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Abstract

The work of Davis If], which imports the concept of total-variation-

diminution (TVD) into non-upwinded, Lax-Wendroff type schemes, is reformulated

in a way which is easier to analyze. The analysis reveals a class of TVD

schemes not observed by Davis.
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Introduction

Davis [I] has recently sought to show that concepts developed in the

context of upwind-differenclng schemes_such as flux limitation and total

variation diminution, can be applied to more traditional, Lax-Wendroff-like

algorithms, to provide a rational artificial viscosity. His technique was to

take a partlcu]ar class of upwind TVDschemesin a form analyzed by Sweby[2],

and then to modify themin such a way as to makethemindependent of the wave

direction.

Our aim in this note is to show that results similar to, but somewhat

stronger than, those of Davis can be obtained more simply and directly. Only

the case of one-dimensional linear advection will be treated. An extension to

two-dimensional nonlinear systemsis given in [;].

Analysis

To solve the equation

ut + a_x = 0 (I)

on a regular rectangular mesh x = lAx, t = nat with mesh proportions given

by the Courant number _ = aAt/Ax, consider schemes of the form below, in

n n

which Aui+ 1_ = ul+ 1 - u i
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n+l
U,
I

n

- u.1 = -1/2_(1 + _)Au.I_ l_-l& _(1 - _)Aui+ 1_

-I/2 Ivl(l - Ivl)(l - Qi_ I/2)Aui_ I/2

+ _ ]_](1 - I_1)(1 - Qi+l_)A%+]/2" (2)

Here the first line represents the usual Lax-Wendroff scheme, and the

other terms represent a conservative dissipation, in which Qi +I_ depends on

three consecutive gradients, Aui_ 16 , Aui+ I_ , Aui+3/2" In fact, since

Qi+ 1/2 is dimensionless, it can only depend on the ratios of those _radients,

and so we write it as

Q = Q(_ , Aui+3/2) (3)

i+ 112 Aui+ 1_ kUi+l/2

or, more concisely

+

Qi+ I/2 = Q(ri+ 1/2 ' ri+l/2 )"
(4)

The particular form chosen for the scheme will justify itself when it

turns out to be very simple to analyze. The factors ]vl(l - [_I)

multiplying the dissipative terms can be motivated by noting that the basic

Lax-Wendroff scheme is exact and needs no modification if lul = 0 or I. We

shall show that Q can be chosen in such a way as to ensure that (2)

total-variation diminishing, in the sense of Harten [3]. For this purpose,

D_vls made use of the Harten-Sweby lemma which requires the scheme to assume

the form

u+l n

u i = u I - c i_l& _u i_l& + Di+t_ Aui+lb, (5)

_r'_' _ -r " "2" " '



which can be rewritten

n+l n n
_. = Cu. + (1 - c- O)u_ + (6)
I l-I l DUi+l"

n+l
Evidently, if the weights C, D, I - C - D in (6) are all positive, u.

i

will be bounded by the greatest and least of n n n .
ui_1, ui, Ui+l, and this is

sufficient to ensure that the total variation of u n+l is less than that of

u n. A somewhat stronger constraint, which we shall employ here, is to

require, when u > O, that D = 0 and 0 < C < I (and when u < 0, that

n+ 1
C = 0 and 0 < D < I). This condition specifies that u.

1

must be bounded

by the data in the "upwind" interval. It is rather surprising that this

upwind constraint can be mot by a non-upwind scheme.

To show that it can, consider first the case u > 0, and rewrite (I) as

n+l n

u.1 - u I uAu i_ I .(1 - u)Aui_ l_-l_u(l - u)Aui+ 1_

-I/2u(l - _)(I - Qi_i/2)Aui_ 16+I/2u(I - _)(I - Qi+ 16)Aui+ 16

= - uAui - |6 + |6u(l - u)Qi - I_ Au i_l_-16u(l - u)Qi + I_ Aui+ I_

= - u[l - l_ (I - _)Qi-l& +'/2 - ">Qi+I/2/r +lAui-I/2
(7)

which is of the form (53 with D = 0, and

C = _[1 -1/2(1 - u)Qi_l/2+l/2(l - u)Qi+l/2/r_+l/2 l-
(8)
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The condition that C is positive yields

Qi-I/2- Qi+ l_/ri+16 <
(9)

and the condition that C is less than one is

Qi+ I/2Iri+ I/2- Qi- I/2< 2
(10)

The case _ < 0 follows a similar pattern, which is most clearly revealed

by writing [_[ = - _, so that

n+i n I. -Iz2I.I(i- I.I)_-i+i/2u.l - u.l = [Aui+ I/2 +lhI.I(I- l.l)a-i__

-1/2 I"I(I - I"I)(I - Qi- Ih )aui- I/2

+ I/2 1.1(I - l.l)(l - Qi+ I/2 )Aui+ i/2

= I.la_+ _/2-_/21.1(1 - I.I)Qi+ 1/2 ^ui+ 1/2

+I12i.1<1 - I.I)Q__,/2 aui_v2

= 1.1[_-V2<1- ].I)Qi+v2+I/2( 1 -I"l)Qi_l/2/r__q2 ]^"i+1/2 (11)

which is of the form (5) with C = 0 and

+

D--1.1[_-_/2<*-I.I)Qi+l& +I/2(i-I.I)qi_v2/ri_v2 1.
(12)
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The similarity between (12) and (8) reveals that to ensure

conditions are

2

%+I/2-Qi-I/2/r_-14<I - !_I

0 < D< I the

(13)

2
Qi- I/2/r+- I/2- %+_/2< I_ " (14)

The task of devising a function Q which meets the conditions (9), (10)

(13), (14) is greatly simplified if it is assumed that both Q and Q/r are

always positive. In that case we have

2

Qi+I/2 < I- IV[ (15)

2
Qi+ 1/2 Iri+ 1/2 < T_ (16)

2
Qi+ 1/2Ir++ 1/2 < ]-_ " (17)

These inequalities are precisely those which appear in the theory of flux-

limited upwind schemes using "B-functlons" [4] which depend only o_ r- when

> O, and only on r+ when v < 0. B(r) is bounded as in (15), and

B(r)/r as in (16) or (17). Here Q must bear a bounded ratio to each of its

arguments.

To establish a connection between the present analysis and that of Davis

[I], equation (|) of this note should be compared with equations (3-16) and

(3-18) of [I]. Using the present notation of

different from the notation used by Davis,

algorithm, are identical if

r-, r+, which is slightly

it will be found that the
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+ )= ) lQ(ri+I/2' ri+V2 I/2" 1/2 ' (18)

where _(r) is Davis" limiting function. This shows that Davis has in effect

considered the special case of Q-functions which are "separable" in the sense

that they are the sum of two functions each depending on one of the variables.

For such functions Davis establishes the TVD property (not the stronger

property proved h_re) provided

0 < ¢(r) < 1 (19)

0 < ¢(r)/r < 2. (20)

These "separable Q-functions" do not necessarily obey conditions (15) - (17),

(Q may go down to -I.0, and Q/r may not be bounded). Thus the Q-functions

studied here are more general, in the sense of having no special functional

form, but more restricted, in the sense of meeting a stronger condition.

To show examples of each type, define "minmod" to be the function which

returns the smallest number from a list of positive arguments, but equals zero

if any argument is negative.

limiter for upwind schemes is

define the separable Q--function

Then a common, though not particularly good

_(r) = minmod (l,r). Based on this, we could

Q(r-,r +) = minmod (l,r-) + minmod (l,r +) -I, (21)

or the non-separable Q-functlon
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Q(r-,r +) = minmod (l,r-,r+), (22)

both of which are sketched below.

We next turn to the question, whether any special choices of the Q-

function will produce algorithms with distinguished properties, such as third-

order accuracy. It is easily shown [4]

+ +
r

0 r I

/ +
r

r

0 r

+ - +
r - 1 r +r -

0

r - I
-I

+

r

'i
I

I

,!
:i

Equation (22) Equation (21)

that upwind schemes using a limiting function such that when

unity

r is close to

¢(r) - (1 + u) r + (2 - v) (23) ,i
3 3 :i

are third-order accurate in smooth regions of the flow. Analogously, we may

seek a linear Q-function, to be used if r-, t+ are both close to unity, of

the form

Q(r ,r+) _ ar + b + cr . (24)



-8-

Substituting this expression into equation (6) produces the algorithm

n+l
U.

i n - vAu + a v(l - v)Aui_3/2 + b v(l - u)Au.- ui = i-I/2 _ _ __i&

a
c v(1 9 - u(1 - 9)Au,

+ 2 - )gui+ 1/2 2 l- i_

b v(l u _ c u(l _)
- _ - )Aui+ l_ 7 - Aui+3/2

(25)

Conditions for the accuracy of algorithms of this form were given by Roe

[5], the general case being

n+l n
u. - u = -u _ Yk (26)1 i Aui+ 16- k

with the conditions

respectively

for first, second, and third-order accuracy being

¥k = 1 (27a)
k

kYk = I/2(I + v) (27b)
k

k2 Yk = 1/6(1 + v)(l + 2u). (27c)
k

In equation (20) the coefficients are

x_] = I12(I - _)c (28a)

YO = 1/2 (I - v)(b - c) (28b)
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_t =1/2(1 - _)(a - b) + 1 (28c)

Y2 = - I/2 (i - v)a. (28d)

Obviously (27a) is satisfied for any a, b, c, and (27b) is satisfied provided

a + b + c = I. (29)

After simplification, (27c) reduces to

3a + b - c = (1/3)(2_-- 5). (30)

Clearly, there is no way to specify a, b, c independently of v so that

(30) is satisfied, and our ambition to create a third-orde[, non-upwind, TVD

scheme is frustrated.

In the absence of a thlrd-order scheme, we may seek special second-order

schemes. One possibility is to preserve the property of the basic Lax-

Wendroff scheme that it convects exactly any quadratic function of x. For

any such function three consecutive differences £u are in arithmetic

progression. Thus the arguments of Q are of the form

- +
r = 1 - ¢, r = 1 + ¢ (31)

and we should seek Q-functions which equal unity for these arguments. The

dissipation terms in equation (I) will then vanish. For example, any linear

fanction such as (24) in which a = c and a + b + c = 1 will have this
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property. It is worth remarking that Q = I/2 (r- + r+) generates a fourth-

order dissipation. Of course, linear Q-functions cannot be used for large

values of the arguments because they exceed the bounds placed on them by

conditions (15) - (17). However, for arguments close to unity, linear Q-

functions can be used, although they must be replaced for other arguments° As

an example, consider the readily-evaluated function

Q = minmod (2, 2r-, 2r +, l& (r- + r+)) (32)

whose behavior is displayed in the sketch.

+
r

0 2_ 2

(1,3)

_ 2r +

0 [ 0 r

This function will convect exactly any quadratic data, provided the gradient

ratios, r-, r+
do not lie outside the triangular region. That triangular

region can be made much larger if advantage is taken of the way the limits in

Theorem I depend on v. For example, if _ = I_ an acceptable Q-function is

Q = minmod(4, 4r-, 4r +, l& (r- + r+)) (33)

and the v, reices of triangle move to (1,7) and (7,1).

&
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It is this freedom to match the dissipation to a unique Courant number

that will be lost when dealing with systems of equations. Davis II] suggests

matching the scheme to the Courant number of the fastest wave. One might also

consider matching the scheme to the strongest wave, by some such device as the

following. Let %1' %2' %3 be the wavespeeds, and _I' _2' _3 the

amplitudes, of the waves occurring in the interval i +I/2 . The values of

these quantities for the Euler eqoations are well known;

_I = u _ = u + a (34)= u - a, %2 ' 3

I
I oaAul, _ _ _ _ .- lap- I [a2 AO Ap], _ lap +oaAu] (35)

[ 2a2 2 2 3a 2a2

Define tile mean wave speed % to be

2 2 2
* _I _I + _2 X2 + _3 _3

_. = . (36)
2 2 2

ml + m2 + a3

Since % is a convex combination of u - a, u, u + a, it must lie between

u - a and u + a. It is actually given by the formula

20 a2 Ap Au
= u + (37)

(&p)2 + 02 a2(Au)2 + 2(Ap - a2 A0) 2 "

In the case of two acoustic waves having equal (or opposite) amplitudes

equation (31) returns the particle speed, which is not very useful. Perhaps

more useful, and more in the spirit of the enterprise (since the dissipative

terms only require the absolute value of _), would be to compute an r.m.s.

wavespeed, given by

6,
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_-2 =
2 2 + e22 2 + c23 2C_l _1 X2 13

2 2 2

_1 + a2 + a3

2 2 (Ap) 2 + 40uApku + p2 a2(gu)2
= u + a (38)

2 ]2 "(Ap) 2 + 02 a2(Au) 2 + 2[&p - a &p

The term which appears in the denominator of the fractions in (37), (38)

measures the total strength of the disturbance in the cell. It is therefore a

candidate for the quantity whose ratios in consecutive cells will serve to

define r-, r+ (see Davis [I], equation (4.13)). All these possibilities

however, require extensive numerical testing.

Conclusions

The inspiration of Davis [I] to introduce the TVD concept into non-upwind

algorithms has been reformulated in a way which permits more generat results

to be deduced by rather simpler arguments. A new class of non-separable

limiters emerge from the analysis. Preliminary numerical experiments have not

shown any striking advantage to these limiters, but the simplified analysis

should be of advantage when attempting to extend these ideas to provide

viscosities for symmetrical algorithms other than Lax-Wendroff.

L ....
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