroups apply to
any file system, including raw block device writes.

In this section we describe the patchgroup abstraction and apply
it to three robust applications.

5.1 Interface and Implementation
Patchgroups encapsulate sets of file system operations into units
among which dependencies can be applied. The patchgroup inter-
face is as follows:

typedef int pg_t; pg_t pg_create(void);
int pg_depend(pg_t Q, pg_t P); /* adds Q � P */
int pg_engage(pg_t P); int pg_disengage(pg_t P);
int pg_sync(pg_t P); int pg_close(pg_t P);

Each process has its own set of patchgroups, which are currently
shared among all threads. The call pg_depend(Q, P)makes patch-
group Q depend on patchgroup P: all patches associated with P will
commit prior to any of those associated with Q. Engaging a patch-
group with pg_engage associates subsequent file system operations
with that patchgroup. pg_sync forces an immediate write of a patch-
group to disk. pg_create creates a new patchgroup and returns its
ID and pg_close disassociates a patchgroup ID from the underlying
patches which implement it.

Whereas Featherstitch modules are presumed to not create cyclic
dependencies, the kernel cannot safely trust user applications to

∗P = pg_create() pg_engage(P) pg_depend(*, P)
pg_disengage(P)

pg_engage(P)

pg_depend(*, P)pg_depend(P, *) pg_depend(*, P)

Engaged state

Figure 5: Patchgroup lifespan.

hP tP hOtQ

file system changes
written while

P was engaged

pg_depend
(Q, P)

pg_depend
(P, O)

.

Figure 6: Patchgroup implementation (simplified). Empty patches hP
and tP bracket file system patches created while patchgroup P is engaged.
pg_depend connects one patchgroup’s t patch to another’s h.

be so well behaved, so the patchgroup API makes cycles uncon-
structable. Figure 5 shows when different patchgroup dependency
operations are valid. As with patches themselves, all a patchgroup’s
direct dependencies are added first. After this, a patchgroup becomes
engaged zero or more times; however, once a patchgroup P gains
a dependency via pg_depend(*, P), it is sealed and can never be
engaged again. This prevents applications from using patchgroups
to hold dirty blocks in memory: Q can depend on P only once the
system has seen the complete set of P’s changes.

Patchgroups and file descriptors are managed similarly—they are
copied across fork, preserved across exec, and closed on exit. This
allows existing, unaware programs to interact with patchgroups, in
the same way that the shell can connect pipe-oblivious programs into
a pipeline. For example, a depend program could apply patchgroups
to unmodified applications by setting up the patchgroups before
calling exec. The following command line would ensure that in is
not removed until all changes in the preceding sort have committed
to disk:

depend "sort < in > out" "rm in"

Inside the kernel, each patchgroup corresponds to a pair of con-
taining empty patches, and each inter-patchgroup dependency cor-
responds to a dependency between the empty patches. All file sys-
tem changes are inserted between all engaged patchgroups’ empty
patches. Figure 6 shows an example patch arrangement for two
patchgroups. (The actual implementation uses additional empty
patches for bookkeeping.)

These dependencies suffice to enforce patchgroups when using
soft updates-like dependencies, but for journaling, some extra work
is required. Since writing the commit record atomically commits
a transaction, additional patchgroup-specified dependencies for the
data in each transaction must be shifted to the commit record itself.
These dependencies then collapse into harmless dependencies from
the commit record to itself or to previous commit records. Also, a
metadata-only journal, which by default does not journal data blocks
at all, pulls patchgroup-related data blocks into its journal, making
it act like a full journal for those data blocks.

Patchgroups currently augment the underlying file system’s con-
sistency semantics, although a fuller implementation might let a
patchgroup declare reduced consistency requirements as well.

5.2 Case Studies
We studied the patchgroup interface by adding patchgroup sup-
port to three applications: the gzip compression utility, the Subver-
sion version control client, and the UW IMAP mail server daemon.
These applications were chosen for their relatively simple and ex-
plicit consistency requirements; we intended to test how well patch-
groups implement existing consistency mechanisms, not to create
new mechanisms. One effect of this choice is that versions of these
applications could attain similar consistency guarantees by running

304314

on a fully-journaled file system with a conventional API, although at
least IMAP would require modification to do so. Patchgroups, how-
ever, make the required guarantees explicit, can be implemented
on other types of file system, and introduce no additional cost on
fully-journaled systems.

Gzip Our modified gzip uses patchgroups to make the input file’s
removal depend on the output file’s data being written; thus, a crash
cannot lose both files. The update adds 10 lines of code to gzip
v1.3.9, showing that simple consistency requirements are simple to
implement with patchgroups.

Subversion The Subversion version control system’s client [2]
manipulates a local working copy of a repository. The working copy
library is designed to avoid data corruption or loss should the pro-
cess exit prematurely from a working copy operation. This safety
is achieved using application-level write ahead journaling, where
each entry in Subversion’s journal is either idempotent or atomic.
Depending on the file system, however, even this precaution may
not protect a working copy operation against a crash. For example,
the journal file is marked as complete by moving it from a temporary
location to its live location. Should the file system completely com-
mit the file rename before the file data, and crash before completing
the file data commit, then a subsequent journal replay could corrupt
the working copy.

The working copy library could ensure a safe commit ordering
by syncing files as necessary, and the Subversion server (repository)
library takes this approach, but developers deemed this approach
too slow to be worthwhile at the client [25]. Instead, the working
copy library assumes that first, all preceding writes to a file’s data
are committed before the file is renamed, and second, metadata
updates are effectively committed in their system call order. This
does not hold on many systems; for example, neither NTFS with
journaling nor BSD UFS with soft updates provide the required
properties. The Subversion developers essentially specialized their
consistency mechanism for one file system, ext3 in either “ordered”
or full journaling mode.

We updated the Subversion working copy library to express com-
mit ordering requirements directly using patchgroups. The file re-
name property was replaced in two ways. Files created in a tem-
porary location and then moved into their live location, such as
directory status and journal files, now make the rename depend on
the file data writes; but files only referenced by live files, such as up-
dated file copies used by journal file entries, can live with a weaker
ordering: the installation of referencing files is made to depend on
the file data writes. The use of linearly ordered metadata updates
was also replaced by patchgroup dependencies, and making the de-
pendencies explicit let us reason about Subversion’s actual order
requirements, which are much less strict than linear ordering. For
example, the updated file copies used by the journal may be commit-
ted in any order, and most journal playback operations may commit
in any order. Only interacting operations, such as a file read and
subsequent rename, require ordering.

Once we understood Subversion v1.4.3’s requirements, it took a
day to add the 220 lines of code that enforce safety for conflicted
updates (out of 25,000 in the working copy library).

UW IMAP We updated the University of Washington’s IMAP
mail server (v2004g) [3] to ensure mail updates are safely com-
mitted to disk. The Internet Message Access Protocol (IMAP) [6]
provides remote access to a mail server’s email message store. The
most relevant IMAP commands synchronize changes to the server’s
disk (check), copy a message from the selected mailbox to an-
other mailbox (copy), and delete messages marked for deletion
(expunge).

write copy

write copy

write copy

delete
originals

fsync

fsync

fsync

fsync

copy1

{

copy2

{

copy3

{

⎫⎪⎪⎬
⎪⎪⎭ expunge

mailbox.dstmailbox.src

T
im

e

write copy

write copy

write copy

delete
originals

pg_sync(expunge)

copy1

{

copy2

{

copy3

{

⎫⎪⎪⎬
⎪⎪⎭ expunge

mailbox.dstmailbox.src

T
im

e

pg_depend(copy2, copy1)

pg_depend(copy3, copy2)

pg_depend
(expunge, copy3)

a) Unmodified, fsync b) Patchgroups

Figure 7: UW IMAP server, without and with patchgroups, moving
three messages from mailbox.src to mailbox.dst.

We updated the imapd and mbox mail storage drivers to use patch-
groups, ensuring that all disk writes occur in a safe ordering without
enforcing a specific block write order. The original server conserva-
tively preserved command ordering by syncing the mailbox file after
each check on it or copy into it. For example, Figure 7a illustrates
moving messages from one mailbox to another. With patchgroups,
each command’s file system updates are executed under a distinct
patchgroup and, through the patchgroup, made to depend on the pre-
vious command’s updates. This is necessary, for example, so that
moving a message to another folder (accomplished by copying to
the destination file and then removing from the source file) cannot
lose the copied message should the server crash part way through
the disk updates. The updated check and expunge commands use
pg_sync to sync all preceding disk updates. This removes the re-
quirement that copy sync its destination mailbox: the client’s check
or expunge request will ensure changes are committed to disk, and
the patchgroup dependencies ensure changes are committed in a
safe ordering. Figure 7b illustrates using patches to move messages.

These changes improve UW IMAP by ensuring disk write order-
ing correctness and by performing disk writes more efficiently than
synchronous writes. As each command’s changes now depend on
the preceding command’s changes, it is no longer required that all
code specifically ensure its changes are committed before any later,
dependent command’s changes. Without patchgroups, modules like
the mbox driver forced a conservative disk sync protocol because
ensuring safety more efficiently required additional state informa-
tion, adding further complexity. The Dovecot IMAP server’s source
code notes this exact difficulty [1, maildir-save.c]:

/* FIXME: when saving multiple messages, we could get
better performance if we left the fd open and
fsync()ed it later */

The performance of the patchgroup-enabled UW IMAP mail
server is evaluated in Section 8.5.

6 Modules
A Featherstitch configuration is composed of modules that cooperate
to implement file system functionality. Modules fall into three major
categories. Block device (BD) modules are closest to the disk; they
have a fairly conventional block device interface with interfaces such
as “read block” and “flush.” Common file system (CFS) modules are
closest to the system call interface, and have an interface similar to
VFS [15]. In between these interfaces are modules implementing
a low-level file system (L2FS) interface, which helps divide file
system implementations into code common across block-structured
file systems and code specific to a given file system layout. The L2FS
interface has functions to allocate blocks, add blocks to files, allocate

305315

block resizer

SATA sda

cache

ext2-1ext2-0

UHFS UHFS

journal

loop loop

VFS interface

application

L
2FS

VFS

CFS CFS

L2FS L2FS

BDBD

BD BD
BD

BD

/ /loop

data journal

/fs.img /fs.journal

Figure 8: A running Featherstitch configuration. / is a soft updated file
system on an IDE drive; /loop is an externally journaled file system on
loop devices.

file names, and other file system micro-operations. A generic CFS-
to-L2FS module called UHFS (“universal high-level file system”)
decomposes familiar VFS operations like write, read, and append
into L2FS micro-operations. Our ext2 and UFS file system modules
implement the L2FS interface.

Modules examine and modify dependencies via patches passed
to them as arguments. For instance, every L2FS function that might
modify the file system takes a patch_t **p argument. Before the
function is called, *p is set to the patch, if any, on which the modi-
fication should depend; when the function returns, *p is set to some
patch corresponding to the modification itself. For example, this
function is called to append a block to an L2FS inode f:

int (*append_file_block)(LFS_t *module,
fdesc_t *f, uint32_t block, patch_t **p);

6.1 ext2 and UFS
Featherstitch currently has modules that implement two file system
types, Linux ext2 and 4.2 BSD UFS (Unix File System, the modern
incarnation of the Fast File System [19]). Both of these modules ini-
tially generate dependencies arranged according to the soft updates
rules; other dependency arrangements are achieved by transforming
these. To the best of our knowledge, our implementation of ext2 is
the first to provide soft updates consistency guarantees.

Both modules are implemented at the L2FS interface. Unlike
FreeBSD’s soft updates implementation, once these modules set
up dependencies, they no longer need to concern themselves with
file system consistency; the block device subsystem will track and
enforce the dependencies.

6.2 Journal
The journal module sits below a regular file system, such as ext2,
and transforms incoming patches into patches implementing jour-
nal transactions. File system blocks are copied into the journal, a
commit record depends on the journal patches, and the original
file system patches depend in turn on the commit record. Any soft
updates-like dependencies among the original patches are removed,
since they are not needed when the journal handles consistency;
however, the journal does obey user-specified dependencies, such
as patchgroups, by potentially shifting dependent patches into the
current transaction. The journal format is similar to ext3’s [34]: a
transaction contains a list of block numbers, the data to be written

to those blocks, and finally a single commit record. Although the
journal modifies existing patches’ direct dependencies, it ensures
that any new dependencies do not introduce block-level cycles.

As in ext3, transactions are required to commit in sequence. The
journal module sets each commit record to depend on the previ-
ous commit record, and each completion record to depend on the
previous completion record. This allows multiple outstanding trans-
actions in the journal, which benefits performance, but ensures that
in the event of a crash, the journal’s committed transactions will be
both contiguous and sequential.

Since the commit record is created at the end of the transaction,
the journal module uses a special empty patch explicitly held in
memory to prevent file system changes from being written to the
disk until the transaction is complete. This empty patch is set to
depend on the previous transaction’s completion record, which pre-
vents merging between transactions while allowing merging within
a transaction. This temporary dependency is removed when the real
commit record is created.

Our journal module prototype can run in full data journal mode,
where every updated block is written to the journal, or in metadata-
only mode, where only blocks containing file system metadata are
written to the journal. It can tell which blocks are which by looking
for a special flag on each patch set by the UHFS module.

We provide several other modules that modify dependencies,
including an “asynchronous mode” module that removes all depen-
dencies, allowing the buffer cache to write blocks in any order.

6.3 Buffer Cache

The Featherstitch buffer cache both caches blocks in memory and
ensures that modifications are written to stable storage in a safe or-
der. Modules “below” the buffer cache—that is, between its output
interface and the disk—are considered part of the “disk controller”;
they can reorder block writes at will without violating dependen-
cies, since those block writes will contain only in-flight patches.
The buffer cache sees the complex consistency mechanisms that
other modules define as nothing more than sets of dependencies
among patches; it has no idea what consistency mechanisms it is
implementing, if any.

Our prototype buffer cache module uses a modified FIFO policy
to write dirty blocks and an LRU policy to evict clean blocks. (Upon
being written, a dirty block becomes clean and may then be evicted.)
The FIFO policy used to write blocks is modified only to preserve
the in-flight safety property: a block will not be written if none of
its patches are ready to write. Once the cache finds a block with
ready patches, it extracts all ready patches P from the block, reverts
any remaining patches on that block, and sends the resulting data to
the disk driver. The ready patches are marked in-flight and will be
committed when the disk driver acknowledges the write. The block
itself is also marked in flight until the current version commits,
ensuring that the cache will wait until then to write the block again.

As a performance heuristic, when the cache finds a writable
block n, it then checks to see if block n+1 can be written as well.
It continues writing increasing block numbers until some block
is either unwritable or not in the cache. This simple optimization
greatly improves I/O wait time, since the I/O requests are merged
and reordered in Linux’s elevator scheduler. Nevertheless, there
may still be important opportunities for further optimization: for
example, since the cache will write a block even if only one of its
patches is ready, it can choose to revert patches unnecessarily when
a different order would have required fewer writes.

306316

6.4 Loopback
The Featherstitch loopback module demonstrates how pervasive
support for patches can implement previously unfamiliar depen-
dency semantics. Like Linux’s loopback device, it provides a block
device interface that uses a file in some other file system as its stor-
age layer; unlike Linux’s block device, consistency requirements
on this block device are obeyed by the underlying file system. The
loopback module forwards incoming dependencies to its underlying
file system. As a result, the file system will honor those dependen-
cies and preserve the loopback file system’s consistency, even if it
would normally provide no consistency guarantees for file data (for
instance, it used metadata-only journaling).

Figure 8 shows a complete, albeit contrived, example configu-
ration using the loopback module. A file system image is mounted
with an external journal, both of which are loopback block devices
stored on the root file system (which uses soft updates). The jour-
naled file system’s ordering requirements are sent through the loop-
back module as patches, maintaining dependencies across bound-
aries that might otherwise lose that information. Most systems can-
not enforce consistency requirements through loopback devices this
way—unfortunate, as file system images are becoming popular tools
in conventional operating systems, used for example to implement
encrypted home directories in Mac OS X. A simpler version of this
configuration allows the journal module to store a file system’s jour-
nal in a file on the file system itself, the configuration used in our
evaluation.

7 Implementation
The Featherstitch prototype implementation runs as a Linux 2.6 ker-
nel module. It interfaces with the Linux kernel at the VFS layer and
the generic block device layer. In between, a Featherstitch module
graph replaces Linux’s conventional file system layers. A small ker-
nel patch informs Featherstitch of process fork and exit events as
required to update per-process patchgroup state.

During initialization, the Featherstitch kernel module registers a
VFS file system type with Linux. Each file system Featherstitch de-
tects on a specified disk device can then be mounted from Linux us-
ing a command like mount -t kfs kfs:name /mnt/point. Since
Featherstitch provides its own patch-aware buffer cache, it sets
O_SYNC on all opened files as the simplest way to bypass the normal
Linux cache and ensure that the Featherstitch buffer cache obeys all
necessary dependency orderings.

Featherstitch modules interact with Linux’s generic block de-
vice layer mainly via generic_make_request. This function sends
read or write requests to a Linux disk scheduler, which may reorder
and/or merge the requests before eventually releasing them to the
device. Writes are considered in flight as soon as they are enqueued
on the disk scheduler. A callback notifies Featherstitch when the
disk controller reports request completion; for writes, this com-
mits the corresponding patches. The disk safety property requires
that the disk controller wait to report completion until a write has
reached stable storage. Most drives instead report completion when
a write has reached the drive’s volatile cache. Ensuring the stronger
property could be quite expensive, requiring frequent barriers or
setting the drive cache to write-through mode; either choice seems
to prevent older drives from reordering requests. The solution is a
combination of SCSI tagged command queuing (TCQ) or SATA
native command queuing (NCQ) with either a write-through cache
or “forced unit access” (FUA). TCQ and NCQ allow a drive to inde-
pendently report completion for multiple outstanding requests, and
FUA is a per-request flag that tells the disk to report completion only
after the request reaches stable storage. Recent SATA drives handle
NCQ plus write-through caching or FUA exactly as we would want:

the drive appears to reorder write requests, improving performance
dramatically relative to older drives, but reports completion only
when data reaches the disk. We use a patched version of the Linux
2.6.20.1 kernel with good support for NCQ and FUA, and a recent
SATA2 drive.

Our prototype has several performance problems caused by in-
complete Linux integration. For example, writing a block requires
copying that block’s data whether or not any patches were undone,
and our buffer cache currently stores all blocks in permanently-
mapped kernel memory, limiting its maximum size.

8 Evaluation
We evaluate the effectiveness of patch optimizations, the perfor-
mance of the Featherstitch implementation relative to Linux ext2
and ext3, the correctness of the Featherstitch implementation, and
the performance of patchgroups. This evaluation shows that patch
optimizations significantly reduce patch memory and CPU require-
ments; that a Featherstitch patch-based storage system has overall
performance competitive with Linux, though using up to four times
more CPU time; that Featherstitch file systems are consistent after
system crashes; and that a patchgroup-enabled IMAP server outper-
forms the unmodified server on Featherstitch.

8.1 Methodology
All tests were run on a Dell Precision 380 with a 3.2 GHz Pentium 4
CPU (with hyperthreading disabled), 2 GB of RAM, and a Seagate
ST3320620AS 320 GB 7200 RPM SATA2 disk. Tests use a 10 GB
file system and the Linux 2.6.20.1 kernel with the Ubuntu v6.06.1
distribution. Because Featherstitch only uses permanently-mapped
memory, we disable high memory for all configurations, limiting
the computer to 912 MB of RAM. Only the PostMark benchmark
performs slower due to this cache size limitation. All timing results
are the mean over five runs.

To evaluate patch optimizations and Featherstitch as a whole we
ran four benchmarks. The untar benchmark untars and syncs the
Linux 2.6.15 source code from the cached file linux-2.6.15.tar
(218 MB). The delete benchmark, after unmounting and remounting
the file system following the untar benchmark, deletes the result of
the untar benchmark and syncs. The PostMark benchmark emulates
the small file workloads seen on email and netnews servers [14].
We use PostMark v1.5, configured to create 500 files ranging in size
from 500 B to 4 MB; perform 500 transactions consisting of file
reads, writes, creates, and deletes; delete its files; and finally sync.
The modified Andrew benchmark emulates a software development
workload. The benchmark creates a directory hierarchy, copies a
source tree, reads the extracted files, compiles the extracted files, and
syncs. The source code we use for the modified Andrew benchmark
is the Ion window manager, version 2-20040729.

8.2 Optimization Benefits
We evaluate the effectiveness of the patch optimizations discussed
in Section 4 in terms of the total number of patches created, amount
of undo data allocated, and system CPU time used. Figure 9 shows
these results for the untar, delete, PostMark, and Andrew bench-
marks for Featherstitch ext2 in soft updates mode, with all combi-
nations of using hard patches and overlap merging. The PostMark
results for no optimizations and for just the hard patches optimiza-
tion use a smaller maximum Featherstitch cache size, 80,000 blocks
vs. 160,000 blocks, so that the benchmark does not run our machine
out of memory. Optimization effectiveness is similar for journaling
configurations.

Both optimizations work well alone, but their combination is
particularly effective at reducing the amount of undo data—which,

307317

Optimization # Patches Undo data System time
Untar

None 619,740 459.41 MB 3.33 sec
Hard patches 446,002 205.94 MB 2.73 sec
Overlap merging 111,486 254.02 MB 1.87 sec
Both 68,887 0.39 MB 1.83 sec

Delete
None 299,089 1.43 MB 0.81 sec
Hard patches 41,113 0.91 MB 0.24 sec
Overlap merging 54,665 0.93 MB 0.31 sec
Both 1,800 0.00 MB 0.15 sec

PostMark
None 4,590,571 3,175.28 MB 23.64 sec
Hard patches 2,544,198 1,582.94 MB 18.62 sec
Overlap merging 550,442 1,590.27 MB 12.88 sec
Both 675,308 0.11 MB 11.05 sec

Andrew
None 70,932 64.09 MB 4.34 sec
Hard patches 50,769 36.18 MB 4.32 sec
Overlap merging 12,449 27.90 MB 4.20 sec
Both 10,418 0.04 MB 4.07 sec

Figure 9: Effectiveness of Featherstitch optimizations.

again, is pure overhead relative to conventional file systems. Undo
data memory usage is reduced by at least 99.99%, the number of
patches created is reduced by 85–99%, and system CPU time is
reduced by up to 81%. These savings reduce Featherstitch memory
overhead from 145–355% of the memory allocated for block data to
4–18% of that memory, a 95–97% reduction. For example, Feath-
erstitch allocations are reduced from 3,321 MB to 74 MB for the
PostMark benchmark, which sees 2,165 MB of block allocations.2

8.3 Benchmarks and Linux Comparison
We benchmark Featherstitch and Linux for all four benchmarks,
comparing the effects of different consistency models and com-
paring patch-based with non-patch-based implementations. Specif-
ically, we examine Linux ext2 in asynchronous mode; ext3 in write-
back and full journal modes; and Featherstitch ext2 in asynchronous,
soft updates, metadata journal, and full journal modes. All file sys-
tems were created with default configurations, and all journaled file
systems used a 64 MB journal. Ext3 implements three different
journaling modes, which provide different consistency guarantees.
The strength of these guarantees is strictly ordered as “writeback <
ordered < full.” Writeback journaling commits metadata atomically
and commits data only after the corresponding metadata. Feather-
stitch metadata journaling is equivalent to ext3 writeback journaling.
Ordered journaling commits data associated with a given transaction
prior to the following transaction’s metadata, and is the most com-
monly used ext3 journaling mode. In all tests ext3 writeback and
ordered journaling modes performed similarly, and Featherstitch
does not implement ordered mode, so we report only writeback
results. Full journaling commits data atomically.

There is a notable write durability difference between the de-
fault Featherstitch and Linux ext2/ext3 configurations: Featherstitch
safely presumes a write is durable after it is on the disk platter,
whereas Linux ext2 and ext3 by default presume a write is durable
once it reaches the disk cache. However, Linux can write safely,
by restricting the disk to providing only a write-through cache, and
Featherstitch can write unsafely by disabling FUA. We distinguish
safe (FUA or a write-through cache) from unsafe results when com-

2Not all the remaining 74 MB is pure Featherstitch overhead; for
example, our ext2 implementation contains an inode cache.

System Untar Delete PostMark Andrew
Featherstitch ext2
soft updates 6.4 [1.3] 0.8 [0.1] 38.3 [10.3] 36.9 [4.1]
meta journal 5.8 [1.3] 1.4 [0.5] 48.3 [14.5] 36.7 [4.2]
full journal 11.5 [3.0] 1.4 [0.5] 82.8 [19.3] 36.8 [4.2]
async 4.1 [1.2] 0.7 [0.2] 37.3 [6.1] 36.4 [4.0]
full journal 10.4 [3.7] 1.1 [0.5] 74.8 [23.1] 36.5 [4.2]
Linux
ext3 writeback 16.6 [1.0] 4.5 [0.3] 38.2 [3.7] 36.8 [4.1]
ext3 full journal 12.8 [1.1] 4.6 [0.3] 69.6 [4.5] 38.2 [4.0]
ext2 4.4 [0.7] 4.6 [0.1] 35.7 [1.9] 36.9 [4.0]
ext3 full journal 10.6 [1.1] 4.4 [0.2] 61.5 [4.5] 37.2 [4.1]

Figure 10: Benchmark times (seconds). System CPU times are in
square brackets. Safe configurations are bold, unsafe configurations are
normal text.

paring the systems. Although safe results for Featherstitch and Linux
utilize different mechanisms (FUA vs. a write-through cache), we
note that Featherstitch performs identically in these benchmarks
when using either mechanism.

The results are listed in Figure 10; safe configurations are
listed in bold. In general, Featherstitch performs comparably with
Linux ext2/ext3 when providing similar durability guarantees. Linux
ext2/ext3 sometimes outperforms Featherstitch (for the PostMark
test in journaling modes), but more often Featherstitch outperforms
Linux. There are several possible reasons, including slight differ-
ences in block allocation policy, but the main point is that Feather-
stitch’s general mechanism for tracking dependencies does not sig-
nificantly degrade total time. Unfortunately, Featherstitch can use up
to four times more CPU time than Linux ext2 or ext3. (Featherstitch
and Linux have similar system time results for the Andrew bench-
mark, perhaps because Andrew creates relatively few patches even
in the unoptimized case.) Higher CPU requirements are an impor-
tant concern and, despite much progress in our optimization efforts,
remain a weakness. Some of the contributors to Featherstitch CPU
usage are inherent, such as patch creation, while others are artifacts
of the current implementation, such as creating a second copy of a
block to write it to disk; we have not separated these categories.

8.4 Correctness
In order to check that we had implemented the journaling and soft
updates rules correctly, we implemented a Featherstitch module
which crashes the operating system, without giving it a chance
to synchronize its buffers, at a random time during each run. In
Featherstitch asynchronous mode, after crashing, fsck nearly always
reported that the file system contained many references to inodes that
had been deleted, among other errors: the file system was corrupt.
With our soft updates dependencies, the file system was always
soft updates consistent: fsck reported, at most, that inode reference
counts were higher than the correct values (an expected discrepancy
after a soft updates crash). With journaling, fsck always reported
that the file system was consistent after the journal replay.

8.5 Patchgroups
We evaluate the performance of the patchgroup-enabled UW IMAP
mail server by benchmarking moving 1,000 messages from one
folder to another. To move the messages, the client selects the source
mailbox (containing 1,000 2 kB messages), creates a new mailbox,
copies each message to the new mailbox and marks each source
message for deletion, expunges the marked messages, commits the
mailboxes, and logs out.

Figure 11 shows the results for safe file system configurations,
reporting total time, system CPU time, and the number of disk

308318

Implementation Time (sec) # Writes
Featherstitch ext2
soft updates, fsync per operation 65.2 [0.3] 8,083
full journal, fsync per operation 52.3 [0.4] 7,114
soft updates, patchgroups 28.0 [1.2] 3,015
full journal, patchgroups 1.4 [0.4] 32
Linux ext3
full journal, fsync per operation 19.9 [0.3] 2,531
full journal, fsync per durable operation 1.3 [0.3] 26

Figure 11: IMAP benchmark: move 1,000 messages. System CPU
times shown in square brackets. Writes are in number of requests. All
configurations are safe.

write requests (an indicator of the number of required seeks in
safe configurations). We benchmark Featherstitch and Linux with
the unmodified server (sync after each operation), Featherstitch with
the patchgroup-enabled server (pg_sync on durable operations), and
Linux and Featherstitch with the server modified to assume and take
advantage of fully journaled file systems (changes are effectively
committed in order, so sync only on durable operations). Only safe
configurations are listed; unsafe configurations complete in about
1.5 seconds on either system. Featherstitch meta and full journal
modes perform similarly; we report only the full journal mode.
Linux ext3 writeback, ordered, and full journal modes also perform
similarly; we again report only the full journal mode. Using an fsync
per durable operation (check and expunge) on a fully journaled
file system performs similarly for Featherstitch and Linux; we report
the results only for Linux full journal mode.

In all cases Featherstitch with patchgroups performs better than
Featherstitch with fsync operations. Fully journaled Featherstitch
with patchgroups performs at least as well as all other (safe and
unsafe) Featherstitch and all Linux configurations, and is 11–13
times faster than safe Linux ext3 with the unmodified server. Soft
updates dependencies are far slower than journaling for patchgroups:
as the number of write requests indicates, each patchgroup on a
soft updates file system requires multiple write requests, such as
to update the destination mailbox and the destination mailbox’s
modification time. In contrast, journaling is able to commit a large
number of copies atomically using only a small constant number
of requests. The unmodified fsync-per-operation server generates
dramatically more requests on Featherstitch with full journaling than
Linux, possibly indicating a difference in fsync behavior. The last
line of the table shows that synchronizing to disk once per durable
operation with a fully journaled file system performs similarly to
using patchgroups on a journaled file system. However, patchgroups
have the advantage that they work equally safely, and efficiently, for
other forms of journaling.

With the addition of patchgroups UW IMAP is able to perform
mailbox modifications significantly more efficiently, while preserv-
ing mailbox modification safety. On a metadata or fully journaled
file system, UW IMAP with patchgroups is 97% faster at moving
1,000 messages than the unmodified server achieves using fsync to
ensure its write ordering requirements.

8.6 Summary
We find that our optimizations greatly reduce system overheads,
including undo data and system CPU time; that Featherstitch has
competitive performance on several benchmarks, despite the addi-
tional effort required to maintain patches; that CPU time remains
an optimization opportunity; that applications can effectively define
consistency requirements with patchgroups that apply to many file
systems; and that the Featherstitch implementation correctly imple-
ments soft updates and journaling consistency. Our results indicate

that even a patch-based prototype can implement different consis-
tency models with reasonable cost.

9 Conclusion
Featherstitch patches provide a new way for file system implemen-
tations to formalize the “write-before” relationship among buffered
changes to stable storage. Thanks to several optimizations, the per-
formance of our prototype is usually at least as fast as Linux when
configured to provide similar consistency guarantees, although in
some cases it still requires improvement. Patches simplify the im-
plementation of consistency mechanisms like journaling and soft
updates by separating the specification of write-before relationships
from their enforcement. Using patches also allows our prototype to
be divided into modules that cooperate loosely to implement strong
consistency guarantees. Additionally, patches can be extended into
user space, allowing applications to specify more precisely what
their specific consistency requirements are. This provides the buffer
cache more freedom to reorder writes without violating the appli-
cation’s needs, while simultaneously freeing the application from
having to micromanage writes to disk. We present results for an
IMAP server modified to take advantage of this feature, and show
that it can significantly reduce both the total time and the number of
writes required for our benchmark.

For future work, we plan to improve performance further, par-
ticularly for system time; we have already improved performance
by at least five orders of magnitude over the original implementa-
tion, but problems remain. The patch abstraction seems amenable
to implementation elsewhere, such as over network file systems,
and was designed to implement other consistency mechanisms like
shadow paging. Finally, we would like to adapt patchgroups to more
complicated applications, like databases, to see how well they fit the
needed semantics and how well they perform.

Acknowledgments
We would like to thank the members of our lab at UCLA, “TERTL,”
for many useful discussions about this work, and for reviewing drafts
of this paper. In particular, Steve VanDeBogart provided extensive
help with Linux kernel details, memory semantics, and drafts. Fur-
ther thanks go to Liuba Shrira, who provided sustained encouraging
interest in the project, and Stefan Savage for early inspiration. Our
shepherd, Andrea Arpaci-Dusseau, and the anonymous reviewers
provided very useful feedback and guidance. Our work on Feath-
erstitch was supported by the National Science Foundation under
Grant Nos. 0546892 and 0427202; by a Microsoft Research New
Faculty Fellowship; and by an equipment grant from Intel. Ad-
ditionally, Christopher Frost and Mike Mammarella were awarded
SOSP student travel scholarships, supported by the National Science
Foundation, to present this paper at the conference.We ♥

Kudos

References
[1] Dovecot. Version 1.0 beta7, http://www.dovecot.org/.

[2] Subversion. http://subversion.tigris.org/.

[3] UW IMAP toolkit. http://www.washington.edu/imap/.

[4] Burnett, N. C. Information and Control in File System Buffer
Management. PhD thesis, University of Wisconsin—Madison,
July 2006.

[5] Cornell, B., P. A. Dinda, and F. E. Bustamante. Wayback: A user-
level versioning file system for Linux. In Proc. 2004 USENIX
Annual Technical Conference, FREENIX Track, pages 19–28, June
2004.

[6] Crispin, M. Internet Message Access Protocol—version 4rev1.
RFC 3501, IETF, Mar. 2003.

309319

[7] Denehy, T. E., A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Journal-guided resynchronization for software RAID. In Proc.
4th USENIX Conference on File and Storage Technologies (FAST
’05), pages 87–100, Dec. 2005.

[8] Gal, E. and S. Toledo. A transactional Flash file system for micro-
controllers. In Proc. 2005 USENIX Annual Technical Conference,
pages 89–104, Apr. 2005.

[9] Ganger, G. R., M. K. McKusick, C. A. N. Soules, and Y. N. Patt.
Soft updates: A solution to the metadata update problem in file
systems. ACM Transactions on Computer Systems, 18(2):127–
153, May 2000.

[10] Heidemann, J. S. and G. J. Popek. File-system development with
stackable layers. ACM Transactions on Computer Systems, 12(1):
58–89, Feb. 1994.

[11] Hitz, D., J. Lau, and M. Malcolm. File system design for an NFS
file server appliance. In Proc. USENIX Winter 1994 Technical
Conference, pages 235–246, Jan. 1994.

[12] Huang, H., W. Hung, and K. G. Shin. FS2: Dynamic data replica-
tion in free disk space for improving disk performance and energy
consumption. In Proc. 20th ACM Symposium on Operating Sys-
tems Principles, pages 263–276, Oct. 2005.

[13] Kaashoek, M. F., D. R. Engler, G. R. Ganger, H. M. Briceño,
R. Hunt, D. Mazières, T. Pinckney, R. Grimm, J. Jannotti, and
K. Mackenzie. Application performance and flexibility on Ex-
okernel systems. In Proc. 16th ACM Symposium on Operating
Systems Principles, pages 52–65, Oct. 1997.

[14] Katcher, J. PostMark: A new file system benchmark. Technical
Report TR0322, Network Appliance, 1997. http://tinyurl.
com/27ommd.

[15] Kleiman, S. R. Vnodes: An architecture for multiple file system
types in Sun UNIX. In Proc. USENIX Summer 1986 Technical
Conference, pages 238–247, 1986.

[16] Liskov, B. and R. Rodrigues. Transactional file systems can be
fast. In Proc. 11th ACM SIGOPS European Workshop, Sept. 2004.

[17] Mann, T., A. Birrell, A. Hisgen, C. Jerian, and G. Swart. A
coherent distributed file cache with directory write-behind. ACM
Transactions on Computer Systems, 12(2):123–164, May 1994.

[18] McKusick, M. K. and G. R. Ganger. Soft updates: A technique
for eliminating most synchronous writes in the Fast Filesystem.
In Proc. 1999 USENIX Annual Technical Conference, FREENIX
Track, pages 1–17, June 1999.

[19] McKusick, M. K., W. N. Joy, S. J. Leffler, and R. S. Fabry. A fast
file system for UNIX. ACM Transactions on Computer Systems,
2(3):181–197, Aug. 1984.

[20] Muniswamy-Reddy, K.-K., C. P. Wright, A. Himmer, and
E. Zadok. A versatile and user-oriented versioning file system.
In Proc. 3rd USENIX Conference on File and Storage Technolo-
gies (FAST ’04), pages 115–128, Mar. 2004.

[21] Nightingale, E. B., P. M. Chen, and J. Flinn. Speculative execution
in a distributed file system. In Proc. 20th ACM Symposium on
Operating Systems Principles, pages 191–205, Oct. 2005.

[22] Nightingale, E. B., K. Veeraraghavan, P. M. Chen, and J. Flinn.
Rethink the sync. In Proc. 7th Symposium on Operating Systems
Design and Implementation (OSDI ’06), pages 1–14, Nov. 2006.

[23] Quinlan, S. and S. Dorward. Venti: a new approach to archival
storage. In Proc. 1st USENIX Conference on File and Storage
Technologies (FAST ’02), pages 89–101, Jan. 2003.

[24] Rosenthal, D. S. H. Evolving the Vnode interface. In Proc.
USENIX Summer 1990 Technical Conference, pages 107–118,
Jan. 1990.

[25] Rowe, M. Re: wc atomic rename safety on non-ext3 file systems.
Subversion developer mailing list, Mar. 5 2007. http://svn.
haxx.se/dev/archive-2007-03/0064.shtml (retrieved Au-
gust 2007).

[26] Seltzer, M. I., G. R. Ganger, M. K. McKusick, K. A. Smith, C. A. N.
Soules, and C. A. Stein. Journaling versus soft updates: Asyn-
chronous meta-data protection in file systems. In Proc. 2000
USENIX Annual Technical Conference, pages 71–84, June 2000.

[27] Sivathanu, G., S. Sundararaman, and E. Zadok. Type-safe disks.
In Proc. 7th Symposium on Operating Systems Design and Imple-
mentation (OSDI ’06), pages 15–28, Nov. 2006.

[28] Sivathanu, M., V. Prabhakaran, F. Popovici, T. Denehy, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Semantically-smart
disk systems. In Proc. 2nd USENIX Conference on File and
Storage Technologies (FAST ’03), Mar. 2003.

[29] Sivathanu, M., A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and
S. Jha. A logic of file systems. In Proc. 4th USENIX Conference
on File and Storage Technologies (FAST ’05), pages 1–15, Dec.
2005.

[30] Sivathanu, M., L. N. Bairavasundaram, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Database-aware semantically-smart
storage. In Proc. 4th USENIX Conference on File and Storage
Technologies (FAST ’05), pages 239–252, Dec. 2005.

[31] Skinner, G. C. and T. K. Wong. “Stacking” Vnodes: A progress
report. In Proc. USENIX Summer 1993 Technical Conference,
pages 161–174, June 1993.

[32] Soules, C. A. N., G. R. Goodson, J. D. Strunk, and G. R. Ganger.
Metadata efficiency in versioning file systems. In Proc. 2nd
USENIX Conference on File and Storage Technologies (FAST ’03),
pages 43–58, Mar. 2003.

[33] Ts’o, T. Re: [evals] ext3 vs reiser with quotas, Dec. 19
2004. http://linuxmafia.com/faq/Filesystems/reiserfs.
html (retrieved August 2007).

[34] Tweedie, S. Journaling the Linux ext2fs filesystem. In Proc. 4th
Annual LinuxExpo, 1998.

[35] Vilayannur, M., P. Nath, and A. Sivasubramaniam. Providing
tunable consistency for a parallel file store. In Proc. 4th USENIX
Conference on File and Storage Technologies (FAST ’05), pages
17–30, Dec. 2005.

[36] Waychison, M. Re: fallocate support for bitmap-based files. linux-
ext4 mailing list, June 29 2007. http://www.mail-archive.
com/linux-ext4@vger.kernel.org/msg02382.html (retrieved
August 2007).

[37] Wright, C. P. Extending ACID Semantics to the File System via
ptrace. PhD thesis, Stony Brook University, May 2006.

[38] Wright, C. P., M. C. Martino, and E. Zadok. NCryptfs: A secure
and convenient cryptographic file system. In Proc. 2003 USENIX
Annual Technical Conference, pages 197–210, June 2003.

[39] Wright, C. P., J. Dave, P. Gupta, H. Krishnan, D. P. Quigley,
E. Zadok, and M. N. Zubair. Versatility and Unix semantics in
namespace unification. ACM Transactions on Storage, Mar. 2006.

[40] Yang, J., P. Twohey, D. Engler, and M. Musuvathni. Using model
checking to find serious file system errors. In Proc. 6th Symposium
on Operating Systems Design and Implementation (OSDI ’04),
pages 273–288, Dec. 2004.

[41] Yang, J., C. Sar, and D. Engler. eXplode: a lightweight, general
system for finding serious storage system errors. In Proc. 7th
Symposium on Operating Systems Design and Implementation
(OSDI ’06), pages 131–146, Nov. 2006.

[42] Zadok, E. and J. Nieh. FiST: A language for stackable file systems.
In Proc. 2000 USENIX Annual Technical Conference, pages 55–
70, June 2000.

[43] Zadok, E., I. Badulescu, and A. Shender. Extending File Sys-
tems Using Stackable Templates. In Proc. 1999 USENIX Annual
Technical Conference, pages 57–70, June 1999.

310320

	Introduction
	Related Work
	Patch Model
	Disk Behavior
	Dependencies
	Dependency Implementation
	Examples
	Patch Implementation
	Discussion

	Patch Optimizations
	Hard Patches
	Hard Patch Merging
	Overlap Merging
	Ready Patch Lists
	Other Optimizations

	Patchgroups
	Interface and Implementation
	Case Studies

	Modules
	ext2 and UFS
	Journal
	Buffer Cache
	Loopback

	Implementation
	Evaluation
	Methodology
	Optimization Benefits
	Benchmarks and Linux Comparison
	Correctness
	Patchgroups
	Summary

	Conclusion

