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Generalized forward–backward initial value representation
for the calculation of correlation functions in complex systems

Michael Thoss,a) Haobin Wang, and William H. Miller
Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California,
Berkeley, California 94720, and Chemical Sciences Division, Lawrence Berkeley National Laboratory,
Berkeley, California 94720

~Received 26 December 2000; accepted 6 February 2001!

The capability of two different, recently proposed semiclassical~SC! forward–backward~FB! initial
value representations~IVR! to describe quantum interference and coherence effects is investigated.
It is shown that depending on the way the observable under consideration is represented by unitary
operators one can obtain rather different results. Although the FB-IVR based on an integral
representation as a rule is capable of describing quantum interference, a closer analysis reveals that
it depends on the observable under consideration if all interference that can be described
semiclassically is actually included in the calculation. To overcome this problem a new, generalized
FB-IVR method~GFB-IVR! is proposed, which combines the capability of the SC-IVR to describe
quantum interference effects independent of the observable and the better convergence properties of
the FB-IVR. The performance of this new approach is studied in some detail. In particular, it is
shown that the GFB-IVR can describe both the coherent and incoherent regime in the dynamics of
an anharmonic vibration coupled to a harmonic bath. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1359242#
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I. INTRODUCTION

In recent years there has been an increasing intere
semiclassical descriptions of molecular dynamics.1–59 There
are both fundamental and practical reasons why semicla
cal methods represent an interesting alternative to quan
mechanical approaches on one hand and purely clas
methods on the other hand. Compared to quantum mech
cal calculations, semiclassical or classical concepts can o
provide a more intuitive, qualitative understanding of the d
namics. It has been shown, for example, that most of
features in simple absorption spectra can be understoo
semiclassical dynamics.16 Being based on classical traject
ries, semiclassical approaches are, furthermore, suppos
overcome the exponential scaling with the number
coupled degrees of freedom of straightforward quant
basis-set calculations.60 Moreover, in contrast to purely clas
sical approaches, semiclassical methods are in principle
pable of describing quantum effects such as, for exam
interference, zero-point energy conservation, or tunne
processes.17

In particular semiclassical~SC! methods based on th
initial value representation~IVR! ~Ref. 61! ~which circum-
vent the cumbersome root search problem in bound
value-based semiclassical methods! have been applied suc
cessfully to a variety of different problems in molecul
dynamics. So far, most of the applications have been lim
to rather small systems. The primary problem which preve
a straightforward application to large systems is the osc
tory nature of the integrand involved in the evaluation of t
semiclassical propagator. For a high-dimensional system

a!Present address: Theoretische Chemie, Technische Universita¨t München,
D-85747 Garching, Germany.
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phase-space integration implicit in the semiclassical pro
gator is usually done employing Monte Carlo methods. T
oscillatory nature of the integrand results in a poor Mon
Carlo statistics. This so-called ‘‘sign-problem’’ is we
known from real-time or fermionic path-integra
calculations.62–65

Most of the methods proposed so far to overcome t
problem8,11,19,45,48,49are based on smoothing techniques su
as the Filinov66,67or stationary-phase Monte Carlo method64

The basic idea of this technique is to integrate out the lo
oscillations analytically using a linearization of the integra
over a small phase-space cell.

A quite different way to circumvent this problem and
facilitate the calculation of correlation functions in comple
systems are the various forward–backward methods
posed recently by Miller and co-workers28,33,36 as well as
Makri and co-workers.68–70 In this approach the smoothin
of the integrand is accomplished by combining the forwa
and backward trajectory for the two propagators in a gen
correlation function into one forward–backward trajecto
with possibly a jump in the momentum of the reaction co
dinate. Starting from a full SC-IVR description for the tw
propagators, which involves a double phase-space inte
tion ~see below!, the forward–backward~FB! IVR can be
obtained by doing one of the integrations within the statio
ary phase approximation. Therefore, the FB-IVR is more
proximate than the full SC-IVR, and the question arises
what extent it can still describe quantum interference effe

So far there seems to be no unambiguous answer to
question. Gelabertet al. have shown recently that the FB
IVR can describe the interference pattern for the double-
problem qualitatively correctly.39,71A similar result has been
obtained for quantum coherence effects in the flux-side c
0 © 2001 American Institute of Physics
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relation function for a double well potential72 as well as for
the wave packet dynamics of an anharmonic vibrat
coupled to a thermal bath.73 On the other hand, Shao an
Makri have shown that a different version of the semiclas
cal forward–backward propagator cannot describe re
rences in the dynamics of the average position of an an
monic oscillator.70

In the first part of this article we will discuss this prob
lem in some detail and show that it actually depends on
observable under consideration to what extent the FB-I
can describe quantum interference effects. In the second
we will propose a generalized FB-IVR~GFB-IVR! method
which can continuously tune between the full double ph
space SC-IVR and the FB-IVR. This flexibility allows one
check if all interference that can be described semiclassic
is actually included in the calculation. For the special e
ample of the average position of an anharmonic oscillator
will demonstrate how the recurrences present in the quan
and the full SC-IVR results disappear when the GFB-IV
approaches the FB-IVR. In the last part of the paper we w
apply the GFB-IVR to study the quenching of these rec
rences when the oscillator is coupled to a bath.

II. DESCRIPTION OF QUANTUM INTERFERENCE
IN FB-IVR METHODS

In this section we investigate the capability of two d
ferent FB-IVR methods to describe quantum interference
fects. To keep the paper self-contained and to facilitate
further discussion we will first give a brief review of sem
classical IVR methods.

The dynamics in complex systems can be described
m

l
e
te
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y
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means of general time-correlation functions74 such as, for
example,

CAB~ t !5tr~ÂeiĤ tB̂e2 iĤ t!. ~2.1!

Here, Â and B̂ are general operators andĤ denotes the
Hamiltonian of the system.~We use units with \51
throughout the paper.! In typical applications,Â will involve
the initial state of the systemr̂(0) and, therefore, all degree
of freedom, whereasB̂ will involve only a few degrees of
freedom, e.g., the degrees of freedom that are probed
reaction coordinate.

To obtain a semiclassical approximation for the corre
tion function CAB(t) one can insert any semiclassical a

proximation to the quantum propagatore2 iĤ t into Eq. ~2.1!.
In this paper we will use the Herman–Kluk~or coherent
state! SC-IVR ~Ref. 50! which for a generalN-dimensional
system reads

e2 iĤ t5E dq0dp0

~2p!N
uqtpt&Ct~q0 ,p0!eiSt(q0 ,p0)^q0p0u.

~2.2!

Here, (p0 ,q0) are initial momenta and coordinates for cla
sical trajectories,pt5pt(p0 ,q0) and qt5qt(p0 ,q0) are the
classically time-evolved phase space variables, andSt is the
classical action integral along the trajectory,

St~q0 ,p0!5E
0

t

dt~ptq̇t2H !. ~2.3!

The pre-exponential factorCt is given by
Ct~p0,q0!5AdetF1

2 S g1/2
]qt

]q0
g2 ~1/2!1g2 ~1/2!

]pt

]p0
g1/22 i g1/2

]qt

]p0
g1/21 i g2~1/2!

]pt

]q0
g2 ~1/2!D G . ~2.4!
ion

o
ial

o-
y,
It involves a combination of the elements of the monodro
matrix

M t5S ]pt

]p0

]pt

]q0

]qt

]p0

]qt

]q0

D . ~2.5!

In the above expressiong denotes aN-dimensional diagona
matrix, with elementg j being the width parameter for th
coherent state of thej th degree of freedom. The coordina
space representation of anN-dimensional coherent state
the product of N one-dimensional minimum uncertaint
wave packets,

^xupq&5)
j 51

N S g j

p D 1/4

e2 ~g j /2!(xj 2qj )
21 ip j (xj 2qj ). ~2.6!
yInsertion of the semiclassical propagator~2.2! into Eq. ~2.1!
gives the full double phase space SC-IVR for the correlat
function,

CAB
SC~ t !5E dq0dp0

~2p!N E dq08dp08

~2p!N
Ct~p0 ,q0!Ct~p08 ,q08!*

3ei [St(p0 ,q0)2St(p08 ,q08)]^p0q0uÂup08q08&

3^pt8qt8uB̂uptqt&. ~2.7!

Here, two trajectories with initial values (p0 ,q0) and
(p08 ,q08) are started at timet50 and then propagated up t
time t. Ct and St denote the corresponding pre-exponent
factor and action, respectively.

For later use we mention that by using Liouville’s the
rem this expression can be written in a slightly different wa
namely,
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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9222 J. Chem. Phys., Vol. 114, No. 21, 1 June 2001 Thoss, Wang, and Miller
CAB
SC~ t !5E dq0dp0

~2p!N E dDqdDp

~2p!N
Ct~p0 ,q0!C2t~pt8 ,qt8!

3ei [St(p0 ,q0)1S2t(pt8 ,qt8)]^p0q0uÂup08q08&

3^pt8qt8uB̂uptqt&. ~2.8!

In this ‘‘forward–backward’’ formulation only a single tra
jectory with initial values (p0 ,q0) is started att50 and
propagated up to timet, where a jump in coordinate an
momentum occurs, i.e.,

qt→qt85qt1Dq , ~2.9a!

pt→pt85pt1Dp , ~2.9b!

after which the trajectory is propagated back to timet50
with (p08 ,q08) being the final phase-space point. In Eq.~2.8!,
Ct(p0 ,q0) and C2t(pt8 ,qt8), as well as St(p0 ,q0) and
S2t(pt8 ,qt8), denote the pre-exponential factors and the
tions for the forward and backward trajectory, respective

The practical difficulty with the above formulations
that the integrand in the double phase space average is h
oscillatory. In addition, the product of the two pre
exponential factorsCt(p0 ,q0) and Ct(p08 ,q08) can become
large, thereby amplifying the oscillations. To side-step t
problem, a linearized approximation to the SC-IVR expr
sion in Eq.~2.7!, the LSC-IVR was introduced,25 whereby all
the relevant quantities are expanded to first order in the
ference variablesp02p08 and q02q08 . The integration over
these variables can be carried out analytically, which yie
the following much simpler expression for the correlati
function

CAB
LSC~ t !5E dq0dp0

~2p!N
AW~q0 ,p0!BW~qt ,pt!. ~2.10!

HereAW andBW are the Wigner function of the operatorsÂ

and B̂; i.e., this linearization of the SC-IVR leads to th
‘‘classical Wigner’’ model that has arisen before from a v
riety of approaches.75–80 Application of this approximation
to several interesting models of condensed phase prob
was quite successful.25,27,32A more thorough analysis, how
ever, showed that the LSC-IVR is able to describe quan
effects only for very short times.26 For example, it canno
account for the interference pattern in the double-
problem.71 It is thus desirable to develop a method that go
beyond this linearized approximation, that can capture
important quantum interference effects, but is still more
ficient than evaluating Eq.~2.7!.

To this end, Miller and co-workers,28,33as well as Makri
and co-workers,68,69 have proposed a ‘‘forward–backward
~FB! IVR approach for the calculation of time correlatio

functions. In this approach, the operator producteiĤ tB̂e2 iĤ t

in Eq. ~2.1! is represented by a single Herman–Kluk-ty
IVR, where the trajectories evolve from time 0→t ~the ac-

tion of the operatore2 iĤ t), undergo a momentum~or phase-
space! jump at time t ~the effect of operatorB̂), and then

evolve backward fromt→0 ~the action of the operatoreiĤ t).
The main advantage of the FB-IVR, besides reducing
Downloaded 17 May 2005 to 169.229.129.16. Redistribution subject to A
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dimensionality of the phase space integral, is that there
partial cancellation of the phase in the integrand and
magnitude of the pre-exponential factor, thus greatly impr
ing the numerical property of the integrand.

To simplify the notation, let us assume that the opera
B̂ is local in coordinate space, i.e.,B̂5B(q̂). @Reference 33
shows how more general operatorsB(q̂,p̂) as well as the
special case when the operatorB̂ depends on coordinate
through a single collective variables(q), i.e., B5B(s(q)),
can be treated.# The existing variants of the FB-IVR metho
differ primarily in the way the operatorB̂ is represented by
unitary operators. One possibility, which has been used
Miller and co-workers,28,29,33,36,71,73is based on the Fourie
representation of the operatorB̂,

B~ q̂!5E dDp

~2p!N
B̃~Dp!ei Dpq̂. ~2.11!

The forward–backward IVR for the unitary operator

Û5eiĤ tei Dpq̂e2 iĤ t ~2.12!

can be obtained either by inserting two IVR’s for the tw
propagators and doing the intermediate integration via
stationary phase approximation81 or by viewingÛ as a single
propagator with a time-dependent Hamiltonian.28,33,36In both
cases the Herman-Kluk FB-IVR for the operatorÛ has the
same form as Eq.~2.2!, and we obtain the following FB-IVR
for the correlation function:

CAB
FB~ t !5E dDp

~2p!N
B̃~Dp!E dq0dp0

~2p!N
C0~p0 ,q0 ;Dp!

3eiS0(p0 ,q0 ;Dp)^p0q0uÂup08q08&. ~2.13!

The FB-IVR trajectory implicit in Eq.~2.13! starts att50
with initial condition (p0 ,q0) and evolves to timet under the
molecular HamiltonianH; at time t the momentum is
changed according to

pt→pt85pt1Dp , ~2.14!

and is then evolved back to timet50 via the molecular
Hamiltonian H, (p08 ,q08) being the final phase-space poin
The action integralS0 has contribution from these three tim
steps,

S0~p0 ,q0 ;Dp!5E
0

t

dt@pt"q̇t2H#1Dpqt

1E
t

0

dt@pt8•q̇t82H#, ~2.15!

and the pre-exponential factorC0 has the same form a
Eq. ~2.4!,
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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C0~p0 ,q0 ,Dp!5AdetF1

2 S g1/2
]q08

]q0
g2 ~1/2!1g2 ~1/2!

]p08

]p0
g1/22 i\g1/2

]q08

]p0
g1/21

i

\
g2 ~1/2!

]p08

]q0
g2 ~1/2!D G . ~2.16!
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The forward–backward nature of the trajectory provid
several advantages over the conventional SC-IVR exp
sion, Eq. ~2.8!: First, for a complex molecular system th
dimension of the phase space average is greatly reduced
example, in the case thatB depends through a collectiv
coordinate onq @i.e., B̂5B(s(q̂))#, the 4N-dimensional
double phase space integration reduces to a 2N-dimensional
single-phase space integration plus a one-dimensional
gral over the momentum jump variable. Second, there
partial cancellation of the phase~those of the action inte
grals, of the coherent states, and also of the complex
exponential factors! which makes the integrand much le
oscillatory. Third, there is also a partial cancellation of t
magnitude of the pre-exponential factor such that it rar
becomes too large, even for a strongly chaotic system.

A different forward–backward method, which has be
proposed by Shao and Marki70,82 ~see also Ref. 33!, is based
on a derivative representation of the operatorB̂,

B̂52 i F ]

]Dp
eiDpB̂G

Dp50

. ~2.17!

To simplify the notation we have assumed here thatB is a
scalar and, therefore, the momentum jump is o
dimensional. Inserting this representation into Eq.~2.1! and
using the FB-IVR for the unitary operatorÛ

5eiĤ teiDpB̂e2 iĤ t, the following forward–backward expres
sion for the correlation function is obtained:

CAB
DFB~ t !52 i F ]

]Dp
E dq0dp0

~2p!N
C0~p0 ,q0 ;Dp!

3eiS0(p0 ,q0 ;Dp)^p0q0uÂup08q08&G
Dp50

. ~2.18!

Similar to Eqs.~2.15! and ~2.14!, here the action is define
by

S0~p0 ,q0 ;Dp!5E
0

t

dt@pt"q̇t2H#1DpB~qt!

1E
t

0

dt@pt8•q̇t82H#, ~2.19!

and the momentum jump is given by

pt→pt85pt1Dp

]B

]qt
. ~2.20!

Makri et al.have shown that the pre-exponential factorC0 in
Eq. ~2.18! can actually be eliminated, thus greatly reduci
the numerical effort to calculate the semiclassical correla
function.70,82As is outlined in Appendix A, expression~2.18!
can be cast into an even simpler form which neither invol
the pre-exponential factor nor the action
Downloaded 17 May 2005 to 169.229.129.16. Redistribution subject to A
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CAB
DFB~ t !5E dq0dp0

~2p!N
B~qt!

3F12
1

4 (
j

S g j

]2

]q0 j
2

1
1

g j

]2

]p0 j
2 D GAH~q0 ,p0!.

~2.21!

Here,AH denotes the Husimi distribution83 of the operatorÂ

AH~p0 ,q0!5^p0q0uÂup0q0&. ~2.22!

Taking into account the relation between the Husimi dis
bution and the Wigner function,84

AW~q0 ,p0!5expF2
1

4 (
j

S g j

]2

]q0 j
2

1
1

g j

]2

]p0 j
2 D G

3AH~q0 ,p0!, ~2.23!

it is obvious that the terms in brackets in Eq.~2.21! are the
first two terms of the series expansion of the operator

expF2
1

4 (
j

S g j

]2

]q0 j
2

1
1

g j

]2

]p0 j
2 D G .

The derivative FB-IVR can thus be thought of as an appro
mate version of the LSC-IVR/classical Wigner model an
therefore, cannot be expected to describe quantum inte
ence beyond the short time limit.85 This is indeed what Shao
and Makri have found for the dynamics of an anharmo
oscillator.70

To illustrate this finding, Fig. 1 shows the interferen
pattern for a simple two-dimensional double-slit proble
~for a detailed description of the problem and the paramet

FIG. 1. Angular distribution for a particle passing through a two-slit pote
tial ~see Ref. 71 for more details about this example!. Shown are quantum
mechanical~full line!, FB-IVR ~dashed line!, derivative version of the FB-
IVR ~dotted line!, and LSC-IVR/classical Wigner~thin full line! results.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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9224 J. Chem. Phys., Vol. 114, No. 21, 1 June 2001 Thoss, Wang, and Miller
see Ref. 71!. The plot depicts the angular probability distr
bution after the particle has gone through the slit. The F
IVR is seen to reproduce the interference pattern qua
tively correctly. The result of the derivative FB-IVR, on th
other hand, is nearly indistinguishable from the LSC-IV
classical Wigner model calculation which cannot descr
the interference pattern at all but gives the classical resu

The inability of the derivative FB-IVR to account for th
interference can be rationalized in different ways. Consid
ing expression~2.21!, which for the angular probability o
the double-slit reads

Pt~u!5E dq0dp0

~2p!2
d~u2u~qt ,pt!!

3F12
1

4 (
j

S g j

]2

]q0 j
2

1
1

g j

]2

]p0 j
2 D GAH~q0 ,p0!,

~2.24!

whereu denotes the polar angle@u5arctan(y/x)#, it is obvi-
ous that in this method only a classical average over p
which go through different slits is used, without accounti
for the different phase. The drastic difference in the res
obtained with the FB-IVR and its derivative form can also
understood from the momentum jump involved in the tw
different methods. A closer inspection shows that within
FB-IVR the interference pattern is obtained by trajector
that start on the left side of the double-slit, go through o
slit, get a momentum kick such that they return through
other slit to the left side. The quantitative analysis reve
that trajectories with a momentum kick of about 40\ con-
tribute most to the interference pattern. The derivative F
IVR, on the other hand, only involves infinitesimal mome
tum jumps, i.e., the trajectories return through the same
to the left side@cf. Eq. ~2.18!# and, therefore, cannot accou
for the interference.

In the FB-IVR, which is based on an integral represe
tation of the operatorB̂ @cf. Eq. ~2.11!#, it depends on the
Fourier-transformB̃(Dp), and hence on the observableB̂,
which range of momentum jumps will actually contribute
the dynamics. In the double-slit problem, the observable
the angular probability represented by the delta function
eratorB̂5d(u2 û). The Fourier transformB̃(Dp)5e2 iDpu is
totally delocalized, and therefore all momentum jumps c
actually contribute.

The opposite limit pertains for the position operator,B̂

5q̂ ~e.g., to calculate the position autocorrelation functi

^q̂q̂t& or the average position̂q̂t&). In this case the Fourie
transform is the derivative of a delta function@B̃(Dp)
5 id8(Dp)#, which is highly localized. In fact, in this specia
case the integral representation~2.11! is equivalent to the
derivative representation~2.17! and, therefore, can also no
describe quantum interference.

To illustrate this dependence on the observable furth
let us consider a simple anharmonic oscillator with the f
lowing Hamiltonian~in dimensionless units!:

H5
px

2

2
1

1

2
v2x21ax31bx4. ~2.25!
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This model has been used by Shao and Makri to demons
the performance of the derivative FB-IVR method.70 The
frequency of the oscillator isv5A2, and the anharmonicity
parameters area520.1,b50.1. The initial state is the
shifted ground state of the corresponding harmonic oscilla

^xuc i&5S g

p D 1/4

e2 ~g/2!(x21)2 ~2.26!

with the widthg5v.
Let us first consider the dynamics of the density~i.e., the

time-dependent probability distribution in position!

r t~x!5^c i ueiĤ td~x2 x̂!e2 iĤ tuc i&. ~2.27!

In this case operatorÂ is the projector onto the initial stat
(Â5uc i&^c i u) and operatorB̂ projects onto positionx. Just
as for the angular probability in the double-slit problem, t
Fourier transform ofB̂ is totally delocalized, and we there
fore expect a rather good description of quantu
interference/coherence effects. This is confirmed by the
merical results in Fig. 2, which shows snapshots of the d
sity. After a short period of essentially classical dynami
the wave packet splits and dephases due to the anharmon
of the potential. Later a partial rephasing of the wave pac
is observed. This dephasing/splitting and rephasing o
wave packet is based on quantum interference and cann
described by a more classical method such as the LSC-
~shown by the thin lines! or the derivative FB-IVR~which is
not shown, but is found to be nearly indistinguishable fro
the LSC-IVR result!. The FB-IVR, on the other hand, is see
to be in rather good agreement with the quantum result.

A more compact description of the wave packet rec
rences can be obtained by the normalized autocorrela
function of the density,

J~ t !5
*dxr t~x!r0~x!

*dxr0
2~x!

. ~2.28!

FIG. 2. Snapshots of the wave packet dynamics of an anharmonic oscill
Shown are quantum mechanical~full line!, FB-IVR ~dashed line!, and LSC-
IVR/classical Wigner~thin dotted line! results for the time-dependent den
sity @defined by Eq.~2.27!#.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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This quantity is depicted in Fig. 3. It shows a pronounc
recurrence att'60. The FB-IVR is seen to be in very goo
agreement with the quantum result, whereas the LSC-I
totally fails to describe the recurrence.

Let us next consider the average position

^x& t5^c i ueiĤ tx̂e2 iĤ tuc i&, ~2.29!

which corresponds to the first moment of the densityr t(x).
Figure 4 displays the numerical results of the quantum m
chanical, SC-IVR, and FB-IVR calculations, respective
For a harmonic oscillator, this observable would oscilla
between 1 and21 indefinitely. As was shown above, th
anharmonicity leads to a dephasing/splitting of the wa
packet, which becomes manifest in a smaller amplitude
the oscillation att'25. Later the wave packet rephases
some extent which leads to a recurrence in^x& t at t'60.
Because forB̂5 x̂ the FB-IVR is equivalent to the derivativ
FB-IVR ~which in turn is close to the LSC-IVR!, it cannot
describe this rephasing process correctly, as can be se

FIG. 3. Density autocorrelation function of an anharmonic oscillator@as
defined by Eq.~2.28!#. Shown are quantum mechanical~full line!, FB-IVR
~dashed line!, and LSC-IVR/classical Wigner~dashed–dotted line! results.

FIG. 4. Dynamics of the average position of an anharmonic oscillator@cf.
Eq. ~2.29!#. Shown are quantum mechanical~full line!, full SC-IVR ~dashed
line!, and FB-IVR~dashed–dotted line! results.
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Fig. 4. The full SC-IVR, on the other hand, is in excelle
agreement with the quantum results, thus demonstrating
the failure of the FB-IVR is caused by the additional statio
ary phase approximation used in the derivation of the F
IVR.

As the dimension of the system increases, it becom
more and more difficult to converge the double phase sp
integral of the full SC-IVR expression~2.7!. Therefore, one
would like to have a method which combines the better c
vergence properties of the FB-IVR and the capability of t
SC-IVR to describe quantum interference effects indep
dent of the observable under consideration. Such ageneral-
izedFB-IVR approach is proposed in the next section.

III. GENERALIZED FB-IVR METHOD

In this section we present a generalized FB-IVR~GFB-
IVR! method which~as a function of a certain paramete!
can tune continuously between the two limiting cases of
full double phase space SC-IVR and the FB-IVR. The de
vation of this method is based on a modified Filino
transformation66,67which has been used before to smooth o
oscillatory integrands occurring in SC-IVR calculations.19

To briefly review the basic idea of the Filinov transfo
mation let us consider the integral

I 5E dzg~z!ei f (z), ~3.1!

where the functionsf ,g are in general complex. Due to th
phase factorei f (z) the integrand is oscillatory and therefo
difficult to integrate with Monte Carlo methods. The mod
fied Filinov method approximates the integral~3.1! by the
expression

I'I ~c!5E dzg~z!ei f (z)AdetS 11 ic
]2f

]z]zD
3expS 2

1

2

] f

]z
c
] f

]zD , ~3.2!

wherec is the matrix containing the Filinov parameters.67 In
general the choice of this matrix is rather arbitrary. To si
plify the discussion let us assume for the moment thac
5c1. Then forc50 one regains the original integral~3.1!.
In the opposite limit, i.e.,c→`, the integral in Eq.~3.2!
approaches the stationary phase approximation toI,

I SPA5(
j

g~zj !e
i f (zj )AdetS 2p i Y ]2f

]z]zD , ~3.3!

where the sum goes over all points of stationary phase.
finite values ofc the modified Filinov transformation result
in a smoothing of the integrand which in turn leads to bet
Monte Carlo statistics.

Applying the modified Filinov method to the full SC
IVR expression~2.7! gives the following GFB-IVR for the
correlation functionCAB(t) ~the details of the derivation ar
outlined in Appendix B!:
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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CAB
GFB~ t !5E dq0dp0

~2p!N E dDqdDp

~2p!N
^p0q0uÂup08q08&

3ei [St(p0 ,q0)1S2t(pt8 ,qt8)]

3C̄0~p0 ,q0 ;Dp ,Dq!e2~1/2!DqcqDq^pt8qt8uBC uptqt&.

~3.4!

The trajectories implicit in Eq.~3.4! are the same as in th
full SC-IVR ~2.8!, i.e., the trajectories are started att50
with initial values (p0 ,q0) and propagated up to timet,
where a jump in coordinate and momentum occurs@cf. Eq.
~2.9!#, after which they are propagated back to timet50
~with final valuesp08 ,q08). St(p0 ,q0) andS2t(pt8 ,qt8) denote
the action for the forward and backward part of the traj
tory, respectively. To simplify the notation and discussi
we have again assumed~as in Sec. II! that the operatorB̂ is
local in coordinate space, i.e.,B̂5B(q̂). The result for a
general operatorB̂5B(q̂,p̂) is given in Appendix B. The
operatorBC in Eq. ~3.4! is related toB̂ via its Fourier trans-
form B̃(Dp) through the following convolutive expression

BC 5E dp8

~2p!N
B̃~p8!eip8q̂e2~1/2!(Dp2p8)cp(Dp2p8). ~3.5!

The difference from the original operatorB̂ @cf. Eq. ~2.11!#,
i.e., the convolution with a Gaussian, is due to the Filin
transformation applied to the matrix element^pt8qt8uB̂uptqt&.
The pre-exponential factorC̄0 is given by

C̄0~p0 ,q0 ;Dp ,Dq!

522NH det@~11 c̄q!~11 c̄p!21#

det~g!
det~D!J 1/2

, ~3.6!

where the matrixD involves the monodromy matrix ele
ments for the forward and backward part of the traject
and is defined in Eq.~B20! in Appendix B. The diagona
matricesc̄q ,c̄p contain theg-scaled Filinov parameters

c̄q52g21cq , c̄p52gcp . ~3.7!

It is instructive to discuss two limiting cases. In the lim
cq5cp50, the pre-exponential factorC̄0 can be written as a
product of the two pre-exponential factors for the forwa
and backward trajectory, i.e.,

C̄0~p0 ,q0 ;Dp ,Dq!5Ct~p0 ,q0!C2t~pt8 ,qt8!,

for cq5cp50, ~3.8!

and, furthermore, the identityBC 5B̂ holds. Therefore, the
GFB-IVR expression reverts to the full double phase sp
SC-IVR @in the form ~2.8!# in this limit.

In the opposite limit, i.e.,cq ,cp→`, one has

@det~ c̄q!det~ c̄p!#21/2C̄0~p0 ,q0 ;Dq ,Dp!

→C0~p0 ,q0 ,Dp ,Dq!, ~3.9!
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whereC0 denotes the FB-IVR pre-exponential factor for th
combined forward–backward trajectory@cf. Eq. ~2.16!#.
Moreover, it is easy to show that

@det~ c̄q!det~ c̄p!#1/2e2~1/2!DqcqDq^pt8qt8uBC uptqt&

→d~Dq!B̃~Dp!ei Dpqt, ~3.10!

and, therefore, the GFB-IVR becomes the FB-IVR in t
limit cq ,cp→`. This is to be expected, since this limit co
responds within the modified Filinov method to the statio
ary phase approximation.

For finite cq ,cp the GFB-IVR will give a result some-
where in between the full SC-IVR and the FB-IVR. In ge
eral, the larger the Filinov parameterscq ,cp are chosen, the
smaller is the momentum and coordinate jump and, there
~as in the case of the FB-IVR!, the better are the convergenc
properties of the Monte Carlo integration.86 On the other
hand, to include all quantum interference effects that can
described by the full SC-IVR one would like to chose
rather small Filinov parameter.

To study the dependence on the parameterscq ,cp let us
again consider the anharmonic oscillator with Hamiltoni
~2.25!. In Sec. II we had already seen that for the tim
dependent densityr t(x) there is little difference between th
full SC-IVR and the FB-IVR result~and both are in rathe
good agreement with the quantum mechanical result!. For
the average position, on the other hand, the FB-IVR redu
to the derivative FB-IVR and, hence, cannot describe
recurrences present in the full SC-IVR result~and in the
quantum mechanical calculation!.

Let us first focus on the density. Figure 5 compares
quantum mechanical result for the density at timet524 with
results obtained using the full SC-IVR, the GFB-IVR and t
FB-IVR. In all GFB-IVR calculations we have used the sam
g-scaled Filinov parameter for coordinate and momentu
i.e., c̄q5 c̄p5 c̄. Overall the agreement with the quantum r
sults is seen to be rather good for all semiclassical calc

FIG. 5. Densityr t(x) for an anharmonic oscillator at timet524. Shown are
quantum mechanical~full line!, SC-IVR ~dotted line!, and FB-IVR~thin full
line! results as well as GFB-IVR results for different values of the Filin

parameter: c̄51 ~short-dashed line!, c̄55 ~long-dashed line!, c̄550
~dashed–dotted line!.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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tions and there is only a weak dependence on the Fili
parameterc̄. The SC-IVR~which corresponds to a GFB-IVR
calculation withc̄50) as well as the GFB-IVR calculation
with c̄<2 reproduce the quantum result almost quant
tively. Increasing the Filinov parameterc̄ further, the agree-
ment with the quantum result deteriorates to some exten
particular, for c̄.2 part of the density becomes slight
negative.87 The results in Fig. 5 also illustrate how the GFB
IVR ~as a function ofc̄! can tune continuously between th
full SC-IVR and the FB-IVR.

In contrast to this result for the density, there is a rat
strong dependence on the parameterscq ,cp for the average
coordinate^x& t depicted in Fig. 6. For values 0< c̄<2 the
GFB-IVR agrees rather well with the quantum result a
reproduces the recurrence att'50 perfectly. This demon-
strates that there is a range ofc̄-values where all interferenc
effects that can be described semiclassically are included
where the results are rather insensitive to the particular v
of c̄. Increasing the Filinov parameter further (c̄.2), the
GFB-IVR results at longer times (t.20) deteriorate drasti
cally. For c̄→` it approaches the FB-IVR result which ca
not describe the recurrence at all.

This example demonstrates that the GFB-IVR with
proper choice of the Filinov parameterc can describe quan
tum interference effects independent of the observable
practical strategy is to do some test calculations for differ
values ofc and then choosec as small as the Monte Carl
statistics allows.

IV. GFB-IVR FOR SYSTEM–BATH PROBLEMS

When treating the dynamics of large molecules or p
cesses in a condensed phase, it is often meaningful to s
rate the problem into a low-dimensional system~in the sim-
plest case a single reaction coordinate! which is probed
and/or responsible for the quantum effects and, theref
needs to be treated at a higher level of theory, and a b

FIG. 6. Dynamics of the average position of an anharmonic oscilla
Shown are quantum mechanical~full line!, SC-IVR ~dotted line!, and FB-
IVR ~thin full line! results as well as GFB-IVR results for different values

the Filinov parameter:c̄50.5 ~short-dashed line!, c̄52 ~long-dashed line!,

c̄510 ~dashed–dotted line!.
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which provides the dissipative environment and can
treated at a lower level. In this section we will show how t
GFB-IVR method proposed in the previous section can
adapted to this situation.

Consider a general Hamiltonian for a system–bath pr
lem,

H5HS1HB1HSB

5
px

2

2
1VS~x!1(

j
FPj

2

2
1VB~Qj !G1HSB, ~4.1!

where x denotes the system coordinate andpx the corre-
sponding momentum~to simplify the notation we assume
one-dimensional system!; Qj andPj are likewise the coordi-
nate and momentum of thejth bath mode.VS andVB denote
the potential energy for system and bath, respectively,
HSB describes the coupling between them.

Depending on the physical problem under considerat
there may be different ways for the separation into syst
and bath. A rather natural way is to define the system
those degrees of freedom that are probed in the process u
consideration. In terms of the correlation functionCAB(t),
this means that the system is defined by the degrees of
dom on which the operatorB̂ depends@i.e., B̂5B( x̂)]. A
typical example is the autocorrelation function of a react
coordinate,

Cxx~ t !5tr~ r̂~0!x̂eiĤ tx̂e2 iĤ t!, ~4.2!

which ~within the linear approximation for the dipole mo
ment! is related to infrared absorption spectrum, or, ev
simpler, the average value of the reaction coordinate,

^x& t5tr~ r̂~0!eiĤ tx̂e2 iĤ t!, ~4.3!

which was considered above.
The GFB-IVR method can rather naturally be adapted

these types of problems. The GFB-IVR expression for
combined system–bath problem involves, in general,N
52NS12NB Filinov parameterscpx

,cx ,cpB ,cqB . If all these
parameters are rather small~or even zero as in the case of th
full double phase space SC-IVR! it will be very difficult to
converge the Monte Carlo integral in Eq.~3.4!. A natural
strategy to improve the Monte Carlo statistics is to keep
Filinov parameters for the system degrees of freedom~and
possibly for those bath degrees of freedom that are impor
for quantum effects! as small as the description of quantu
interference effects requires, but use a rather large value
the Filinov parameters of the bath~or those bath degrees o
freedom that are supposed to be rather classical!. The best
convergence properties will, of course, be obtained in
limit cpB ,cqB→`, which corresponds to a stationary pha
limit for the bath degrees of freedom. In this case the m
mentum and coordinate jumps disappear for the bath deg
of freedom, i.e., the bath trajectories become continuous
this limit we obtain the following system–bath GFB-IVR
expression for the correlation function:

r.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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CAB
GFB~ t !5E dQ0dP0

~2p!NB

dx0dpx0

~2p!NS
E dDxdDpx

~2p!NS

3^P0Q0u^px0x0uÂupx08 x08&uP08Q08&

3ei [St(p0 ,q0)1S2t(pt8 ,qt8)]

3C̄0~px0 ,x0 ,P0 ,Q0 ;Dx ,Dpx
!

3e2~1/2!DxcxDx^pxt8 xt8uBC upxtxt&, ~4.4!

where the pre-exponential factor now reads

C̄0~px0 ,x0 ,P0 ,Q0 ;Dx ,Dpx
!

522NSH detNS
@~11 c̄x!~11 c̄px

!21#

det~g!
det~DSB!J 1/2

, ~4.5!

and the matrixDSB is obtained by taking the limitcpB ,cqB

→` in Eq. ~B20!. In Eq. ~4.5!, c̄x and c̄px
denote the

g-scaled Filinov parameters for the system coordinate
momentum, respectively.

If, in addition, the limit c̄x ,c̄px
→0 is taken in Eqs.~4.4!

and ~4.5!, we obtain an expression which corresponds t
full SC-IVR with respect to the system degrees of freed
and a FB-IVR with respect to the bath degrees of freedom
conceptually similar mixed SC-FB-IVR for system–ba
problems was recently proposed by Thompson and Mak88

Compared to the general GFB-IVR, Eq.~3.4!, which in-
volves a (4NS14NB)-dimensional phase-space integral, t
system–bath GFB-IVR requires only a (4NS12NB)-
dimensional integration. Moreover, as for the FB-IVR, t
fact that the trajectories are continuous in the bath degree
freedom results in a partial cancellation of the phase of
integrand as well as the magnitude of the prefactor, t
improving the convergence properties of the Monte Ca
integration.

To study the performance of the system–bath GFB-I
we consider a damped anharmonic oscillator which is
tained by coupling the anharmonic oscillator of Eq.~2.25! to
a harmonic bath,

H5
px

2

2
1

1

2
vx

2x21ax31bx4

1(
j

F Pj
2

2
1

1

2
v j

2S Qj2
k j

v j
2

xD 2G . ~4.6!

This model was used by Shao and Makri in their study of
derivative FB-IVR method.70 It can be viewed as a simpl
model for vibrational relaxation.

In Eq. ~4.6!, v j denotes the frequency of thejth bath
mode. The bath is characterized by its spectral density89,90

J~v!5
p

2 (
j

k j
2

v j
d~v2v j ! ~4.7!

which is chosen to be of Ohmic form,

J~v!5hve2v/vc, ~4.8!
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with coupling strengthh and characteristic frequencyvc . In
all numerical results reported below, the characteristic f
quency of the bath was chosen asvc5vx .

We will focus on the average position of the oscillato
Eq. ~4.3!, where the initial state is given by a factorized sta

r~0!5uc iS&uc iB&^c iBu^c iSu. ~4.9!

The initial state for the system is given by Eq.~2.26! and the
bath is initially in the ground state

uc iB&5u01&•••u0NB
&. ~4.10!

Let us first study the dependence of the result, as wel
the Monte Carlo statistics, on the Filinov parameters of
bath. For this purpose it is not important to model a tru
dissipative bath, so we here have discretized the bath spe
density with only 10 oscillators, according to the discretiz

FIG. 7. Dynamics of the average position of an anharmonic oscilla
weakly coupled (h50.1) to 10 harmonic bath modes. Shown are GFB-IV

results for different values of the Filinov parameter of the bath:c̄B55

~dashed–dotted line!, c̄B550 ~full line!, as well as the LSC-IVR/classica
Wigner result~thin full line!. For comparison the result for the uncouple
(h50) anharmonic oscillator is also displayed~thin dashed line!.

FIG. 8. Estimate of the Monte Carlo fractional error for^x& t at time t
536.4 for 30 000 trajectories as a function of the Filinov parameter of

bath c̄B . Shown are results for two different coupling strengths:h50.1
~circles!, h51 ~squares!.
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tion scheme outlined in Ref. 32~with a maximum bath fre-
quencyvmax52vc!. Figure 7 compares GFB-IVR results i
the weak-coupling regime (h50.1) obtained with two dif-
ferent values of the Filinov parameter of the bath. For s
plicity, the sameg-scaled Filinov parameter was used for
10 bath modes, i.e.,c̄pB5 c̄qB5 c̄B1. The g-scaled Filinov
parameter for the system wasc̄x5 c̄px

51 in all calculations.
Also shown is the LSC-IVR result as well as the quantu
mechanical result for the uncoupled system~i.e.,h50). Due
to the weak-coupling, the effect of the bath on the dynam
of the system coordinate is rather small. The compari
with the result for the uncoupled system shows that
damping of the amplitude fort,20 is primarily due to the
anharmonicity of the system and only amplified to some
tent by the interaction with the bath. Another effect of t
bath is the phase shift with respect to the uncoupled sys
and the damping of the recurrence att'50. As for the un-
coupled system, the LSC-IVR~and also the FB-IVR which is
not shown here! overestimates the damping caused by
anharmonicity and cannot reproduce the recurrencet
'50. The small damping due to the interaction with the b
and the phase shift are reproduced rather well, because
effects are also present in the corresponding harmonic
tem @i.e., a5b50 in Eq. ~4.6!# for which the LSC-IVR is
exact.

The comparison between the different GFB-IVR calc
lations demonstrates that there is no significant depend
of the converged result on the Filinov parameter of the ba
The Monte Carlo statistics, and thus the number of trajec
ries needed to obtain a converged result, on the other h
depends strongly on the Filinov parameter of the bath. T
is illustrated in Fig. 8, which shows the estimate of t
Monte Carlo error for̂ x& t at t536.4 for a fixed number of
30 000 trajectories and three different values ofc̄B . The
number of trajectories needed to obtain the same Mo
Carlo error decreases by almost two orders of magnit

FIG. 9. Dynamics of the average position of an anharmonic oscilla
strongly coupled (h51) to 10 harmonic bath modes. Shown are LSC-IV
classical Wigner results~thin full line! as well as results obtained with th
system–bath GFB-IVR~thick full line!. For comparison the result for th
corresponding harmonic system~i.e., a5b50) is also displayed~thin
dashed line!.
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when the Filinov parameter of the bath is increased fr
c̄B52 to c̄B550, thus greatly improving the numerical effi
ciency.

Whereas in the weak-coupling regime the dynamics
primarily dominated by the anharmonicity of the system a
the resulting quantum interference effects, the dynamics
haves more classically if the coupling to the bath is
creased. Figure 9 depicts the results for a stronger coup
(h51). Thereby, the GFB-IVR results have been obtain
using the system–bath variant of this approach~correspond-
ing to the limitcpB ,cqB→`) and a system Filinov paramete
of c̄x5 c̄px

51. Also shown is the result for the correspondin
harmonic system~i.e., a5b50). In this case the short-time
decay of the amplitude of the oscillations is primarily due
the coupling to the bath and the recurrences att'30 andt
'50 are caused by the finite level density of the discretiz
bath. The LSC-IVR is seen to be in nearly quantitative agr

rFIG. 10. Dynamics of the average position of an anharmonic oscilla
weakly coupled (h50.1) to a harmonic bath. Shown are LSC-IVR/classic
Wigner results~dashed-dotted line! as well as results obtained with th
system–bath GFB-IVR~full line!. For comparison the result for the un
coupled (h50) anharmonic oscillator is also displayed~thin dashed line!.

FIG. 11. Dynamics of the average position of an anharmonic oscilla
strongly coupled (h51) to a harmonic bath. Shown are LSC-IVR/classic
Wigner results~dashed–dotted line! as well as results obtained with th
system–bath GFB-IVR~full line!. For comparison the result for the un
coupled (h50) anharmonic oscillator is also displayed~thin dashed line!.
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ment with the GFB-IVR which demonstrates that for th
stronger coupling almost all quantum interference effe
have already been quenched by the bath. The absenc
quantum interference/coherence in the strong coupling l
also improves the Monte Carlo statistics to some exten
can be seen from Fig. 8.

In the final part of this section we study how the qua
tum interference/coherence effects present in the dynam
of the uncoupled anharmonic oscillator are quenched b
truly dissipative bath. For this purpose the number of b
modes used in the discretization has to be increased. In
eral test calculations we have found that within the discr
zation scheme outlined in Ref. 32 about 100 bath modes
a maximum bath frequency ofvmax55vc are sufficient to
represent the continuous spectral density for timest,60.
Because~according to the results shown above! the final re-
sult does not depend significantly on the Filinov paramete
the bath we have used the system–bath GFB-IVR~3.4! ~cor-
responding to the limitcpB ,cqB→`) and a system Filinov
parameter ofc̄x5 c̄px

51. With this method it was possible t
obtain reasonably converged results with 10 000–20 000
jectories~depending on the coupling strengthh), which @in
view of the high dimensionality of the Monte Carlo integr
(4NS12NB5204)# is a rather small number.

Figure 10 shows the dynamics of the average positio
the weak-coupling regime (h50.1). As was already dis
cussed above, in this regime the dynamics is dominated
the coherent motion of the anharmonic oscillator and
coupling to the bath results in a shift of the frequency
small damping of the amplitude of the oscillations, and
partial quenching of the recurrence att'50. The semiclas-
sical result shows some spurious structure at longer ti
which is due to the statistical error.

Figure 11 depicts the same observable for a coup
strength ten times larger (h51). In this case all recurrence
are quenched by the bath and as the comparison with
LSC-IVR/classical Wigner model shows the result is ess
tially the classical dynamics of a damped anharmonic os
lator.

V. CONCLUSION

In this work we have studied the capability of two di
ferent, recently proposed FB-IVR methods to describe qu
tum coherence/interference effects. We have found that
can obtain drastically different results depending on whet
a derivative or an integral representation of the observa
under consideration is used in the derivation of the FB-IV
To rationalize this finding it was shown that the derivati
FB-IVR can be thought of as an approximate version of
LSC-IVR/classical Wigner approach and, therefore, can
describe quantum interference effects beyond the very s
time limit. The FB-IVR based on the integral representat
of the observable, on the other, is capable of describ
quantum interference effects. Whether even this integral
sion of the FB-IVR is able to describeall interference con-
tained in a semiclassical treatment~i.e., via the full SC-IVR
approach!, however, depends on the observable under c
sideration~i.e., on the form of operatorB̂).
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To overcome this limitation of the FB-IVR we have pro
posed a new,generalizedFB-IVR approach which can tune
continuously between the full SC-IVR and the FB-IVR.
therefore allows one to check whether all interference t
can be described semiclassically is included in the calc
tion. The GFB-IVR combines the capability of the SC-IV
to describe quantum interference effects independent of
particular observable and the better convergence prope
of the FB-IVR.

Using a special version of the GFB-IVR which
adapted to system–bath problems, we have studied
quenching of recurrences in the dynamics of an anharmo
oscillator coupled to a harmonic bath. In contrast to the F
IVR methods, the GFB-IVR was shown to cover both t
coherent and incoherent regime, i.e., the recurrences
weak coupling to the bath and the purely classical decay
the strong-coupling regime. Although the motivation for t
present model study of this problem was primarily to de
onstrate the performance of the method, the occurrence,
servability, and quenching of quantum coheren
interference in large molecules or in the condensed phase
been investigated recently in a variety of systems both
perimentally and theoretically.91–99The results of the presen
work suggest that the GFB-IVR is well suited to study the
phenomena.
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APPENDIX A: SIMPLIFIED DERIVATIVE FB-IVR

In this section we outline the derivation of the simplifie
form of the derivative FB-IVR Eq.~2.21!. The starting point
is the derivative FB-IVR expression Eq.~2.18!. The deriva-
tive of the integrand in Eq.~2.18! with respect to the mo-
mentum jumpDp comprises three parts: the derivative of t
pre-exponential factor, of the action, and of the coher
state matrix element of the operatorÂ, i.e.,

2 i
]

]Dp
C0~p0 ,q0 ;Dp!eiS0(p0 ,q0 ;Dp)^p0q0uÂup08q08&

5eiS0(p0 ,q0 ;Dp)F2 i ^p0q0uÂup08q08&
]

]Dp
C0~p0 ,q0 ;Dp!

1C0~p0 ,q0 ;Dp!^p0q0uÂup08q08&
]

]Dp
S0~p0 ,q0 ;Dp!

2 iC0~p0 ,q0 ;Dp!
]

]Dp
^p0q0uÂup08q08&G . ~A1!
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Note, that all derivatives are taken at the pointDp50. The
derivative of the coherent stateup08q08& can be readily ob-
tained

F ]

]Dp
up08q08&G

Dp50

5F ~ q̂2q0!•S 2g
]B~qt!

]p0
1 i

]B~qt!

]q0
D

1 ip0•
]B~qt!

]p0
G up0q0&. ~A2!

Here, we have used the identities,

F]q08~qt ,pt1Dp @]B~qt!/]qt# !

]Dp
G

Dp50

5
]q0~qt ,pt!

]pt

]B~qt!

]qt
52

]B~qt~q0 ,p0!!

]p0
, ~A3a!

F]p08~qt ,pt1Dp @]B~qt!/]qt# !

]Dp
G

Dp50

5
]p0~qt ,pt!

]pt

]B~qt!

]qt
5

]B~qt~q0 ,p0!!

]q0
. ~A3b!

The derivative of the action is given by

F ]

]Dp
S0~p0 ,q0 ;Dp!G

Dp50

5B~qt!1Fp08•
]q08

]Dp
G

Dp50

5B~qt!2p0•
]B~qt!

]p0
, ~A4!
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where for the last identity we have again used Eq.~A3a!.
Employing the identity

]

]Dp
det@R~Dp!#5det@R~Dp!#trF ~R~Dp!!21

]

]Dp
R~Dp!G ,

~A5!

which is valid for any nonsingular, parameter dependent m
trix R(Dp), the derivative of the pre-exponential factor rea

F ]

]Dp
C0~p0 ,q0 ;Dp!G

Dp50

5
1

2
trS F ]

]Dp
R~Dp!G

Dp50
D .

~A6!

Here, the matrixR is defined by

R~Dp!5
1

2 S g1/2
]q08

]q0
g2 1/21g2 1/2

]p08

]p0
g1/2

2 i g1/2
]q08

]p0
g1/21 i g2 1/2

]p08

]q0
g2 1/2D , ~A7!

and we have used thatR(Dp50)51. Utilizing the identities
~A3!, the derivative of the pre-exponential factor can be f
ther simplified to

F ]

]Dp
C0~p0 ,q0 ;Dp!G

Dp50

5
i

4 (
j

S g j

]2B~qt!

]p0 j
2

1
1

g j

]2B~qt!

]q0 j
2 D . ~A8!

Inserting Eqs.~A4!, ~A2!, and ~A8! into Eq. ~A1! and inte-
grating by parts, gives
CAB
DFB~ t !5E dq0dp0

~2p!N
B~qt!H F11

1

4 (
j

S g j

]2

]p0 j
2

1
1

g j

]2

]q0 j
2 D G ^p0q0uÂup0q0&

2(
j

S ig j

]

]p0 j
1

]

]q0 j
D ^p0q0uÂ~ q̂ j2q0 j !up0q0&J . ~A9!

Furthermore, using the identity

S ig j

]

]p0 j
1

]

]q0 j
D ^p0q0uÂ~ q̂ j2q0 j !up0q0&52AH~p0 ,q0!12g j^p0q0u~ q̂ j2q0 j !Â~ q̂ j2q0 j !up0q0&

5
1

2 S g j

]2

]p0 j
2

1
1

g j

]2

]q0 j
2 D AH~p0 ,q0!, ~A10!

whereAH(p0 ,q0) denotes the Husimi distribution of the operatorÂ @cf. Eq. ~2.22!#, we finally obtain

CAB
DFB~ t !5E dq0dp0

~2p!N
B~qt!F S 11

N

2 DAH~p0 ,q0!2(
j

g j^p0q0u~ q̂ j2q0 j !Â~ q̂ j2q0 j !up0q0&G
5E dq0dp0

~2p!N
B~qt!F12

1

4 (
j

S g j

]2

]q0 j
2

1
1

g j

]2

]p0 j
2 D GAH~q0 ,p0!. ~A11!
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APPENDIX B: DERIVATION OF THE GFB-IVR

In this Appendix we shall give an outline of the deriv
tion of the GFB-IVR expression, Eq.~3.4!. The basic idea
of the derivation is to apply the modified Filinov metho
@cf. Eq. ~3.2!# to the full double phase space SC-IVR, E
~2.8!.

To this end, let us first consider the unitary operator

Û5eiĤ te2 iqsp̂eipsq̂e2 iĤ t. ~B1!

Inserting the Herman–Kluk SC-IVR, Eq.~2.2!, for the
two propagators gives the position matrix eleme
of Û,
ov

Downloaded 17 May 2005 to 169.229.129.16. Redistribution subject to A
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^qf uÛuqi&5E dq0dp0

~2p!N E dqt8dpt8

~2p!N
Ct~p0 ,q0!C2t~pt8 ,qt8!

3ei [St(p0 ,q0)1S2t(pt8 ,qt8)]^qf up08q08&

3^pt8qt8ue
2 iqsp̂eipsq̂uptqt&^p0q0uqi&

5E dzg~z!ei f (z). ~B2!

To cast the integrand into a form where the Filinov transf
mation can be readily applied, we have defined
4N-dimensional vectorz5(qt8 ,pt8 ,q0 ,p0) and the function

g~z!5Ct~p0 ,q0!C2t~pt8 ,qt8!)
j 51

N S g j

p D 1/2

. ~B3!

The ‘‘phase’’ function f (z) involves the action and the ex
ponents of various coherent state matrix elements,
f ~z!5St~p0 ,q0!1S2t~pt8 ,qt8!1p08•~qf2q08!1p0•~q02qi !1 1
2~pt81pt!•~qt82qt!

1
i

2 (
j

g jF ~qf j2q0 j8 !21~q0 j2qi j !
21

1

2
~qt j8 2qt j !

2G1
i

4 (
j

1

g j
~pt j8 2pt j !

21
1

2
@ps•~qt81qt!2qs•~pt81pt!2qs•ps#

1
i

2 (
j

Fg j

2
qs j

2 1
1

2g j
ps j

2 2g jqs j~qt j8 2qt j !2
1

g j
ps j~pt j8 2pt j !G . ~B4!
g
As we have discussed in Sec. III, the modified Filin
method replaces the integral in Eq.~B2! by

^qf uUuqi&5E dzg~z!ei f (z)F~z!, ~B5!

with the Filinov factor

F~z!5AdetS 11 i c̃
]2f

]z]zDexpS 2
1

2

] f

]z
c̃

] f

]zD , ~B6!
where the matrixc̃ contains the Filinov parameters. Definin
the vector

y5~q082qf ,q02qi ,qt82qt2qs ,pt82pt2ps!, ~B7!

we have for the first derivative off,

] f

]z
5Ky , ~B8!

with the (4N34N) matrix K given by
K51
2

]p08

]qt8

T

1 i
]q08

]qt8

T

g 0
i

2
g 2

1

2

2
]p08

]pt8

T

1 i
]q08

]pt8

T

g 0
1

2

i

2
g21

0 ig
1

2

]pt

]q0

T

2
i

2

]qt

]q0

T

g 2
1

2

]qt

]q0

T

2
i

2

]pt

]q0

T

g21

0 1
1

2

]pt

]p0

T

2
i

2

]qt

]p0

T

g 2
1

2

]qt

]p0

T

2
i

2

]pt

]p0

T

g21

2 . ~B9!

The matrix of second derivatives off is given by

]2f

]z]z
5KJ , ~B10!

with the matrixJ given by
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J5
]y

]z
5S ]q08

]qt8

]q08

]pt8
0 0

0 0 1 0

1 0 2
]qt

]q0
2

]qt

]p0

0 1 2
]pt

]q0
2

]pt

]p0

D . ~B11!

As usual in the application of the Filinov method to sem
classical propagators,45,48,49we have neglected derivatives o
the monodromy matrix in the derivation of Eq.~B10!. We
note in passing, that the approximate matrix of second
rivatives in Eq.~B10! can be shown to be symmetric, as
should be.

The Filinov factor, therefore, reads

F5@det~11 i c̃KJ !#1/2exp@2 1
2y

TKT c̃Ky #. ~B12!

Within the modified Filinov method one can choose a rat
arbitrary matrix c̃ of Filinov parameters, which may als
have a weak dependence on the coordinatesz. With the
choice

c̃5~KT!21cK21, ~B13!

wherec denotes the new matrix of Filinov parameters yet
be defined, the Filinov factor simplifies, and one obtains

F5
@det~K1 iJTc!#1/2

@det~K !#1/2
exp@2 1

2 yTcy#. ~B14!

To eliminate the dependence of the Filinov factor on
initial and final state parametersqf ,qi we choose the new
Filinov matrix c to be of the form

c5S 0 0 0 0

0 0 0 0

0 0 cq 0

0 0 0 cp

D , ~B15!
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with the N3N diagonal matrices,

cq5diag~cq1 , . . . ,cqN!, ~B16a!

cp5diag~cp1 , . . . ,cpN!. ~B16b!

Using some straightforward but tedious matrix algebra,
product of the (4N34N)-dimensional determinant in th
Filinov factor F and theN-dimensional determinants in th
pre-exponential factorsCt ,C2t can be cast into the follow-
ing form:

Ct~p0 ,q0!C2t~pt8 ,qt8!
@det~K1 iJTc!#1/2

@det~K !#1/2

522NH det@~11 c̄q!~11 c̄p!21#

det~g!
det~D!J 1/2

5C̄0~p0 ,q0 ;Dp ,Dq!, ~B17!

which defines the GFB-IVR pre-exponential factorC̄0 .
Here,Dp ,Dqdenote the momentum and coordinate jumps
the trajectories at timet, i.e.,

qt85qt1Dq , ~B18a!

pt85pt1Dp . ~B18b!

The diagonal matricesc̄q ,c̄p contain theg-scaled Filinov pa-
rameters,

c̄q52 diag~cq1 /g1 , . . . ,cqN /gN!, ~B19a!

c̄p52 diag~cp1g1 , . . . ,cpNgN!, ~B19b!

and the matrixD is given by the following combination o
monodromy matrix elements:
D5
1

2 S ]p08

]pt8
2 ig

]q08

]pt8
D ~11 c̄q!~11 c̄p!11

~11 c̄q!~11 c̄p!21
S ]pt

]p0
g1 i

]pt

]q0
D1

1

2 S g
]q08

]qt8
1 i

]p08

]qt8
D ~11 c̄q!~11 c̄p!11

~11 c̄q!~11 c̄p!21
S ]qt

]q0
2 i

]qt

]p0
g D

1S ]p08

]pt8
2 ig

]q08

]pt8
D g~11 c̄q!

~11 c̄q!~11 c̄p!21
S ]qt

]q0
2 i

]qt

]p0
g D1S g

]q08

]qt8
1 i

]p08

]qt8
D g21~11 c̄p!

~11 c̄q!~11 c̄p!21
S ]pt

]p0
g1 i

]pt

]q0
D . ~B20!
-
Changing integration variables according to Eq.~B18!, the
GFB-IVR for the unitary operatorÛ is given by

Û5E dq0dp0

~2p!N E dDqdDp

~2p!N
up08q08&

3ei [St(p0 ,q0)1S2t(pt8 ,qt8)]C̄0~p0 ,q0 ;Dp ,Dq!

3e2~1/2!(Dq2qs)cq(Dq2qs)e2~1/2!(Dp2ps)cp(Dp2ps)

3^pt8qt8ue
2 iqsp̂eipsq̂uptqt&^p0q0u. ~B21!
Finally, to obtain the GFB-IVR for a correlation func
tion,

CAB~ t !5tr~ÂeiĤ tB̂e2 iĤ t! ~B22!

with a general operatorB̂5B(p̂,q̂) we employ the Weyl
representation100 of operatorB̂,

B̂5E dqsdps

~2p!N
B̃~ps ,qs!e

2 iqsp̂eipsq̂, ~B23!
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with

B̃~ps ,qs!5E dq̄e2 ips•q̄^q̄1qsuB̂ uq̄&. ~B24!

Using the GFB-IVR forÛ and carrying out the integratio
over qs andps , we obtain the GFB-IVR for the correlatio
function,

CAB
GFB~ t !5E dq0dp0

~2p!N E dDqdDp

~2p!N
^p0q0uÂup08q08&

3ei [St(p0 ,q0)1S2t(pt8 ,qt8)]3C̄0~p0 ,q0 ;Dp ,Dq!

3^pt8qt8uBC uptqt&, ~B25!

where the operatorBC is related toB̃(ps ,qs)as follows:

BC 5E dpsdqs

~2p!N
B̃~ps ,qs!e

iqsp̂e2 ipsq̂e2~1/2!(Dp2ps)cp(Dp2ps)

3e2~1/2!(Dq2qs)cq(Dq2qs), ~B26!

which corresponds to convolution with a Gaussian.
If the operatorB̂ depends only on coordinates and not

momentum, i.e.,B̂5B(q̂), the Weyl transform is given by

B̃~ps ,qs!5B̃~ps!d~qs!, ~B27!

whereB̃(ps) is simply the Fourier representation of the fun
tion B(q) @cf. Eq. ~2.11!#. In this case the GFB-IVR expres
sion can be simplified and we obtain the result~3.4! in Sec.
III.
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