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Abstract

Localization Quality Estimation (LQE) is crucial and

popular in the recent advancement of dense object detec-

tors since it can provide accurate ranking scores that benefit

the Non-Maximum Suppression processing and improve de-

tection performance. As a common practice, most existing

methods predict LQE scores through vanilla convolutional

features shared with object classification or bounding box

regression. In this paper, we explore a completely novel and

different perspective to perform LQE – based on the learned

distributions of the four parameters of the bounding box.

The bounding box distributions are inspired and introduced

as “General Distribution” in GFLV1, which describes the

uncertainty of the predicted bounding boxes well. Such a

property makes the distribution statistics of a bounding box

highly correlated to its real localization quality. Specifi-

cally, a bounding box distribution with a sharp peak usually

corresponds to high localization quality, and vice versa. By

leveraging the close correlation between distribution statis-

tics and the real localization quality, we develop a consid-

erably lightweight Distribution-Guided Quality Predictor

(DGQP) for reliable LQE based on GFLV1, thus producing

GFLV2. To our best knowledge, it is the first attempt in ob-

ject detection to use a highly relevant, statistical represen-

tation to facilitate LQE. Extensive experiments demonstrate

the effectiveness of our method. Notably, GFLV2 (ResNet-

101) achieves 46.2 AP at 14.6 FPS, surpassing the previous

state-of-the-art ATSS baseline (43.6 AP at 14.6 FPS) by ab-

solute 2.6 AP on COCO test-dev, without sacrificing the

efficiency both in training and inference.
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1. Introduction

Dense object detector [28, 23, 42, 33, 18, 27] which di-

rectly predicts pixel-level object categories and bounding

boxes over feature maps, becomes increasingly popular due

to its elegant and effective framework. One of the cru-

cial techniques underlying this framework is Localization

Quality Estimation (LQE). With the help of better LQE,

high-quality bounding boxes tend to score higher than low-

quality ones, greatly reducing the risk of mistaken suppres-

sion in Non-Maximum Suppression (NMS) processing.

Many previous works [28, 29, 30, 33, 40, 36, 14, 18, 39,

43, 27] have explored LQE. For example, the YOLO family

[28, 29, 30] first adopt Objectness to describe the localiza-

tion quality, which is defined as the Intersection-over-Union

(IoU) between the predicted and ground-truth box. After

that, IoU is further explored and proved to be effective in

IoU-Net [13], IoU-aware [36], PAA [14], GFLV1 [18] and

VFNet [39]. Recently, FCOS [33] and ATSS [40] intro-

duce Centerness, the distance degree to the object center, to

suppress low-quality detection results. Generally, the afore-

mentioned methods share a common characteristic that they

are all based on vanilla convolutional features, e.g., features

of points, borders or regions (see Fig. 2 (a)-(g)), to estimate

the localization quality.

Different from previous works, in this paper, we explore

a brand new perspective to conduct LQE – by directly uti-

lizing the statistics of bounding box distributions, instead

of using the vanilla convolutional features (see Fig. 2).

Here the bounding box distribution is introduced as “Gen-

eral Distribution” in GFLV1 [18], where it learns a discrete

probability distribution of each predicted edge (Fig. 1 (a))

for describing the uncertainty of bounding box regression.

Interestingly, we observe that the statistic of the General

Distribution has a strong correlation with its real localiza-

tion quality, as illustrated in Fig. 1 (b). More specifically

in Fig. 1 (c) and (d), the shape (flatness) of bounding box

distribution can clearly reflect the localization quality of the
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Figure 1: Motivation of utilizing the highly relevant statistics of

learned bounding box distributions to guide the better genera-

tion of its estimated localization quality. (a): The illustration of

General Distribution in GFLV1 [18] to represent bounding boxes,

which models the probability distribution of the predicted edges.

(b): The scatter diagram of the relation between Top-1 (mean

of four sides) value of General Distribution of predicted boxes

and their real localization quality (IoU between the prediction and

ground-truth), calculated over all validation images on COCO [22]

dataset, based on GFLV1 model. (c) and (d): Two specific exam-

ples from (b), where the sharp distribution corresponds to higher

quality, whilst the flat one stands for lower quality usually. Green:

predicted bounding boxes; White: ground-truth bounding boxes.

predicted results: the sharper the distribution, the more ac-

curate the predicted bounding box, and vice versa. Con-

sequently, it can potentially be easier and very efficient to

conduct better LQE by the guidance of the distribution in-

formation, as the input (distribution statistics of bounding

boxes) and the output (LQE scores) are highly correlated.

Inspired by the strong correlation between the dis-

tribution statistics and LQE scores, we propose a very

lightweight sub-network with only dozens of (e.g., 64) hid-

den units, on top of these distribution statistics to pro-

duce reliable LQE scores, significantly boosting the detec-

tion performance. Importantly, it brings negligible addi-

tional computation cost in practice and almost does not af-

fect the training/inference speed of the basic object detec-

tors. In this paper, we term this lightweight sub-network

as Distribution-Guided Quality Predictor (DGQP), since it

relies on the guidance of distribution statistics for quality

predictions.

By introducing the lightweight DGQP that predicts re-

liable LQE scores via statistics of bounding box distribu-

tions, we develop a novel dense object detector based on the

framework of GFLV1, thus termed GFLV2. To verify the

effectiveness of GFLV2, we conduct extensive experiments

on the challenging benchmark COCO [22]. Notably, based

on ResNet-101 [11], GFLV2 achieves impressive detection

performance (46.2 AP), i.e., 2.6 AP gains over the state-

of-the-art ATSS baseline (43.6 AP) on COCO test-dev,

under the same training schedule and without sacrificing the

efficiency both in training and inference.

In summary, our contributions are as follows:

• To our best knowledge, our work is the first to bridge

the statistics of bounding box distributions and localization

quality estimation in an end-to-end dense object detection

framework.

• The proposed GFLV2 is considerably lightweight and

cost-free in practice. It can also be easily plugged into most

dense object detectors with a consistent gain of ∼2 AP, and

without loss of training/inference speed.

• Our GFLV2 (Res2Net-101-DCN) achieves very com-

petitive 53.3 AP (multi-scale testing) on COCO dataset

among dense object detectors.

2. Related Work

Formats of LQE: Early popular object detectors [9, 31, 1,

10] simply treat the classification confidence as the formu-

lation of LQE score, but there is an obvious inconsistency

between them, which inevitably degrades the detection per-

formance. To alleviate this problem, AutoAssign [43] and

BorderDet [27] employ additional localization features to

rescore the classification confidence, but they still lack an

explicit definition of LQE.

Recently, FCOS [33] and ATSS [40] introduce a novel

format of LQE, termed Centerness, which depicts the dis-

tance degree to the center of the object. Although Center-

ness is effective, recent researches [18, 39] show that it has

certain limitations and may be suboptimal for LQE. SABL

[35] introduces boundary buckets for coarse localization,

and utilizes the averaged bucketing confidence as a formu-

lation of LQE.

After years of technical iterations [28, 29, 30, 13, 34, 12,

36, 14, 18, 39], IoU has been deeply studied and becomes

increasingly popular as an excellent measurement of LQE.

IoU is first known as the Objectness in YOLO [28, 29, 30],

where the network is supervised to produce estimated IoUs
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Figure 2: Comparisons of input features for predicting localization quality between existing works (left) and ours (right). Existing works

focus on different spatial locations of convolutional features, including (a): point [28, 29, 30, 33, 40, 36, 14, 18], (b): region [13], (c):

border [27] dense points, (d): border [27] middle points, (e): border [27] extreme points, (f): regular sampling points [39], and (g):

deformable sampling points [4, 5]. In contrast, we use the statistic of learned box distribution to produce reliable localization quality.

between predicted boxes and ground-truth ones, to reduce

ranking basis during NMS. Following the similar paradigm,

IoU-Net [13], Fitness NMS [34], MS R-CNN [12], IoU-

aware [36], PAA [14] utilize a separate branch to perform

LQE in the IoU form. Concurrently, GFLV1 [18] and

VFNet [39] demonstrate a more effective format, by merg-

ing the classification score with IoU to reformulate a joint

representation. Due to its great success [18, 39], we build

our GFLV2 based on the Classification-IoU Joint Represen-

tation [18], and develop a novel approach for reliable LQE.

Input Features for LQE: As shown in the left part of

Fig. 2, previous works directly use convolutional features as

input for LQE, which only differ in the way of spatial sam-

pling. Most existing methods [28, 29, 30, 33, 40, 36, 14, 18]

adopt the point features (see Fig. 2 (a)) to produce LQE

scores for high efficiency. IoU-Net [13] predicts IoU based

on the region features as shown in Fig. 2 (b). BorderDet

[27] designs three types of border-sensitive features (see

Fig. 2 (c)-(e)) to facilitate LQE. Similar with BorderDet, a

star-shaped sampling manner (see Fig. 2 (f)) is designed in

VFNet [39]. Alternatively, HSD [2] and RepPoints [38, 4]

focus on features with learned locations (see Fig. 2 (g)) via

the deformable convolution [5, 46].

The aforementioned methods mainly focus on extracting

discriminating convolutional features with various spatial

aspects for better LQE. Different from previous methods,

our proposed GFLV2 is designed in an artful perspective:

predicting LQE scores by its directly correlated variables—

the statistics of bounding box distributions (see the right

part of Fig. 2).

3. Method

In this section, we first briefly review the Generalized

Focal Loss (i.e., GFLV1 [18]), and then derive the proposed

GFLV2 based on the relevant concepts and formulations.

3.1. Generalized Focal Loss V1

Classification-IoU Joint Representation: This represen-

tation is the key component in GFLV1, which is designed

to reduce the inconsistency between localization quality es-

timation and object classification during training and in-

ference. Concretely, given an object with category label

c ∈ {1, 2, ...,m} (m indicates the total number of cat-

egories), GFLV1 utilizes the classification branch to pro-

duce the joint representation of Classification and IoU as

J = [J1, J2, ..., Jm], which satisfies:

Ji =

{

IoU(bpred, bgt), if i = c;
0, otherwise,

(1)

where IoU(bpred, bgt) denotes the IoU between the predict

bounding box bpred and the ground truth bgt.

General Distribution of Bounding Box Representation:

Modern detectors [31, 21, 33] usually describe the bounding

box regression by Dirac delta distribution: y =
∫ +∞

−∞
δ(x−

y)x dx. Unlike them, GFLV1 introduces a flexible Gen-

eral Distribution P (x) to represent the bounding box, where

each edge of the bounding box can be formulated as: ŷ =
∫ +∞

−∞
P (x)x dx =

∫ yn

y0

P (x)x dx, under a predefined out-

put range of [y0, yn]. To be compatible with the convolu-

tional networks, the continuous domain is converted into

the discrete one, via discretizing the range [y0, yn] into a

list [y0, y1, ..., yi, yi+1, ..., yn−1, yn] with even intervals ∆

(∆ = yi+1 − yi, ∀i ∈ {0, 1, ..., n − 1}). As a result, given

the discrete distribution property
∑n

i=0 P (yi) = 1, the esti-

mated regression value ŷ can be presented as:

ŷ =

n
∑

i=0

P (yi)yi. (2)

Compared with the Dirac delta distribution, the General

Distribution P (x) can faithfully reflect the prediction qual-

ity (see Fig. 1 (c)-(d)), which is the cornerstone of this work.

3.2. Generalized Focal Loss V2

Decomposed Classification-IoU Representation: Al-

though the joint representation solves the inconsistency

problem [18] between object classification and quality es-

timation during training and testing, there are still some

limitations in using only the classification branch to pre-

dict the joint representation. In this work, we decompose

the joint representation explicitly by leveraging information
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Figure 3: The illustration of the proposed Generalized Focal Loss V2 (GFLV2), where a novel and tiny Distribution-Guided Quality

Predictor (DGQP) uses the statistics of learned bounding box distributions to facilitate generating reliable IoU quality estimations.

from both classification (C) and regression (I) branches:

J = C × I, (3)

where C = [C1, C2, ..., Cm], Ci ∈ [0, 1] denotes the Classi-

fication Representation of total m categories, and I ∈ [0, 1]
is a scalar that stands for the IoU Representation.

Although J is decomposed into two components, we use

the final joint formulation (i.e., J) in both the training and

testing phases, so it can still avoid the inconsistency prob-

lem as mentioned in GFLV1. Specifically, we first com-

bine C from the classification branch and I from the pro-

posed Distribution-Guided Quality Predictor (DGQP) in re-

gression branch, into the unified form J. Then, J is super-

vised by Quality Focal loss (QFL) as proposed in [18] dur-

ing training, and used directly as NMS score in inference.

Distribution-Guided Quality Predictor: DGQP is the

key component of GFLV2. It delivers the statistics of the

learned General Distribution P into a tiny sub-network (see

red dotted frame in Fig. 3) to obtain the predicted IoU scalar

I , which helps to generate high-quality Classification-IoU

Joint Representation (Eq. (3)). Following GFLV1 [18], we

adopt the relative offsets from the location to the four sides

of a bounding box as the regression targets, which are rep-

resented by the General Distribution. For convenience, we

mark the left, right, top and bottom sides as {l, r, t, b}, and

define the discrete probabilities of the w side as P
w =

[Pw(y0), P
w(y1), ..., P

w(yn)], where w ∈ {l, r, t, b}.

As illustrated in Fig. 1, the flatness of the learned distri-

bution is highly related to the quality of the final detected

bounding box, and some relevant statistics can be used to

reflect the flatness of the General Distribution. As a result,

such statistical features have a very strong correlation with

the localization quality, which will ease the training diffi-

culty and improves the quality of estimation. Practically,

we recommand to choose the Top-k values along with the

mean value of each distribution vector Pw, and concatenate

them as the basic statistical feature F ∈ R
4(k+1):

F = Concat
({

Topkm(Pw) | w ∈ {l, r, t, b}
})

, (4)

where Topkm(·) denotes the joint operation of calculating

Top-k values and their mean value. Concat(·) means the

channel concatenation. Selecting Top-k values and their

mean value as the input statistics have two benefits:

• Since the sum of P
w is fixed (i.e.,

∑n

i=0 P
w(yi) =

1), Top-k values along with their mean value can basically

reflect the flatness of the distribution: the larger, the sharper;

the smaller, the flatter;

• Top-k and mean values can make the statistical feature

insensitive to its relative offsets over the distribution domain

(see Fig. 4), resulting in a robust representation which is not

affected by object scales.

Topkm )
1 𝑛 𝑛1

0.6 0.2 0.1 0.3

Top-k mean

( Topkm( )
scale scale

Figure 4: Topkm(·) feature is robust to object scales.

Given the statistical feature F of General Distribution as

input, we design a very tiny sub-network F(·) to predict

the final IoU quality estimation. The sub-network has only

two Fully-Connected (FC) layers, which are followed by

ReLU [16] and Sigmoid, respectively. Consequently, the

IoU scalar I can be calculated as:

I = F(F) = σ(W2δ(W1F)), (5)

where δ and σ refer to the ReLU and Sigmoid, respectively.

W1 ∈ R
p×4(k+1) and W2 ∈ R

1×p. k denotes the Top-

k parameter and p is the channel dimension of the hidden

layer (k = 4, p = 64 is a typical setting in our experiment).

Complexity: The overall architecture of GFLV2 is illus-

trated in Fig. 3. It is worth noting that the DGQP module

is very lightweight. First, it only brings thousands of ad-

ditional parameters, which are negligible compared to the
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Top-k (4) Mean Var Dim AP AP50 AP75

X 16 40.8 58.5 44.2

X 4 40.2 58.5 43.6

X 4 40.3 58.3 43.7

X X 20 41.1 58.8 44.9

X X 20 40.9 58.5 44.7

X X X 24 40.9 58.4 44.7

Table 1: Performances of different combinations of the input

statistics by fixing k = 4 and p = 64. “Mean” denotes the mean

value, “Var” denotes the variance number, and “Dim” is short for

“Dimension” that means the total amount of the input channels.

number of parameters of the entire detection model. For

example, for the model with ResNet-50 [11] and FPN [20],

the extra parameters of the DGQP module only account

for ∼0.003%. Second, the computational overhead of the

DGQP module is also very small due to its extremely light

structure. As shown in Table 5 and 8, the use of the DGQP

module hardly reduces the training and inference speed of

the original detector in practice.

4. Experiment

Experimental Settings: We conduct experiments on

COCO benchmark [22], where trainval35k with 115K

images is used for training and minival with 5K images

for validation in our ablation study. Besides, we obtain

the main results on test-dev with 20K images from the

evaluation server. All results are produced under mmde-

tection [3] for fair comparisons, where the default hyper-

parameters are always adopted. Unless otherwise stated, we

apply the standard 1x learning schedule (12 epochs) without

multi-scale training for the ablation study, based on ResNet-

50 [11] backbone. The training/testing details follow the

descriptions in previous works [18, 4].

4.1. Ablation Study

Combination of Input Statistics: In addition to the pure

Top-k values, there are some statistics that may reflect more

characteristics of the distributions, such as the mean and

variance of these Top-k numbers. Therefore, we conduct

experiments to investigate the effect of their combinations

as input, by fixing k = 4 and p = 64. From Table 1, we ob-

serve that the Top-4 values with their mean number perform

best. Therefore, we default to use such a combination as the

standard statistical input in the following experiments.

Structure of DGQP (i.e., k, p): We then examine the im-

pact of different parameters of k, p in DGQP on the de-

tection performance. Specifically, we report the effect of k

and p by fixing one and varying another in Table 2. It is

observed that k = 4, p = 64 steadily achieves the optimal

accuracy among various combinations.

Type of Input Features: To the best of our knowledge, the

proposed DGQP is the first to use the statistics of learned

k p AP AP50 AP75 APS APM APL

0 – 40.2 58.6 43.4 23.0 44.3 53.0

1

64

40.2 58.3 44.0 23.4 44.1 52.1

2 40.9 58.5 44.6 23.3 44.8 53.5

3 40.9 58.5 44.6 24.3 44.9 52.3

4 41.1 58.8 44.9 23.5 44.9 53.3

8 41.0 58.6 44.5 23.5 44.5 53.4

16 40.8 58.5 44.4 23.4 44.2 53.1

4

8 40.9 58.4 44.5 23.1 44.5 52.6

16 40.8 58.3 44.1 23.3 44.6 52.0

32 40.9 58.7 44.3 23.1 44.6 53.2

64 41.1 58.8 44.9 23.5 44.9 53.3

128 40.9 58.3 44.6 23.2 44.4 52.7

256 40.7 58.3 44.4 23.4 44.3 52.9

Table 2: Performances of various k, p in DGQP. k = 0 denotes

the baseline version without the usage of DGQP (i.e., GFLV1).

Input Feature AP AP50 AP75 FPS

Baseline (ATSS [40] w/ QFL [18]) 39.9 58.5 43.0 19.4

Convolutional Features

(a) 40.2 58.6 43.7 19.3

(b) 40.5 59.0 44.0 14.0

(c) 40.5 58.7 44.1 16.2

(d) 40.6 59.0 44.0 18.3

(e) 40.6 58.9 44.1 17.8

(f) 40.7 59.0 44.1 17.9

(g) 40.8 58.9 44.6 18.4

Distribution Statistics (ours) 41.1 58.8 44.9 19.4

Table 3: Comparisons among different input features by fixing the

hidden layer dimension of DGQP.

Decomposed  Form

𝐼
𝐉𝐂 𝑑

𝐼
Composed Form

𝐉𝐂

Figure 5: Different ways to utilize the distribution statistics, in-

cluding Decomposed Form (left) and Composed Form (right).

distributions of bounding boxes for the generation of better

LQE scores in the literature. Since the input (distribution

statistics) and the output (LQE scores) are highly correlated,

we speculate that it can be more effective or efficient than

ordinary convolutional input proposed in existing methods.

Therefore, we fix the hidden layer dimension of DGQP (i.e.,

p = 64) and compare our statistical input with most exist-

ing possible types of convolutional inputs, from point (a),

region (b), border (c)-(e), regular points (f), and deformable

points (g), respectively (Fig. 2). Table 3 shows that our dis-

tribution statistics perform best in overall AP, also fastest in

inference, compared against various convolutional features.

Usage of the Decomposed Form: Next, we examine what

is the best formulation of Classification-IoU Joint Repre-

sentation in the case of using distribution statistics. There
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Type AP AP50 AP75 FPS

Baseline (GFLV1 [18]) 40.2 58.6 43.4 19.4

Composed Form

d = 16 40.5 58.5 43.7 19.2

d = 32 40.5 58.5 43.7 19.2

d = 64 40.7 58.5 44.3 19.1

d = 128 40.7 58.6 44.4 18.9

d = 256 40.7 58.3 44.2 18.5

Decomposed Form (ours) 41.1 58.8 44.9 19.4

Table 4: Comparisons between Decomposed Form (proposed) and

Composed Form (with various dimension d settings).

Method GFLV2 AP AP50 AP75 FPS

RetinaNet [21] 36.5 55.5 38.7 19.0

RetinaNet [21] X 38.6 (+2.1) 56.2 41.7 19.0

FoveaNet [15] 36.4 55.8 38.8 20.0

FoveaNet [15] X 38.5 (+2.1) 56.8 41.6 20.0

FCOS [33] 38.5 56.9 41.4 19.4

FCOS [33] X 40.6 (+2.1) 58.2 43.9 19.4

ATSS [40] 39.2 57.4 42.2 19.4

ATSS [40] X 41.1 (+1.9) 58.8 44.9 19.4

Table 5: Integrating GFLV2 into various popular dense object de-

tectors. A consistent ∼2 AP gain is observed without loss of in-

ference speed.

are basically two formats: the Composed Form and the pro-

posed Decomposed Form (Sec. 3.2), as illustrated in Fig. 5.

Here the “Decomposed” (the left part of Fig. 5) means that

the final joint representation can be explicitly decomposed

through multiplication by two components, i.e., J = C × I

in Eq. (3). Whilst the “Composed” (the right part of Fig. 5)

shows that J is directly obtained through FC layers where

its input feature is enriched (d is the dimension of the ap-

pended feature) by the information of distribution statistics.

From Table 4, our proposed Decomposed Form is always

superior than the Composed Forms with various d settings

in both accuracy and running speed.

Compatibility for Dense Detectors: Since GFLV2 is very

lightweight and can be adapted to various types of dense

detectors, we employ it to a series of recent popular detec-

tion methods. For those detectors that do not support the

distributed representation of bounding boxes, we make the

minimal and necessary modifications to enable it to gener-

ate distributions for each edge of a bounding box. Based

on the results in Table 5, GFLV2 can consistently improve

∼2 AP in popular dense detectors, without loss of inference

speed.

4.2. Comparisons with State­of­the­arts

In this section, we compare GFLV2 with state-of-the-

art approaches on COCO test-dev in Table 7. Follow-

ing previous works [21, 33], the multi-scale ([480, 960])

training strategy and 2x learning schedule (24 epochs) are

adopted during training. For a fair comparison, the re-
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Figure 6: Single-model single-scale speed (ms) vs. accuracy (AP)

on COCO test-dev among state-of-the-art approaches. GFLV2

achieves better speed-accuracy trade-off than its competitive coun-

terparts.

Method AP FPS PCC ↑

FCOS∗ [33] 39.1 19.4 0.624

ATSS∗ [40] 39.9 19.4 0.631

GFLV1 [18] 40.2 19.4 0.634

GFLV2 (ours) 41.1 (+0.9) 19.4 0.660 (+0.26)

Table 6: Pearson Correlation Coefficients (PCC) for representative

dense object detectors. ∗ denotes the application of Classification-

IoU Joint Representation, instead of additional Centerness branch.

sults of single-model single-scale testing for all methods

are reported, including their corresponding inference speeds

(FPS). We also report additional multi-scale testing results

for GFLV2. The visualizaion of the accuracy-speed trade-

off is demonstrated in Fig. 6, and we observe that GFLV2

pushes the envelope of accuracy-speed boundary to a new

level. Our best result with a single Res2Net-101-DCN

model achieves considerably competitive 53.3 AP.

4.3. Analysis

Although the proposed DGQP module has been shown

to improve the performance of dense object detectors, we

would also like to understand how its mechanism operates.

DGQP Improves LQE: To assess whether DGQP is able

to benefit the estimation of localization quality, we first ob-

tain the predicted IoUs (given by four representative models

with IoU as the quality estimation targets) and their corre-

sponding real IoUs over all the positive samples on COCO

minival. Then we calculate their Pearson Correlation Co-

efficient (PCC) in Table 6. It demonstrates that DGQP in

GFLV2 indeed improves the linear correlation between the

estimated IoUs and the ground-truth ones by a considerable

margin (+0.26) against GFLV1, which eventually leads to

an absolute 0.9 AP gain.

DGQP Eases the Learning Difficulty: Fig. 8 provides the

visualization of the training losses on LQE scores, where
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Method Backbone Epoch MStrain FPS AP AP50 AP75 APS APM APL Reference

multi-stage:

Faster R-CNN w/ FPN [20] R-101 24 14.2 36.2 59.1 39.0 18.2 39.0 48.2 CVPR17

Cascade R-CNN [1] R-101 18 11.9 42.8 62.1 46.3 23.7 45.5 55.2 CVPR18

Grid R-CNN [24] R-101 20 11.4 41.5 60.9 44.5 23.3 44.9 53.1 CVPR19

Libra R-CNN [26] X-101-64x4d 12 8.5 43.0 64.0 47.0 25.3 45.6 54.6 CVPR19

RepPoints [38] R-101 24 13.3 41.0 62.9 44.3 23.6 44.1 51.7 ICCV19

RepPoints [38] R-101-DCN 24 X 11.8 45.0 66.1 49.0 26.6 48.6 57.5 ICCV19

RepPointsV2 [4] R-101 24 X 11.1 46.0 65.3 49.5 27.4 48.9 57.3 NeurIPS20

RepPointsV2 [4] R-101-DCN 24 X 10.0 48.1 67.5 51.8 28.7 50.9 60.8 NeurIPS20

TridentNet [19] R-101 24 X 2.7∗ 42.7 63.6 46.5 23.9 46.6 56.6 ICCV19

TridentNet [19] R-101-DCN 36 X 1.3∗ 46.8 67.6 51.5 28.0 51.2 60.5 ICCV19

TSD [32] R-101 20 1.1 43.2 64.0 46.9 24.0 46.3 55.8 CVPR20

BorderDet [27] R-101 24 X 13.2∗ 45.4 64.1 48.8 26.7 48.3 56.5 ECCV20

BorderDet [27] X-101-64x4d 24 X 8.1∗ 47.2 66.1 51.0 28.1 50.2 59.9 ECCV20

BorderDet [27] X-101-64x4d-DCN 24 X 6.4∗ 48.0 67.1 52.1 29.4 50.7 60.5 ECCV20

one-stage:

CornerNet [17] HG-104 200 X 3.1∗ 40.6 56.4 43.2 19.1 42.8 54.3 ECCV18

CenterNet [7] HG-104 190 X 3.3∗ 44.9 62.4 48.1 25.6 47.4 57.4 ICCV19

CentripetalNet [6] HG-104 210 X n/a 45.8 63.0 49.3 25.0 48.2 58.7 CVPR20

RetinaNet [21] R-101 18 13.6 39.1 59.1 42.3 21.8 42.7 50.2 ICCV17

FreeAnchor [41] R-101 24 X 12.8 43.1 62.2 46.4 24.5 46.1 54.8 NeurIPS19

FreeAnchor [41] X-101-32x8d 24 X 8.2 44.9 64.3 48.5 26.8 48.3 55.9 NeurIPS19

FSAF [45] R-101 18 X 15.1 40.9 61.5 44.0 24.0 44.2 51.3 CVPR19

FSAF [45] X-101-64x4d 18 X 9.1 42.9 63.8 46.3 26.6 46.2 52.7 CVPR19

FCOS [33] R-101 24 X 14.7 41.5 60.7 45.0 24.4 44.8 51.6 ICCV19

FCOS [33] X-101-64x4d 24 X 8.9 44.7 64.1 48.4 27.6 47.5 55.6 ICCV19

SAPD [44] R-101 24 X 13.2 43.5 63.6 46.5 24.9 46.8 54.6 CVPR20

SAPD [44] R-101-DCN 24 X 11.1 46.0 65.9 49.6 26.3 49.2 59.6 CVPR20

SAPD [44] X-101-32x4d-DCN 24 X 8.8 46.6 66.6 50.0 27.3 49.7 60.7 CVPR20

ATSS [40] R-101 24 X 14.6 43.6 62.1 47.4 26.1 47.0 53.6 CVPR20

ATSS [40] R-101-DCN 24 X 12.7 46.3 64.7 50.4 27.7 49.8 58.4 CVPR20

ATSS [40] X-101-32x8d-DCN 24 X 6.9 47.7 66.6 52.1 29.3 50.8 59.7 CVPR20

PAA [14] R-101 24 X 14.6 44.8 63.3 48.7 26.5 48.8 56.3 ECCV20

PAA [14] R-101-DCN 24 X 12.7 47.4 65.7 51.6 27.9 51.3 60.6 ECCV20

PAA [14] X-101-64x4d-DCN 24 X 6.9 49.0 67.8 53.3 30.2 52.8 62.2 ECCV20

GFLV1 [18] R-50 24 X 19.4 43.1 62.0 46.8 26.0 46.7 52.3 NeurIPS20

GFLV1 [18] R-101 24 X 14.6 45.0 63.7 48.9 27.2 48.8 54.5 NeurIPS20

GFLV1 [18] R-101-DCN 24 X 12.7 47.3 66.3 51.4 28.0 51.1 59.2 NeurIPS20

GFLV1 [18] X-101-32x4d-DCN 24 X 10.7 48.2 67.4 52.6 29.2 51.7 60.2 NeurIPS20

GFLV2 (ours) R-50 24 X 19.4 44.3 62.3 48.5 26.8 47.7 54.1 –

GFLV2 (ours) R-101 24 X 14.6 46.2 64.3 50.5 27.8 49.9 57.0 –

GFLV2 (ours) R-101-DCN 24 X 12.7 48.3 66.5 52.8 28.8 51.9 60.7 –

GFLV2 (ours) X-101-32x4d-DCN 24 X 10.7 49.0 67.6 53.5 29.7 52.4 61.4 –

GFLV2 (ours) R2-101-DCN 24 X 10.9 50.6 69.0 55.3 31.3 54.3 63.5 –

GFLV2 (ours) + MStest R2-101-DCN 24 X – 53.3 70.9 59.2 35.7 56.1 65.6 –

Table 7: Comparisons between state-of-the-art detectors (single-model and single-scale results except the last row) on COCO test-dev.

“MStrain” and “MStest” denote multi-scale training and testing, respectively. FPS values with ∗ are from [44] or their official repositories

[27], while others are measured on the same machine with a single GeForce RTX 2080Ti GPU under the same mmdetection [3] framework,

using a batch size of 1 whenever possible. “n/a” means that both trained models and timing results from original papers are not available.

R: ResNet [11]. X: ResNeXt [37]. HG: Hourglass [25]. DCN: Deformable Convolutional Network [46]. R2: Res2Net [8].
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Figure 7: Visualization of predicted bounding boxes before and after NMS, along with their corresponding predicted LQE scores (only

Top-4 scores are plotted for a better view). For many existing approaches [33, 40, 18], they fail to produce the highest LQE scores for the

best candidates. In contrast, our GFLV2 reliably assigns larger quality scores for those real high-quality ones, thus reducing the risk of

mistaken suppression in NMS processing. White: ground-truth bounding boxes; Other colors: predicted bounding boxes.
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Figure 8: Comparisons of losses on LQE between GFLV1 and

GFLV2. DGQP helps to ease the learning difficulty with lower

losses during training.

DGQP in GFLV2 successfully accelerates the training pro-

cess and converges to lower losses.

Training/Inference Efficiency: We also compare the train-

ing and inference efficiency among recent state-of-the-art

dense detectors in Table 8. Note that PAA [14], Rep-

PointsV2 [4] and BorderDet [27] bring an inevitable time

overhead (52%, 65%, and 22% respectively) during train-

ing, and the latter two also sacrifice inference speed by 30%

and 14%, respectively. In contrast, our proposed GFLV2

can achieve top performance (∼41 AP) while still maintain-

ing the training and inference efficiency.

Qualitative Results: In Fig. 7, we qualitatively demon-

strate the mechanism how GFLV2 makes use of its more

reliable IoU quality estimations to maintain accurate pre-

dictions during NMS. Unfortunately for other detectors,

high-quality candidates are wrongly suppressed due to their

relatively lower localization confidences, which eventually

leads to a performance degradation.

Method AP Training Hours ↓ Inference FPS ↑

ATSS∗ [40] 39.9 8.2 19.4

GFLV1 [18] 40.2 8.2 19.4

PAA [14] 40.4 12.5 (+52%) 19.4

RepPointsV2 [4] 41.0 14.4 (+65%) 13.5 (-30%)

BorderDet [27] 41.4 10.0 (+22%) 16.7 (-14%)

GFLV2 (ours) 41.1 8.2 19.4

Table 8: Comparisons of training and inference efficiency based on

ResNet-50 backbone. “Training Hours” is evaluated on 8 GeForce

RTX 2080Ti GPUs under standard 1x schedule (12 epochs). ∗

denotes the application of Classification-IoU Joint Representation.

5. Conclusion

In this paper, we propose to learn reliable localization

quality estimation, through the guidance of statistics of

bounding box distributions. It is an entirely new and com-

pletely different perspective in the literature, which is also

conceptually effective as the information of distribution is

highly correlated to the real localization quality. Based on

it we develop a dense object detector, namely GFLV2. Ex-

tensive experiments and analyses on COCO dataset further

validate its effectiveness, compatibility and efficiency. We

hope GFLV2 can serve as simple yet effective baseline for

the community.
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