
Generalized Fisheye Views

George W. Furnas

Bell Communications Research
435 South St.

Morristown, New Jersey
201-829-4289

Abstract

In many contexts, humans often represent their own
"neighborhood" in great detail, yet only major landmarks
further away. This suggests that such views ("fisheye
views") might be useful for the computer display of large
information structures like programs, data bases, online
text, etc. This paper explores fisheye views presenting, in
turn, naturalistic studies, a general formalism, a specific
instantiation, a resulting computer program, example
displays and an evaluation.

1. Introduction.

Computer programs, structured data bases, organizational
charts, on-line text, menu access systems and maps -- users
are forced to view all of these potentially huge structures
through windows sometimes as small as a 24x80 character
video display. The problem is that there is too much to
show, ranging from local details to global structural
information. Currently the most common viewing interface
is simply a small window for looking into the structure,
centered at some point. For example, a simple editor
window might show a line in a program and a dozen
consecutive lines before and after it. A menu based retrieval
system might show the set of choices available at the
current node. The user navigates through the structure by
moving the window around (by scrolling, traversing arcs,
etc). As a result it is easy to get lost, i.e., to find oneself in
some incomprehensible wrong place with little idea how to
get to the right one (e.g., [1]). Presumably this happens
because such views have little information about the global
structure, and where the current view fits in. Several
techniques have arisen to try to deal with this problem,
most notably variants on a Zoom Lens analogy -- making
available both a global and detailed view of a structure,
either side by side, as with paper road maps, or in sequence.
(One of the earliest examples was in Englebart's Knowledge

Augmentation Workshop [2].)

We have been exploring a different viewing strategy, based
on an analogy to a very wide angle, or "fisheye", lens. Such
a lens can show places nearby in great detail while still
showing the whole world -- simply by showing the more
remote regions in successively less detail. An instructive
caricature of this appears in the "New Yorker's View of the
United states", a poster by Steinberg and now much
imitated for other cities. In the poster, midtown Manhattan
is shown street by street. To the west, New Jersey is a
patch of color on the other side of a blue-grey ribbon
labeled "Hudson." The rest of the country is reduced to a
few principal landmarks (Chicago, the Rocky Mountains,
California, etc.) disappearing in the distance. While this
representation is certainly a distorted view of the U.S., it is
a manageable abbreviation in which the most important
features of the New Yorker's world are preserved. The view
allows the New Yorker to answer local questions like,
"Where is the closest mail box?", but also more global
questions like "To ski in the Rocky Mountains, does it
make more sense to connect through LA or Chicago?".  If
New Yorkers' fisheye views allow them to answer such
questions, perhaps analogous views would be useful in
computer interfaces.

The fundamental motivation of a fisheye strategy is to
provide a balance of local detail and global context. Local
detail is needed for the local interactions with a structure,
whether that means finding the nearest mailbox in midtown
or editing a particular line of a large program. The global
context is needed to tell the user what other parts of the
structure exist and where they are (e.g., the Rockies are out
west, beyond Chicago but before LA; there is an if
construct above the else construct currently being edited).
Global information may also be important even in the mere
interpretation of local detail (e.g., the meaning of the else
statement in fact depends on the content of the associated,
but remote, if() statement).

By looking for an analogy to the New Yorker's abbreviated
view, i.e., a trade-off of detail with distance, it is possible
to consider fisheye views in a suprising number of
domains. In this paper we look at naturally occurring
fisheye views, and then turn to the question of creating
them for computer interfaces.

Published in Human Factors in Computing Systems CHI ‘86 Conference Proceedings, 16-23. 1986.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1986 ACM 0-89791-180-6/86/0400 - 0016



2. Naturally occurring fisheye views.

We have undertaken studies of naturally occurring fisheye
views for several reasons. At one level, as cognitive
psychologists, we were simply interested in how humans
represent large structures in their heads. More relevant here,
we thought that if fisheye views were ubiquitous it might
be because they were "naturally" useful in human
interactions, and might therefore make effective interfaces.
In addition we hoped to learn more about what such views
might look like, anticipating that findings might suggest
features for fisheye interface design.

We conducted several experiments using a simple
production paradigm. Subjects were told to imagine that a
young child of a newly immigrated neighbor family had
asked to be told about X's (where X's are States, Presidents,
Events in History,...). The subject's task was simply to list
10 examples of category X that they thought the child
should know about. The empirical fisheye conjecture is
that, to be cited, exemplars would have to be either of great
a priori importance or "close to home". Such fisheye
subsets were indeed listed. For states, subjects in both New
Jersey and Texas mention states of major a priori
importance (e.g., New York and California), and then show
geographic bias (e.g, Texans listed Arkansas, New
Jerseyans listed Connecticut). Similarly, subjects listed
presidents that were either pre-eminent (e.g., Washington,
Lincoln) or recent (e.g., Carter, Reagan).

Using other techniques, we have found that people in a
large corporation know a fisheye subset of the management
structure. Employees know local department heads, but
only the Vice Presidents of remote divisions.

We have also looked at academicians' views of the academic
world and found that in similarity ratings, the disciplines
near one's own loom extra large: an experimental
psychologist will judge the pair "management" and
"marketing" more similar than "experimental psychology"
and "psychiatry," but people in the business school will
make the opposite evaluation.

By examining the patterns of stories in 12 newspapers from
three geographic regions, we found news editors have
evolved a fisheye editorial strategy. The papers will contain
local news stories (e.g., a continuing local garbage strike)
and only more distant ones that are compensatingly greater
importance (e.g., the bombing of the U.S. embassy in
Beirut).

While there may be many interesting processes behind these
results, we draw the conclusion that many naturally
occurring views of the world do exhibit a fisheye character.
This suggests that apropriately generalized fisheye views
might provide a good viewing interface for large structures.

3. Formalizing generalized fisheye views.

In order to apply the fisheye concept to interface design, the
idea must be clarified formally.  Fisheye views are an
example of a more basic strategy for the display of a large
structures. This basic strategy uses a "Degree of Interest"
(DOI) function which assigns to each point in the structure,
a number telling how interested the user is in seeing that
point, given the current task. A display of any desired size,
n, can then be made by simply showing the n "most
interesting" points, as indicated by the DOI function.

At this general level, successful display would depend on
discovering appropriate DOI functions. One might, for
example, seek to understand and decompose them in terms
of more primitive aspects of the structure.  Generalized
fisheye views arise by decomposing the DOI into two
components: a priori importance and distance. In its
simplest, additive form the generalized fisheye Degree of
Interest function is,

DOIfisheye (x|.=y) = API(x) – D(x,y)

where DOIfisheye is, according to the fisheye model, the user's
Degree of Interest in a point, x, given that the current point
of focus is y, API(x) is the global A Priori Importance of x
and D(x,y) is the Distance between x and the current point
y. That is, the interest increases with a priori importance
and decreases with distance. (Presumably the usefulness of a
DOI so defined will depend at least on the suitable
definition of distance and a priori importance.)1

This simple formulation allows fisheye views to be defined
in any sort of structure where the necessary components can
be defined. Rooted tree structures will be illustrated as a
straightforward example that is quite different from the New
Yorker's map.  They are of particular interest since many
large structures on computers are trees: structured
programming languages (e.g., like LISP, PASCAL and C),
hierarchically organized text (e.g., manuals, legal codes),
various highly structured scientific and technological
knowledge domains (e.g., biological taxonomies),
hierarchical file systems (e.g., UNIX), corporate
management structures, hierarchical menu access systems,
etc. The definition of fisheye DOI functions for trees would
thus allow fisheye displays for these structures.

To define the necessary components for a tree, consider that
D(x,y) has as a natural instantiation as dtree(x,y), the path
length distance between x and y in the tree. Similarly
API(x) can become –dtree(x,root), the distance of x from the
root, under the approximating assumption that points at
levels closer to the root are intrinisically more important.
(The minus sign simply gives the correct "sense" to the

                                                
1 The strategy of using a DOI with a threshold to abbreviate a display

requires only ordinal properties. Thus, in the current discussion, the
DOI function is not required to be positive. In fact, the example given
below has only negative values. Extensions of this simple DOI strategy
can depend on more than ordinal relationships, but not discussed here.



arithmetic term -- further from the root means less
importance.) This gives,

DOIfisheye(tree) (x|.=y)  =  –(dtree(x,y) + dtree(x,root))

Figure 1 illustrates these two components, and how they
add together point by point to form the fisheye DOI
function for the tree. In the resulting DOI function, an
arithmetically larger number means the corresponding point
is more interesting for interactions focused at y. Thus, the
points with DOI=–3 form the most "interesting" subset,
those with DOI=–5 form the next most "interesting"
subset, etc.

Thus by choosing a threshold, k, and only displaying those
points with DOI(x) ≥ k, one can obtain fisheye views of

different sizes. For example, letting k=–3 selects only the
most interesting subset which, by the fisheye DOI, turns
out to be the direct ancestral lineage between y and the root
of the tree ("Zero-order fisheye view", see figure 2a, and
figure 1). This subset is "most interesting" basically
because points on that lineage increase in a priori
importance in exact compensation for their corresponding
increase in distance. If the display threshold is lowered to
include the next most interesting subset ("First-order
fisheye view", at k=–5, Figure 2b), the ancestral line and its
"siblings" are included. At the next threshold value
("Second-order fisheye view", at k=–7, Figure 2c) "cousins"
would be added. Consistent with the original fisheye
inspiration, at any choice of threshold, only higher level

(a)  Distance from y:

dtree(x,y)

           _____________________3_____________________
           |                    |                    |
    _______4_______      _______4_______      _______2_______
    |      |      |      |      |      |      |      |      |
  __5__  __5__  __5__  __5__  __5__  __5__  __1__  __3__  __3__
  | | |  | | |  | | |  | | |  | | |  | | |  | | |  | | |  | | |
  6 6 6  6 6 6  6 6 6  6 6 6  6 6 6  6 6 6  0 2 2  4 4 4  4 4 4
                                            y
                                      "current focus"

(b) A Priori Importance in the tree:

Imp(x) = – dtree(x,root)

                               root
           _____________________0_____________________
           |                    |                    |
    ______-1_______      ______-1_______      ______-1_______
    |      |      |      |      |      |      |      |      |
  _-2__  _-2__  _-2__  _-2__  _-2__  _-2__  _-2__  _-2__  _-2__
  | | |  | | |  | | |  | | |  | | |  | | |  | | |  | | |  | | |
 -3-3-3 -3-3-3 -3-3-3 -3-3-3 -3-3-3 -3-3-3 -3-3-3 -3-3-3 -3-3-3
                                            y
                                      "current focus"

(c) The Fisheye DOI:

DOIfisheye(tree) (x|.=y)  = API(x) – D(x,y)

=  –( dtree(x,y) + dtree(x,root) )

                               root
           ____________________-3_____________________
           |                    |                    |
    ______-5_______      ______-5_______      ______-3_______
    |      |      |      |      |      |      |      |      |
  _-7__  _-7__  _-7__  _-7__  _-7__  _-7__  _-3__  _-5__  _-5__
  | | |  | | |  | | |  | | |  | | |  | | |  | | |  | | |  | | |
 -9-9-9 -9-9-9 -9-9-9 -9-9-9 -9-9-9 -9-9-9 -3-5-5 -7-7-7 -7-7-7
                                            y
                                      "current focus"

Figure 1. Distance, A Priori Importance and the Fisheye DOI for a rooted tree.



points (i.e., by assumption, more major features) are shown
for further regions of the tree.

These views have a number of interesting properties. In a
regular tree, (1) the fisheye view achieves a logarithmically
compressed display of the original tree. (2) Because of the
convex, nested structure of the DOI sets, there exist fast
algorithms for computing such views, in time proportional
to the size of the view, and not the size of the tree. (3) As
the point of focus changes from y to some new y', the
change in view is easily calculated, since the whole DOI
function above their common ancestor is unchanged. (4)
Users may move through the structure using such fisheye
views in a number of steps proportional to the log of the
number of intervening leaves of the tree. These formal

properties, among others, underscore the computational and
interaction efficency possible with fisheye views.

4. Fisheye interfaces.

The fisheye DOI function derived for trees in the previous
section was used to develop a program for making first-
order fisheye views of tree structured text files. An example,
showing views of a C-program, is presented in figures 3, 4
and 5. (This is a short calculator program which does
reverse-Polish-notation integer addition and subtraction.)
The simple flat window view of figure 3 shows lots of
detail, some of which is not likely to be very useful when
working on the indicated line (marked by ">>"). The
arithmetic details of the previous case intrude in the top of

(a) Zero-order tree fisheye:

                               root
                               -3
                                |
                               -3
                                |
                               -3
                                |
                               -3
                                y
                          "current focus"

(b) First-order tree fisheye:

                               root

           ____________________-3_____________________
           |                    |                    |
          -5                   -5             ______-3_______
                                              |      |      |
                                            _-3__   -5     -5
                                            | | |
                                           -3-5-5
                                            y
                                      "current focus"

(c) Second-order tree fisheye:

                               root

           ____________________-3_____________________
           |                    |                    |
    ______-5_______      ______-5_______      ______-3_______
    |      |      |      |      |      |      |      |      |
   -7     -7     -7     -7     -7     -7    _-3__  _-5__  _-5__
                                            | | |  | | |  | | |
                                           -3-5-5 -7-7-7 -7-7-7
                                            y
                                      "current focus"

Figure 2. Zero-order, first-order and second-order fisheye views for a tree.



the picture, for example. Very little orienting information
is available.

On the other hand, the fisheye view, seen in figure 4,
shows that the programmer is at a short for loop, within
the e case of a switch in which there are also four other
cases +, -, q, and default. This switch is in the else block
of the indicated if statement, within a while loop, in
program main(), etc. It is conjectured that being able to
see their work focus together with such contextual
information will be of use to programmers working with
structured code. Figure 5 compares the content of these
two views. The box indicates the standard window view of
figure 3 and the underlining shows the lines in the fisheye
view of figure 4. The main difference is that, while both
show detail at the center, some superfluous detail at the
edges of the flat view has been traded for some more
remote but higher-level, contextual information. Related
program viewing schemes have been proposed recently for
syntax-driven program editors [3] [4] [5]. These have made
use almost exclusively of the distance component,
whereas we also emphasize a priori importance. Views
that are effectively first order tree fisheye views have
arisen in the browsers of the SMALLTALK [6] and
INTERLISP-D environments.

We conjectured that such fisheye views should be more
useful, at least in for the tasks of navigating around or
examining unfamiliar parts of a large file. To test this we
ran an experiment in which 20 subjects were asked to
perform a navigation-related task in a large unfamiliar

hierarchical structure. The task was meant to compare
various views' ability to support a basic cognitive
operation for moving from one (undesired) location in a
file to another (target) location. Specifically subjects were
asked to determine the relative positions ("Which comes
first?") for two different parts of the hierarchical structure,
given various views of those parts. One sort of view was
a 22-line standard "flat" view of the file, centered at a
randomly chosen line of focus. The other sort of view was
a first-order fisheye view centered at the line. Subjects
received either two flat views, two fisheye views, or one
of each on which to base their decision, and saw a total of
16 pairs in all. In order to prevent subjects from
answering on the basis of prior knowledge, a very
unfamiliar structure was used -- a botanical taxonomy of
the Class of Dicotyledons, classified down to families.

We found that people were only 52% correct with two flat
views, 64% correct with one fisheye and one flat view,
and 75% correct with two fisheye views. That is, as
expected, fisheye views are far superior. This result is
most certainly simply because the fisheye shows the
necessary structural information, and the fact is not lost
on the subjects.

In addition to implementing fisheye views for indent
structured programs of figures 3-5 and the botanical
taxonomies of our experiment, we have an interactive
fisheye veiwer for part of the Texas Legal Codes, text

   28                          t[0] = (t[0] + 10000)
   29                               - x[0];
   30                          for(i=1;i<k;i++){
   31                               t[i] = (t[i] + 10000)
   32                                    - x[i]
   33                                    - (1 - t[i-1]/10000);
   34                               t[i-1] %= 10000;
   35                          }
   36                          t[k-1] %= 10000;
   37                          break;
   38                     case 'e':
 >>39                          for(i=0;i<k;i++) t[i] = x[i];
   40                          break;
   41                     case 'q':
   42                          exit(0);
   43                     default:
   44                          noprint = 1;
   45                          break;
   46                }
   47                if(!noprint){
   48                     for(i=k - 1;t[i] <= 0 && i > 0;i--);
   49                     printf("%d",t[i]);
   50                     if(i > 0) {

Figure 3. Standard 'flat-window' view of a C program. Line numbers are in the left margin.



outlines,2 a decision tree (identification key) for types of
trees, a directory of telephone area codes, our corporate
directory, and UNIX file hierarchy listings. All of these
applications are based on the tree fisheye DOI function
derived above.

5. Conclusions.

This paper has described generalized fisheye views.
Fisheye views provide a balance of local detail and global
context by trading off a priori importance against distance.
They appear naturally in many human contexts and can be
implemented for a wide variety of computer information
structures. The formal definition presented here allows
interfaces to be defined and explored in any structure where
distance and some display-relevant notion of a priori
importance can be defined. This is possible for lists, trees,
acyclic directed graphs (DAG's, such as ISA networks in
knowledge representations), general graphs and Euclidean
spaces, among other structures.3 It is important to
remember that, unlike the geographic example which
inspired the metaphor (the New Yorker's View), the
underlying stuctures need not be spatial nor the "output"
even graphic. For example, the stucture might be a

                                                
2 Fisheye views of outlines and structured text like legal codes have

much in common with views generated by "outline processors", now
coming onto the market place, and the early hypertext ideas of
Nelson [7]

3 We note that "A Priori Importance" need not be structurally defined,
like "level" in a tree. It may be independently specified for each
point, though often less efficient algorithms may result.

semantic net and the output be a fisheye-structured
exposition in natural language text.

Even without formal treatment, fisheye-type views can be
invented simply by analogy -- trading off distance and
detail. One such example, with a rather different flavor, is
presented in figure 6. It is a "fisheye calendar", showing
the current day in "day-at-a-time" detail, the current week
in "week-at-a-time" detail and the rest of the month in
"month-at-a-time" detail. The goal is to give the user
needed hour-by-hour information about today, but some
sense of the appointment structure for the rest of the week
and month. We are currently implementing an interactive
version of this calendar.4 A number of results from our
studies of natural fisheye representations suggested future
work in creating views. In particular some effects were not
consistent with a simple fisheye model: (1) In some cases,
the sphere of local interest was somewhat exaggerated
when compared to a simple immediate fisheye tradeoff --
suggesting a similar need in display design. For example
one might include just a few more local lines around the
for loop line in figure 4. (2) Often there were cases of
"multi-focus" fisheye views, as in the geographic study
when the subject had lived in more than one state. In this
case detail occurred at both foci and fell off at points far
from either. This observation serves to remind that users
might need to see detail in more than one place at a time,

                                                
4 The layout of this calendar is very similar to some graphics work by

Farrand [8].

     1 #define DIG 40
     2 #include <stdio.h>
  ...4 main()
     5 {
     6      int c, i, x[DIG/4], t[DIG/4], k = DIG/4, noprint = 0;
  ...8      while((c=getchar()) != EOF){
     9           if(c >= '0' && c <= '9'){
 ...16           } else {
    17                switch(c){
    18                     case '+':
 ...27                     case '-':
 ...38                     case 'e':
  >>39                          for(i=0;i<k;i++) t[i] = x[i];
    40                          break;
    41                     case 'q':
 ...43                     default:
 ...46                }
    47                if(!noprint){
 ...57                }
    58           }
    59           noprint = 0;
    60      }
    61 }

Figure 4. A fisheye view of the C program. Line numbers are in the left margin. "..." indicates missing
lines.



    1   #define     DIG     40  
    2   #include     <stdio.h>  
    3
    4   main()  
    5   {  
    6        int     c,     i,     x[DIG/4],     t[DIG/4],   k     =   DIG/4,     noprint   =   0;  
    7
    8        while((c=getchar())     !=     EOF){
    9             if(c     >=     '0'   &&     c   <=   '9'){  
   10                x[0] = 10 * x[0] + (c-'0');
   11                for(i=1;i<k;i++){
   12                     x[i] =  10 * x[i]
   13                          + x[i-1]/10000;
   14                     x[i-1] %= 10000;
   15                }
   16             }     else   {  
   17                  switch(c){  
   18                       case     '+':  
   19                          t[0] = t[0] + x[0];
   20                          for(i=1;i<k;i++){
   21                               t[i] = t[i] + x[i]
   22                                    + t[i-1]/10000;
   23                               t[i-1] %= 10000;
   24                          }
   25                          t[k-1] %= 10000;
   26                          break;
   27                       case     '-':  

   28                          t[0] = (t[0] + 10000)
   29                               - x[0];
   30                          for(i=1;i<k;i++){
   31                               t[i] = (t[i] + 10000)
   32                                    - x[i]
   33                                    - (1 - t[i-1]/10000);
   34                               t[i-1] %= 10000;
   35                          }
   36                          t[k-1] %= 10000;
   37                          break;
   38                       case     'e':  
   39                            for(i=0;i<k;i++)   t[i]   =     x[i];
   40                            break;  
   41                       case     'q':  
   42                          exit(0);
   43                       default:  
   44                          noprint = 1;
   45                          break;
   46                  }  
   47                  if(!noprint){  
   48                     for(i=k - 1;t[i] <= 0 && i > 0;i--);
   49                     printf("%d",t[i]);
   50                     if(i > 0) {
   51                          for(i-- ; i >= 0; i--){
   52                               printf("%04d",t[i]);
   53                          }
   54                     }
   55                     putchar('\n');
   56                     for(i=0; i > k;i++) x[i] = 0;
   57                  }  
   58             }  
   59             noprint     =   0;  
   60        }  
   61   }  

Figure 5. Full view of the C program. Box shows lines in "flat" view. Underlines show
lines in the fisheye view.



 with a fisheye context around each. The fisheye calendar
we are currently developing will explore this capability --
showing two days at higher detail, when desired. (3)
Finally, there were typically additional, non-fisheye effects
(e.g., human-interest newspaper stories could have almost
any geographic origin). This is a good reminder that while
perhaps useful, fisheye views do not capture everything.
There may also have to be ad hoc, domain and task
dependent components of any display of a large structure.

REFERENCES

[1]  Robertson, G., D. McCracken and A. Newell The
ZOG approach to man- machine communication,
Technical Report CMU-CS-97-148, Department of
Computer Science, Carnegie Mellon University,
Pittsburgh, PA, 1979.

[2]  D. C. Englebart and W. K. English, A research center
for augmenting human intellect, AFIPS Conference
Proceedings, Vol. 33, 1968, 15ff. Also SRI-ARC Catalog
item 3954.

[3]  Alberga, C. N., A. L. Brown, G. B. Leeman, M.

Mikelsons and M. N. Wegman, A program development
tool, IBM Research Report, Computer Science
Department, IBM Thomas J. Watson Research Center,
Yorktown Heights, New York,1979.

[4]  Horton, M. Design of a Multi Language Editor,
Doctoral Thesis, U. C. Berkeley Computer Science, 1981.

[5]  Mikelsons, M., IBM Research Report, Computer
Science Department, IBM Thomas J. Watson Research
Center, Yorktown Heights, New York.

[6]  Teslar, L, The Smalltalk Environment, BYTE, 6,
1981, 90-147.

[7]  Nelson, T. Computer Lib Hugo's Book Source:
Chicago, IL, 1974.

[8]  Farrand, W. A. Information Display in Interactive
Design, Doctoral Thesis, Department of Engineering,
University of California at Los Angeles, 1973.

Figure 6. A Fisheye Calendar.


