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The capability of two different, recently proposed semiclasg®8) forward—backwardFB) initial

value representatior($VR) to describe quantum interference and coherence effects is investigated.

It is shown that depending on the way the observable under consideration is represented by unitary
operators one can obtain rather different results. Although the FB-IVR based on an integral
representation as a rule is capable of describing quantum interference, a closer analysis reveals that
it depends on the observable under consideration if all interference that can be described
semiclassically is actually included in the calculation. To overcome this problem a new, generalized
FB-IVR method(GFB-IVR) is proposed, which combines the capability of the SC-IVR to describe
guantum interference effects independent of the observable and the better convergence properties of
the FB-IVR. The performance of this new approach is studied in some detail. In particular, it is
shown that the GFB-IVR can describe both the coherent and incoherent regime in the dynamics of
an anharmonic vibration coupled to a harmonic bath. 2@1 American Institute of Physics.

[DOI: 10.1063/1.1359242

I. INTRODUCTION phase-space integration implicit in the semiclassical propa-
gator is usually done employing Monte Carlo methods. The
oscillatory nature of the integrand results in a poor Monte
Sgarlo statistics. This so-called ‘“sign-problem” is well
kpown from real-time or fermionic path-integral
calculations?~°

Most of the methods proposed so far to overcome this

In recent years there has been an increasing interest
semiclassical descriptions of molecular dynanticS.There
are both fundamental and practical reasons why semiclas
cal methods represent an interesting alternative to quantu
mechanical approaches on one hand and purely classic

methods on the other hand. Compared to quantum mechani- £.11,1045.48.49, ¢ i
cal calculations, semiclassical or classical concepts can oftdfoblent==">"*%are based on smoothing techniques such

provide a more intuitive, qualitative understanding of the dy-as the Filinod®®’or stationary-phase Monte Carlo mettf8d.
namics. It has been shown, for example, that most of thd he basic idea of this technique is to integrate out the local
features in simple absorption spectra can be understood kgpcillations analytically using a linearization of the integrand
semiclassical dynamic$.Being based on classical trajecto- 0ver a small phase-space cell.
ries, semiclassical approaches are, furthermore, supposed to A quite different way to circumvent this problem and to
overcome the exponentia| Sca"ng with the number OffaC”itate the calculation of correlation functions in CompleX
coupled degrees of freedom of straightforward quantunystems are the various forward—backward methods pro-
basis-set calculatiorf&.Moreover, in contrast to purely clas- Posed recently by Miller and co-workéfs®* as well as
sical approaches, semiclassical methods are in principle cAakri and co-worker§?~"In this approach the smoothing
pable of describing quantum effects such as, for examplegf the integrand is accomplished by combining the forward
interference, zero-point energy conservation, or tunnelingtnd backward trajectory for the two propagators in a general
processes’ correlation function into one forward—backward trajectory
In particular semiclassicalSC) methods based on the with possibly a jump in the momentum of the reaction coor-
initial value representatiofVR) (Ref. 61 (which circum-  dinate. Starting from a full SC-IVR description for the two
vent the cumbersome root search problem in boundarypropagators, which involves a double phase-space integra
value-based semiclassical methptiave been applied suc- tion (see below, the forward—backwardFB) IVR can be
cessfully to a variety of different problems in molecular obtained by doing one of the integrations within the station-
dynamics. So far, most of the applications have been limitedry phase approximation. Therefore, the FB-IVR is more ap-
to rather small systems. The primary problem which preventproximate than the full SC-IVR, and the question arises to
a straightforward application to large systems is the oscillawhat extent it can still describe quantum interference effects.
tory nature of the integrand involved in the evaluation of the  So far there seems to be no unambiguous answer to this
semiclassical propagator. For a high-dimensional system thguestion. Gelaberét al. have shown recently that the FB-
IVR can describe the interference pattern for the double-slit

dpresent address: Theoretische Chemie, Technische Unitevkitechen, problem qualitatively CorreC“?g- A similar result has been
D-85747 Garching, Germany. obtained for quantum coherence effects in the flux-side cor-
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relation function for a double well potentfalas well as for means of general time-correlation functiéhsuch as, for
the wave packet dynamics of an anharmonic vibrationexample,

coupled to a thermal batli.On the other hand, Shao and
Makri have shown that a different version of the semiclassi-

cal forward—backward propagator cannot describe recur- A and B | ¢ Wl denotes th
rences in the dynamics of the average position of an anhaEere’ andb aré general operators arid denotes the

monic oscillator® amiltonian of the systgm.(We }Jse. uniAts .Wi.thﬁ=1

In the first part of this article we will discuss this prob- throughout the paperin typical applicationsA will involve
lem in some detail and show that it actually depends on théhe initial state of the system(0) and, therefore, all degrees
observable under consideration to what extent the FB-IVRf freedom, wherea8 will involve only a few degrees of
can describe quantum interference effects. In the second pdreedom, e.g., the degrees of freedom that are probed or a
we will propose a generalized FB-IVEGFB-IVR) method  reaction coordinate.
which can continuously tune between the full double phase To obtain a semiclassical approximation for the correla-
space SC-IVR and the FB-IVR. This flexibility allows one to tion function C,g(t) one can insert any semiclassical ap-
pheck if all i.nterferenpe that can be FJescribed semicIa;sicaIIMroximation to the quantum propagamTiﬁt into Eq. (2.1).
is actually included in the calculation. For the special ex-|n this paper we will use the Herman—Klufor coherent

ample of the average position of an anharmonic oscillator Wgtatg SC-IVR (Ref. 50 which for a generaN-dimensional
will demonstrate how the recurrences present in the quantuysiem reads

and the full SC-IVR results disappear when the GFB-IVR
approaches the FB-IVR. In the last part of the paper we will
apply the GFB-IVR to study the quenching of these recur-

Cap(t) =tr(AeHtBe MY, 2.1

“inr_ [ 990dPo

(ZT)NIqtpt>Ct(qo,po)e‘st‘%’po)<qopol-

rences when the oscillator is coupled to a bath.

II. DESCRIPTION OF QUANTUM INTERFERENCE
IN FB-IVR METHODS

(2.2

Here, (pg,qg) are initial momenta and coordinates for clas-
sical trajectoriesp,=pi(Po.do) and g;=q(pg,do) are the

In this section we investigate the capability of two dif- class!cally twpe-gvolved phase space variables, @nd the
classical action integral along the trajectory,

ferent FB-IVR methods to describe quantum interference ef-

fects. To keep the paper self-contained and to facilitate the t :
further discussion we will first give a brief review of semi- ~ S(Go.Po) = deT(DTqT— H). 2.3
classical IVR methods.

The dynamics in complex systems can be described byhe pre-exponential factdC; is given by

|
1 a0 _ _ P : J0t . P _
C Qo) = \/de{—( 27— (12 4 (U2) 22 a2 a2 T a2y~ (12) T - (12) ) | 2.4
«(Po,%0) 5|7 70,7 Y ﬁpoafl v apo”l Yo 2.9

It involves a combination of the elements of the monodromyinsertion of the semiclassical propagat@r?) into Eq.(2.1)

matrix gives the full double phase space SC-IVR for the correlation
function,
P
apO aq() dq dp dq/dp/
M,= (25) sC :f 0 Of o¥Mo PR
! G G ~e(t) 2oV 2o Ct(Po.90)Ct(Pg.do)
dPo Mo

X ei[st(vaQO)_St(pé rQ6)]<quO|A| p(’)q(’))

In the above expressiop denotes aN-dimensional diagonal
matrix, with elementy; being the width parameter for the
coherent state of thggh degree of freedom. The coordinate
space representation of afrdimensional coherent state is Here, two trajectories with initial valuespg,q,) and
the product of N one-dimensional minimum uncertainty (p(,q,) are started at timé=0 and then propagated up to
wave packets, time t. C, and S; denote the corresponding pre-exponential
factor and action, respectively.

For later use we mention that by using Liouville’s theo-
rem this expression can be written in a slightly different way,
namely,

X(p{q{|B|piat)- (2.7)

1/4

N
<x|pq>:H (ﬁ) e—(yjlz)(xj—q,~)2+ipj(xj—qj)_ (2.6)
j=1\ 7
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dgedpo [ dAdA dimensionality of the phase space integral, is that there is a
Cig(t)ZJ Nf 7 Ci(Po,do)C (P{ .4 partial cancellation of the phase in the integrand and the
(2m)~ ) (2m) magnitude of the pre-exponential factor, thus greatly improv-

ing the numerical property of the integrand.

To simplify the notation, let us assume that the operator
X(p; o |B|p.at)- (2.9 B is local in coordinate space, i.8= E’:(g). [Reference 33
shows how more general operatd$q,p) as well as the

special case when the operat8rdepends on coordinates
through a single collective variabkq), i.e., B=B(s(q)),

can be treated The existing variants of the FB-IVR method
differ primarily in the way the operatd® is represented by
Q—0{ =Gt A, (2938 unitary operators. One possibility, which has been used by
Miller and co-workerg®29:33:36.71.73g hased on the Fourier

representation of the operatBy

x e [Si(Podo) + S—t(P( a1 (o 10| Al pgais)

In this “forward—backward” formulation only a single tra-
jectory with initial values pg,qo) is started att=0 and
propagated up to timé¢ where a jump in coordinate and
momentum occurs, i.e.,

ptﬂpt’zpt—}—Ap, (2.9b

after which the trajectory is propagated back to titse0

with (pg,qq) being the final phase-space point. In E2.8), dA )

C(Po,do) and C(pf 7). as well asS(po.dp) and  g(g)= [ — 2 B(aye (211
S_«(p{ ,q;), denote the pre-exponential factors and the ac- (2mN

tions for the forward and backward trajectory, respectively.

The practical difficulty with the above formulations is The forward—backward IVR for the unitary operator
that the integrand in the double phase space average is highly
oscillatory. In addition, the product of the two pre-
exponential factorsC,(py,do) and Cy(pg,qq) can become
large, thereby amplifying the oscillations. To side-step this

problem, a linearized approximation to the SC-IVR expres-Can be obtained either by inserting two IVR's for the two

sion in Eq.(2.7), the LSC-IVR was introduce®, whereby all propagators and doing the intermediate intAegration via the
the relevant quantities are expanded to first order in the difstationary phase approximatfBror by viewingU as a single
ference variableg,—pj and qo—qj. The integration over Propagator with a time-dependent Hamilton?ﬁﬁ?f’e’ln both
these variables can be carried out analytically, which yieldsases the Herman-Kluk FB-IVR for the operatdrhas the
the following much simpler expression for the correlationsame form as Ed2.2), and we obtain the following FB-IVR

0 = eiMteifpig—iHt (2.12

function for the correlation function:
daodpo
Chp ()= Aw(do.Po) Bw(,Py)- (2.10 daA, - dgodp
AB 2m)N W Ho,Po/PwiHt, Pt CZBB(t):f PNB Ap)fo—,\?co(vaQO;Ap)
(27) (27)

HereA,y andB,, are the Wigner function of the operatdks So(Po.o AL A

and B; i.e., this linearization of the SC-IVR leads to the X @0tP0 %0 20X pogio| Al Podio) - (2.13
“classical Wigner” model that has arisen before from a va-

riety of approache& % Application of this approximation The FB-IVR trajectory implicit in Eq(2.13 starts att=0
to several interesting models of condensed phase problenygth initial condition (pg,0o) and evolves to timeéunder the
was quite successfat:>"*>A more thorough analysis, how- molecular HamiltonianH; at time t the momentum is
ever, showed that the LSC-IVR is able to describe quantung§hanged according to

effects only for very short time®. For example, it cannot

account_for the interference pattern in the double-slit — p—p{=p+A,, (2.149
problem’® It is thus desirable to develop a method that goes

beyond this linearized approximation, that can capture thgq is then evolved back to timie=0 via the molecular
important quantum interference effects, but is still more efjamiltonian H, (p;,q4) being the final phase-space point.

ficient than evaluating Eq2.7).  The action integra§, has contribution from these three time
To this end, Miller and co-worker&:*3as well as Makri steps,

and co-worker§®%° have proposed a “forward—backward”

(FB) IVR approach for the calculation of time correlation ‘

functions. In this approach, the operator prodel{BeH! SO(pOqu;Ap):f dr[p,0,—H]+Apq
in Eq. (2.2) is represented by a single Herman—KIluk-type 0
IVR, where the trajectories evolve from time-& (the ac-
tion of the operatoe™ "), undergo a momentuitor phase-
space jump at timet (the effect of operatoB), and then
evolve backward from— 0 (the action of the operata'"'!). and the pre-exponential factd@€, has the same form as
The main advantage of the FB-IVR, besides reducing thdsq. (2.4),

0 .
+f dr{p.-q.—H], (2.19
t

Downloaded 17 May 2005 to 169.229.129.16. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 114, No. 21, 1 June 2001 Generalized forward—backward IVR 9223

W oy T o P
_ v a2V (112
P 'yl + 77 y . (2.16

1 ddo 9Py .
_ il T — (12 (12 V2 i M2
ColPo. 0o, Ap) \/de{ 2 ( Y Y ap I o

The forward—backward nature of the trajectory provides dgedpo
several advantages over the conventional SC-IVR expre€Rg®(t)= | ———B(qy)
sion, EqQ.(2.8): First, for a complex molecular system the (27)

dimension of the phase space average is greatly reduced. For 2 5

. ; 1 d 1 9
example, in the case th& depends through a collective x| 1-= (Yj—2+——2”AH(QO,Do)-
coordinate onq [i.e., B=B(s(q))], the 4N-dimensional 47 o5 Vi Py

double phase space integration reduces t&NedEnensional (2.2
single-phase space integration plus a one-dimensional inte-

gral over the momentum jump variable. Second, there is &1€'€.Ax
partial cancellation of the phag¢hose of the action inte- _ A

grals, of the coherent states, and also of the complex pre- Au(Po.G0) = (Podol AlPodo)- (2.2
exponentia| factobswhich makes the integrand much less Taklng into account the relation between the Husimi distri-
oscillatory. Third, there is also a partial cancellation of thebution and the Wigner functioff,

denotes the Husimi distributihof the operatoA

magnitude of the pre-exponential factor such that it rarely 1 72 1 52
becomes too large, even for a strongly chaotic system. Aw(do.Po) =ex;{ — E ( Y=t — _2) ]
A different forward—backward method, which has been 47 dg; Vi IPy;
2 .
proposed by Shao and Mafkf? (see also Ref. 33is based X Au(Go.Po). (2.23

on a derivative representation of the operaior
it is obvious that the terms in brackets in E8.21) are the

first two terms of the series expansion of the operator

# 1 &P
s )

A,=0 1
To simplify the notation we have assumed here fBas a ex Yiog2 L 2
. . é’qO] 7] ‘9p0]
scalar and, therefore, the momentum jump is one- o )
dimensional. Inserting this representation into Ej1) and  The derivative FB-IVR can thus be thought of as an approxi-
using the FB-IVR for the unitary operator( mate version of the LSC-IVR/classical Wigner model and,
9 5 therefore, cannot be expected to describe quantum interfer-

B —i| ——idB (2.17)
oA,

_ AiHtaiA Bo—iHt :
=e"erre T, the following fc_)rward.—ba(?kward EXPreS- ence beyond the short time linft This is indeed what Shao
sion for the correlation function is obtained: and Makri have found for the dynamics of an anharmonic
dand oscillator’®
DEB . d 0odPo i . . . . . .
Cap ()y=—1 AL —NCO(pO,qO,Ap) To |Ilustrate_ this f|nd|ng3 Fig. 1 shows the m_terference
) (2m) pattern for a simple two-dimensional double-slit problem
(for a detailed description of the problem and the parameters,
X g'So(Po-%0:49)( pgio] Al pg Qo) (2.18
A,=0
Similar to Egs.(2.15 and(2.14), here the action is defined —am
by o8r | FB-IVR
------------ - DFB-IVR
t _ i —— LSC-IVR
So(po.qo:Ap)=fodr[p;qf—HHApB(qt) 0.6 | T
0 _ ) MET Y
+ft dr{p;-a;—HI, 219 & 04} AT AT
and the momentum jump is given by 0.2 1 N
—pt A, 2.2 | \ A
Pt— Py =Pt g, (2.20 . |~ ‘_ . . A ‘*\,,-\
Makri et al. have shown that the pre-exponential fac@igrin -1 -0.5 0 0.5 1
Eqg. (2.18 can actually be eliminated, thus greatly reducing 0 [rad]

the numerical effort to calculate the semiclassical correlation

i~ 70,82 ; ; ; ; ; FIG. 1. Angular distribution for a particle passing through a two-slit poten-
function. As is outlined in Appendix A, expressid@.18 tial (see Ref. 71 for more details about this examp&hown are quantum

can be cast into an even simpler form_WhiCh neither inVOlveSnechanica(full line), FB-IVR (dashed ling derivative version of the FB-
the pre-exponential factor nor the action IVR (dotted ling, and LSC-IVR/classical Wignethin full line) results.
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see Ref. 7 The plot depicts the angular probability distri- os ... =~ ~ ~ T 1 t—é — o
bution after the particle has gone through the slit. The FB- Bl e [ --- FB-IVR
IVR is seen to reproduce the interference pattern qualita- 0.4 | — LSCAVR

tively correctly. The result of the derivative FB-IVR, on the
other hand, is nearly indistinguishable from the LSC-IVR/ 0
classical Wigner model calculation which cannot describe 81

the interference pattern at all but gives the classical result. ¢:_: 0

The inability of the derivative FB-IVR to account for the
interference can be rationalized in different ways. Consider- 0
ing expression2.21), which for the angular probability of 08 r
the double-slit reads 0.4 I

ddgodpo |
P(0)= 8(6—6(a,py)) 0
t (2m)? Q. Pt
1 92 2 X X
X11-= Z E Vi P 2 + 7 _(9 2 AH(QO ,po), FIG. 2. Snapshots of the wave packet dynamics of an anharmonic oscillator.
J Qoj I ?Poj Shown are quantum mechaniclll line), FB-IVR (dashed ling and LSC-

(2.24) IVR/classical Wigner(thin dotted line results for the time-dependent den-

ity [defined by Eq(2.27].
where # denotes the polar ang|@= arctany/x)], it is obvi- sity [defined by Eq(2.27]

ous that in this method only a classical average over paths

which go through different slits is used, without accounting

for the different phase. The drastic difference in the resultd'his model has been used by Shao and Makri to demonstrate

obtained with the FB-IVR and its derivative form can also bethe performance of the derivative FB-IVR meth@dThe

understood from the momentum jump involved in the twofrequency of the oscillator i&= V2, and the anharmonicity

different methods. A closer inspection shows that within theparameters area=—0.1p=0.1. The initial state is the

FB-IVR the interference pattern is obtained by trajectoriesshifted ground state of the corresponding harmonic oscillator

that start on the left side of the double-slit, go through one 14

slit, get a momentum kick such that they return through the <X|¢i>:(l) e~ (72(x-1)? (2.26

other slit to the left side. The quantitative analysis reveals ™

bute most to he merference patter. The dervatve Fe.if e widt y=o. . |

IVR, on the other hand, only involves iﬁfinitesimal momen- . Lgt us ﬁ(;St consgjeéllthe glynatr)nps OT the dgn@tg., the

tum jumps, i.e., the trajectories return through the same slittlme_ ependent probability distribution in position

to the left siddcf. Eq.(2.18] and, therefore, cannot account — /o laiFt sy Sy a—iHt]

for the interference(.q p(X)=(i|eMa(x—x)e" " ). (2.27
In the FB-IVR, which is based on an integral represen-n this case operatoh is the projector onto the initial state

tation of the oper~atoé [cf. Eq.(2.1D], it depends on the (A=|y;)(y;|) and operatoB projects onto positiorx. Just
Fourier-transformB(A,), and hence on the observalite as for the angular probability in the double-slit problem, the

which range of momentum jumps will actually contribute to Fourier transform oB is totally delocalized, and we there-
the dynamics. In the double-slit problem, the observable isore expect a rather good description of quantum
the angular probability represented by the delta function opinterference/coherence effects. This is confirmed by the nu-
eratorB= 5(6— 6). The Fourier transforrﬁ!(Ap):e*‘%‘9 is  merical results in Fig. 2, which shows snapshots of the den-
totally delocalized, and therefore all momentum jumps carsity. After a short period of essentially classical dynamics,
actually contribute. the wave packet splits and dephases due to the anharmonicity
The opposite limit pertains for the position operatBr, ~©f the potential. Later a partial rephasing of the wave packet
=q (e.g., to calculate the position autocorrelation functioniS observed. This dephasing/splitting and rephasing of a

~n e . . wave packet is based on quantum interference and cannot be
{qqy) or the average positiofty). In this case the Fourier described by a more classical method such as the LSC-IVR

tiqns,form is the _der?vative Of_ a delta fupctid[_rB(Ap). (shown by the thin linesor the derivative FB-IVRwhich is
=i (Ap)].’ which is highly |oc.a||zed. .In factZ in this special not shown, but is found to be nearly indistinguishable from
cas.e the integral repr.esentatlﬁﬁll) is equivalent to the the LSC-IVR result The FB-IVR, on the other hand, is seen
derlva}tlve representaﬂoﬁ?.l?) and, therefore, can also not to be in rather good agreement with the quantum resuit.
describe quantum interference. A more compact description of the wave packet recur-

To illustrate this dependence on the observable furthefoncoq can be obtained by the normalized autocorrelation
let us consider a simple anharmonic oscillator with the fol-¢ 1 tion of the density

lowing Hamiltonian(in dimensionless uniis
p2 _ JdXp(X)po(X)

1 LR
H=>+ §w2X2+ ax3+bx*. (2.29 I Fdxpd(x) (2.28
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Fig. 4. The full SC-IVR, on the other hand, is in excellent

. SQA_NR Ao ,-. H agreement with the quantum results, thus demonstrating that
—— LSC-IVR &0 ¢ ; the failure of the FB-IVR is caused by the additional station-
1 n ﬂ ﬁ r ! ary phase approximation used in the derivation of the FB-
$ IVR.
_ As the dimension of the system increases, it becomes
S more and more difficult to converge the double phase space
05 | LN integral of the full SC-IVR expressio(®2.7). Therefore, one
) would like to have a method which combines the better con-
vergence properties of the FB-IVR and the capability of the
u SC-IVR to describe quantum interference effects indepen-
h u M v h 9 dent of the observable under consideration. Sugereral-
0 . . . ized FB-IVR approach is proposed in the next section.
0 20 40 60
t
FIG. 3. Density autocorrelation function of an anharmonic oscilljgs  [ll. GENERALIZED FB-IVR METHOD
defined by Eq(2.28]. Shown are quantum mechanicalll line), FB-IVR
(dashed ling and LSC-IVR/classical Wigneidashed—dotted lingesults. In this section we present a generalized FB-I\G&FB-

IVR) method which(as a function of a certain parameter

can tune continuously between the two limiting cases of the
This quantity is depicted in Fig. 3. It shows a pronouncedfull double phase space SC-IVR and the FB-IVR. The deri-
recurrence at~60. The FB-IVR is seen to be in very good vation of this method is based on a modified Filinov
agreement with the quantum result, whereas the LSC-IVRransformatiof®®”which has been used before to smooth out

totally fails to describe the recurrence. oscillatory integrands occurring in SC-IVR calculatidis.
Let us next consider the average position To briefly review the basic idea of the Filinov transfor-
A n mation let us consider the integral
(x)i=(yileMxe™ M gy), (2.29
which corresponds to the first moment of the dengifx). 1= d if(2) 31
. ) X zg(z)e'"'?, 3.0
Figure 4 displays the numerical results of the quantum me-

chanical, SC-IVR, and FB-IVR calculations, respectively. : .
. . . .~ where the functiong,g are in general complex. Due to the
For a harmonic oscillator, this observable would oscillate it(2) ? . .
phase factoe the integrand is oscillatory and therefore

between 1 and-1 indefinitely. As was shown above, the difficult to integrate with Monte Carlo methods. The modi-

anharmonicity leads to a dephasing/splitting of the wave. . . .
packet, which becomes manifest in a smaller amplitude (;?Ped Filinov method approximates the integi@ll) by the

the oscillation att~25. Later the wave packet rephases go&XPression
some extent which leads to a recurrence(x), at t~60. 2
Because foB=X the FB-IVR is equivalent to the derivative I%I(c)=f dzg(z)e'f@ de( 1+icﬂ>
FB-IVR (which in turn is close to the LSC-IVR it cannot
describe this rephasing process correctly, as can be seen in 1of of
Xexp — = —c—|, (3.2
20z 9z
1 T y y ; wherec is the matrix containing the Filinov parametéfdn
n — QM . general the choice of this matrix is rather arbitrary. To sim-
---- SC-IVR : : X
—-— DFB/FB-IVR n N plify the discussion let us assume for the moment that
0.5 =cl. Then forc=0 one regains the original integrés.1).
In the opposite limit, i.e.c—o, the integral in Eq.3.2)
. . approaches the stationary phase approximatidn to
8 o il
v 2
lspa= 2, g(z-)e‘f(zj)\/de 2 LA (3.3
SPA ] ! dz29z)’ '
-0.5 | : _ _
M H where the sum goes over all points of stationary phase. For
N ) finite values ofc the modified Filinov transformation results
—1 . . . in a smoothing of the integrand which in turn leads to better
0 20 40 60 Monte Carlo statistics.
t Applying the modified Filinov method to the full SC-

FIG. 4. Dynamics of the average position of an anharmonic oscilfafor IVR expressmn(?.?) gives the fOHO\.ng GFB-IV.R f("_)r the
Eq.(2.29]. Shown are quantum mechani¢lll line), full SC-IVR (dashed corr_elatpn funchor(_:AB(t) (the details of the derivation are
line), and FB-IVR (dashed—dotted lingesults. outlined in Appendix B:
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daydp, [ dA.dA . o
CaE(t)= f J 12 (podol Al pjap) 06 | SC-IVR (0=0)
AB 2mNJ) (2mN B | p— GFB-IVR (c=1)
----- GFB-IVR (c=5)
Xei[sl(poqu)Jrsft(pt’ xqt’)] ————- GFB-IVR (c=50)
) 04 | FB-IVR
X Co(Po,Go;Ap,Ag) e M24a%%a(p/ g/ |B|p,ay)- 7
(3.4) =
0.2 |

The trajectories implicit in Eq(3.4) are the same as in the

full SC-IVR (2.8), i.e., the trajectories are started tat0

with initial values (g,q,) and propagated up to timg

where a jump in coordinate and momentum ocduafs Eq. 0
(2.9, after which they are propagated back to tite0

(with final valuespg,qg). Si(Po,do) andS_(p; ,q;) denote

the action for the forward and backward part of the trajec- X

tory, respectively. To simplify the notation and discussiONgG. 5. Densityp,(x) for an anharmonic oscillator at tinte- 24. Shown are
we have again aSSUmédS in Sec. u that the operatoé is quantum mechanicdfull line), SC-IVR (dotted Iine}, and FB-IVR(thin fuI.I'

. . . A ~ line) results as well as GFB-IVR results for different values of the Filinov
local in Coorqute space, .eB=B(q). The result for a parameter:c=1 (short-dashed line c=5 (long-dashed ling c=50
general operatoB=B(q,p) is given in Appendix B. The (dashed—dotted line
operatorB in Eq. (3.4) is related toB via its Fourier trans-
form ~B(Ap) through the following convolutive expression:

whereC, denotes the FB-IVR pre-exponential factor for the
:f dp’ B(p)elP e (124 P eyl P combined forward—backward trajectoricf. Eq. (2.16)].

(sl

3.9

(2m)N Moreover, it is easy to show that

. - V1120 (12AgAaln/ (! | R
The difference from the original operatBr[cf. Eq. (2.11)], [detcy)detc;)] ™ e “@a(p; qt B Pay)
i.e., the convolution with a Gaussian, is due toAthe Filinov —>6(Aq)~B(Ap)e‘qu1, (3.10
transformation applied toihe matrix elemépt g; |B|p;d;)-

. L and, therefore, the GFB-IVR becomes the FB-IVR in the
The pre-exponential factaZ, is given by

limit cq,c,—0°. This is to be expected, since this limit cor-
Co(Po:GoiAp.Ag) ;e;sponds within the modlfled Filinov method to the station-
y phase approximation.
- de((1+€q)(1+gp)_1] For finite cy,c, the GFB-IVR will give a result some-
=27N det) detD)| , (3.60  where in between the full SC-IVR and the FB-IVR. In gen-
Y eral, the larger the Filinov parametegg,c, are chosen, the
where the matrixD involves the monodromy matrix ele- smaller is the momentum and coordinate jump and, therefore
ments for the forward and backward part of the trajectory(@s in the case of the FB-IVJRthe better are the convergence
and is defined in Eq(B20) in Appendix B. The diagonal properties of the Monte Carlo integrati8h.On the other

1/2

matricesc, ,c, contain they-scaled Filinov parameters hand,. to include all quantum interference ef_fects that can be
described by the full SC-IVR one would like to chose a
?q=27‘1cq, Ep=2ycp. (3.77  rather small Filinov parameter.

To study the dependence on the parametgrs, let us
It is instructive to discuss two limiting cases. In the limit again consider the anharmonic oscillator with Hamiltonian
c;=Cp=0, the pre-exponential fact@, can be written as a (2.25. In Sec. Il we had already seen that for the time-
product of the two pre-exponential factors for the forwarddependent density;(x) there is little difference between the

and backward trajectory, i.e., full SC-IVR and the FB-IVR resultand both are in rather
good agreement with the quantum mechanical rgskibr
Eo(po,qo;Ap Aq)=C(Po.,G0)C_(p; ,0), the average position, on the other hand, the FB-IVR reduces
to the derivative FB-IVR and, hence, cannot describe the
for cg=c,=0, (38  recurrences present in the full SC-IVR res@nd in the

guantum mechanical calculatipn

Let us first focus on the density. Figure 5 compares the
‘auantum mechanical result for the density at tirse24 with
results obtained using the full SC-IVR, the GFB-IVR and the
FB-IVR. In all GFB-IVR calculations we have used the same

— — 1~ ) v-scaled Filinov parameter for coordinate and momentum,
[detcy)detcy) ] 7" Co(Po.GoiAq. Ap) i.e.,cq=Cp=C. Overall the agreement with the quantum re-
—Co(Po,00,Ap,4q), (3.9 sults is seen to be rather good for all semiclassical calcula-

and, furthermore, the identitB=B holds. Therefore, the
GFB-IVR expression reverts to the full double phase spac
SC-IVRin the form(2.8)] in this limit.

In the opposite limit, i.e.¢y,c,—, one has
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1 T = T v which provides the dissipative environment and can be
n _______ o o ] treated at a lower level. In this section we will show how the
————— Siﬁ'%g(‘:ﬂ . GFB-IVR method proposed in the previous section can be
05 H a DFBFE VA ' adapted to this situation.
Consider a general Hamiltonian for a system—bath prob-
. lem,
A B!
¢ 0 -
H = Hs+ H B+ HSB
Px p?
X
-0.5 U | “ =5 PV + 2 |5 +Ve(Q) [ HHse, (4D

0 10 20 30 40 50 where x denotes the system coordinate apgd the corre-
t sponding momentunito simplify the notation we assume a
one-dimensional systemQ; andP; are likewise the coordi-
FIG. 6. Dynamics of the average position of an anharmonic oscillator.ngte and momentum of th'th bath modevs andVB denote

Shown are quantum mechanid#lll line), SC-IVR (dotted ling, and FB- th tential f t d bath tivel d
IVR (thin full line) results as well as GFB-IVR results for different values of € poten _Ia energy Or_sys em an ath, respectively, an
Hgg describes the coupling between them.

the Filinov parameter?= 0.5 (short-dashed Iin)e?=2 (long-dashed ling ) ) . .
=10 (dashed—dotted lie Depending on the physical problem under consideration

there may be different ways for the separation into system

and bath. A rather natural way is to define the system as
tions and there is only a weak dependence on the Filinothose degrees of freedom that are probed in the process under
parametec. The SC-IVR(which corresponds to a GFB-IVR consideration. In terms of the correlation functiGng(t),
calculation withc=0) as well as the GFB-IVR calculations this means that the system is defined by the degrees of free-

with c<2 reproduce the quantum result almost quantitadOM ©On which the operatds dependdi.e., B=B(x)]. A
tively. Increasing the Filinov parametgrfurther the agree- typical example is the autocorrelation function of a reaction

ment with the quantum result deteriorates to some extent. lﬁoordmate,
particular, forc>2 part of the density becomes slightly e e
negative®” The results in Fig. 5 also illustrate how the GFB-  Cxx() =tr(p(0)xe™xe "), (4.2

IVR (as a function oft) can tune continuously between the . _ L .
full SC-IVR and the FB-IVR. which (within the linear approximation for the dipole mo-

there is a rathe'ment) is related to infrared absorption spectrum, or, even

In contrast to this result for the density, ) .
simpler, the average value of the reaction coordinate,

strong dependence on the parametgrs, for the average
coordinate(x), depicted in Fig. 6. For valuessOc<2 the R ..
GFB-IVR agrees rather well with the quantum result and  (X);=tr(p(0)e'"'xe™"""), (4.3
reproduces the recurrence tat 50 perfectly. This demon-
strates that there is a rangemt/alues where all interference Which was considered above.
effects that can be described semiclassically are included and The GFB-IVR method can rather naturally be adapted to
where the results are rather insensitive to the particular valué1ese types of problems. The GFB-IVR expression for the
of ¢. Increasing the Filinov parameter furthez2), the —Ccombined system-bath problem involves, in genera, 2
GFB-IVR results at longer times % 20) deteriorate drasti- =2Ns+2Ng Filinov parameters, , Cx,Cpg» Cop - If all these
cally. Forc— o it approaches the FB-IVR result which can- parameters are rather smait even zero as in the. case of the
not describe the recurrence at all. full double phase space SC-IYR will be very difficult to

This example demonstrates that the GFB-IVR with aconverge the Monte Carlo integral in E(.4). A natural
proper choice of the Filinov parametercan describe quan- st.r'ategy to improve the Monte Carlo statistics is to keep the
tum interference effects independent of the observable. Allinov parameters for the system degrees of freedand
practical strategy is to do some test calculations for differenP©SSibly for those bath degrees of freedom that are important

values ofc and then choose as small as the Monte Carlo o quantum effectsas small as the description of quantum
statistics allows. interference effects requires, but use a rather large value for

the Filinov parameters of the batbr those bath degrees of
freedom that are supposed to be rather clagsi@dle best
convergence properties will, of course, be obtained in the

When treating the dynamics of large molecules or prodimit c,g,c;g—, wWhich corresponds to a stationary phase
cesses in a condensed phase, it is often meaningful to sepanit for the bath degrees of freedom. In this case the mo-
rate the problem into a low-dimensional systémthe sim- mentum and coordinate jumps disappear for the bath degrees
plest case a single reaction coordinatehich is probed of freedom, i.e., the bath trajectories become continuous. In
and/or responsible for the quantum effects and, thereforehis limit we obtain the following system—bath GFB-IVR
needs to be treated at a higher level of theory, and a batexpression for the correlation function:

IV. GFB-IVR FOR SYSTEM-BATH PROBLEMS
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1 T
dQodPy dxodpyo [ 9AXdA :
C/?EB('(): f 0Py B pxof — - gT:OB—IVF! (c5=5)
(2m)Ne (27)Ns)  (27)Ns a —— GFB-IVR (c,=50)
Aln! v/ ' 0.5 H
X {PoQol{ PxoXol Al PxoX0) | PaQo)
X el [S(Po.a0) +S-(p{ )] ”~
_ Vo0
X Co(Px0:%0,Po,Qo;Ax,Ap )
X 67(1/2)AXCXAX< p>,<txtl | B| pxtxt>l (4-4) -0 5 U
where the pre-exponential factor now reads | U
Col(Pxo:%0:Po,QoiAx,Ap) 0 10 20 30 40
— — 12 t
def[(1+c)(1+¢c, )—1]
=2-Ns S X deiDgp) , (4.5 FIG. 7. Dynamics of the average position of an anharmonic oscillator
deq Y) weakly coupled §=0.1) to 10 harmonic bath modes. Shown are GFB-IVR

. . . . - results for different values of the Filinov parameter of the ba?@.tS
and the matriDs is obtained by taking the liMi€ys,Cas (y,cheq_dotied lingc,=50 (full line), as wel as the LSC-VR/classical

—o in Eg. (B20). In Eq. (4.5, ¢, and Cp, denote the  wigner result(thin full line). For comparison the result for the uncoupled
y-scaled Filinov parameters for the system coordinate ané7=0) anharmonic oscillator is also displayétlin dashed ling
momentum, respectively.

If, in addition, the fimitc, G, 01 taken in Eqs(4.4) with coupling strengthy and characteristic frequeney;. In

and (4.5), we pbtain an expression which corresponds 10 & nymerical results reported below, the characteristic fre-
full SC-IVR with respect to the system degrees of freedomquency of the bath was chosen @s=
-

and a FB-IVR with respect to the bath degrees of freedom. A
conceptually similar mixed SC-FB-IVR for system-—bath
problems was recently proposed by Thompson and M#kri.

Compared to the general GFB-IVR, E®.4), which in- p(0)=this)| g ) ¥isl{is]- (4.9

volves a (Ng+ 4NB)-dimensioan phase-space integral, theTnhe initial state for the system is given by Eg.26) and the
system-bath GFB-IVR requires only a N4+2Ng)-  pathis initially in the ground state
dimensional integration. Moreover, as for the FB-IVR, the

fact that the trajectories are continuous in the bath degrees of | #ig)=101) - '|0NB>- (4.10
freedom results in a partial cancellation of the phase of the | i s first study the dependence of the result, as well as

!ntegra.nd as well as the magnltudg of the prefactor, thu?he Monte Carlo statistics, on the Filinov parameters of the
improving the convergence properties of the Monte Carlooath. For this purpose it is not important to model a truly

integration. dissipati ; .
pative bath, so we here have discretized the bath spectral
To st_udy the performance of th? systgm—bath _GFB'IVRdensity with only 10 oscillators, according to the discretiza-
we consider a damped anharmonic oscillator which is ob-

tained by coupling the anharmonic oscillator of E2.25 to

We will focus on the average position of the oscillator,
Eq. (4.3), where the initial state is given by a factorized state

a harmonic bath, 1.00
: 1 0.1
e S 3 4 o—o n=0.
H= 2+2wxx +ax’+bx =1
2 2
| Ki 5
+2 |2+ s 0? Q- —x (4.6 E
T2 20T W ? o010}
o
This model was used by Shao and Makri in their study of the =
derivative FB-IVR method® It can be viewed as a simple
model for vibrational relaxation.
In Eq. (4.6, »; denotes the frequency of theh bath
mode. The bath is characterized by its spectral defisity 0.01 ,
5 10 100
v K;
J(w)=§2 w—l_é(w—wj) (4.7) %
. FIG. 8. Estimate of the Monte Carlo fractional error for), at timet
which is chosen to be of Ohmic form, =36.4 for 30 000 trajectories as a function of the Filinov parameter of the
bath cg. Shown are results for two different coupling strengthys: 0.1
J(w)=nwe ¥, (4.8 (circles, »=1 (squares
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1 : : 1
----- a=b=0 ol Fr R - 1=
—GFB-VRl —— GFB-IVR (=0.1)
—— LSC-VR| 1 --=-- LSC-IVR (1=0.1)
0.5 1 0.5 H
A :. Y L
\b; 0 | | v O
05 } -05 ¢}
-1 . : : : . -1 ' : ' '
0 10 20 30 40 50 0 10 20 30 40
t t

FIG. 9. Dynamics of the average position of an anharmonic oscillator™!G: 10. Dynamics of the average position of an anharmonic oscillator
strongly coupled §=1) to 10 harmonic bath modes. Shown are LSC-IVR/ Weakly coupled =0.1) to a harmonic bath. Shown are LSC-IVR/classical
classical Wigner resultéhin full line) as well as results obtained with the Wigner reSU|tS(dElSh‘30|-dOttt?:‘d lineas well as results obtained with the
system—bath GFB-IVRthick full line). For comparison the result for the ~SYstem—bath GFB-IVR{ull line). For comparison the result for the un-
corresponding harmonic systefie., a=b=0) is also displayed(thin coupled (7=0) anharmonic oscillator is also displayétin dashed ling
dashed ling

when the Filinov parameter of the bath is increased from

tion scheme outlined in Ref. 3&vith a maximum bath fre- Cg=2 10 C="50, thus greatly improving the numerical effi-
i . . ciency.
?hueer\:\?g;knjggupz)lciuncg; 28#}:‘;;;8?;0 %ftiiﬁgfvlv\i/tﬁ tr\(?vzugi‘-m _ Whereas _in the weak-coupling re_g_ime the dynamics is
ferent values of the Filinov parameter of the bath. For Sim_prlmarlly QOm|nated by-the anharmonicity of the system and
plicity, the samey-scaled Filinov parameter was used for all the resulting quant.um |nt.erference effects, the dynam!cs-be-
' = = = . haves more classically if the coupling to the bath is in-
10 bath modes, i.e¢,g=Cqg=Cgl. The y-scaled Filinov

_ _ creased. Figure 9 depicts the results for a stronger coupling
parameter for the system wag=c, =1 in all calculations.  (,=1). Thereby, the GFB-IVR results have been obtained
Also shown is the LSC-IVR result as well as the quantumusing the system—bath variant of this approéatrrespond-

mechanical result for the uncoupled systém., 7=0). Due  ing to the limitc,g,c,g— ) and a system Filinov parameter
to the weak-coupling, the effect of the bath on the dynamicgf ¢, =c.

p, = 1. Also shown is the result for the corresponding
of the system coordinate is rather small. The comparisoR,monic systenti.e.,a=b=0). In this case the short-time
with the result for the uncoupled system shows that theyecay of the amplitude of the oscillations is primarily due to
damping of the amplitude for<20 is primarily due to the e o6 nling to the bath and the recurrences~a80 andt
anharmonicity of the system and only amplified to some ex-_gq gre caused by the finite level density of the discretized

tent by the interaction with the bath. Another effect of thep i, The LSC-IVR is seen to be in nearly quantitative agree-
bath is the phase shift with respect to the uncoupled system

and the damping of the recurrencetat50. As for the un-

coupled system, the LSC-IVRind also the FB-IVR which is 1 - -
not shown hergoverestimates the damping caused by the
anharmonicity and cannot reproduce the recurrence at
~50. The small damping due to the interaction with the bath 0.5
and the phase shift are reproduced rather well, because both
effects are also present in the corresponding harmonic sys- _
tem[i.e.,a=b=0 in Eq. (4.6)] for which the LSC-IVR is e 0
exact.

The comparison between the different GFB-IVR calcu-
lations demonstrates that there is no significant dependence  -0.5
of the converged result on the Filinov parameter of the bath.

The Monte Carlo statistics, and thus the number of trajecto-

ries needed to obtain a converged result, on the other hand, -1 ' ' y y

depends strongly on the Filinov parameter of the bath. This 0 10 20 ¢ 80 40 50

is illustrated in Fig. 8, which shows the estimate of the

Monte Carlo error for(x)t att=236.4 for a fixed number of FIG. 11. Dynamics of the average position of an anharmonic oscillator

30000 trajectories and three different Valuesagf The strongly coupled §=1) to a harmonic bath. Shown are LSC-IVR/classical

. . . Wigner results(dashed—dotted lineas well as results obtained with the
number of trajectories needed to obtain the same Montgystem—bath GFB-IVRfull line). For comparison the result for the un-

Carlo error decreases by almost two orders of magnitudeoupled ¢7=0) anharmonic oscillator is also displayétin dashed ling

_____ =
—— GFB-IVR (n=1)
: —-—-- LSC-IVR (n=1)
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ment with the GFB-IVR which demonstrates that for this To overcome this limitation of the FB-IVR we have pro-
stronger coupling almost all quantum interference effectposed a newgeneralized=B-IVR approach which can tune
have already been quenched by the bath. The absence @fntinuously between the full SC-IVR and the FB-IVR. It
guantum interference/coherence in the strong coupling limitherefore allows one to check whether all interference that
also improves the Monte Carlo statistics to some extent asan be described semiclassically is included in the calcula-
can be seen from Fig. 8. tion. The GFB-IVR combines the capability of the SC-IVR
In the final part of this section we study how the quan-to describe quantum interference effects independent of the
tum interference/coherence effects present in the dynamigzarticular observable and the better convergence properties
of the uncoupled anharmonic oscillator are quenched by af the FB-IVR.
truly dissipative bath. For this purpose the number of bath  Using a special version of the GFB-IVR which is
modes used in the discretization has to be increased. In seadapted to system—bath problems, we have studied the
eral test calculations we have found that within the discreti-quenching of recurrences in the dynamics of an anharmonic
zation scheme outlined in Ref. 32 about 100 bath modes anaiscillator coupled to a harmonic bath. In contrast to the FB-
a maximum bath frequency @b, =5w. are sufficient to IVR methods, the GFB-IVR was shown to cover both the
represent the continuous spectral density for tii€$0.  coherent and incoherent regime, i.e., the recurrences for
Becauseaccording to the results shown abpvee final re-  weak coupling to the bath and the purely classical decay in
sult does not depend significantly on the Filinov parameter ofhe strong-coupling regime. Although the motivation for the
the bath we have used the system—bath GFB-(¥R) (cor-  present model study of this problem was primarily to dem-
responding to the limit,g,cqg—) and a system Filinov onstrate the performance of the method, the occurrence, ob-
parameter o€, =c, =1. With this method it was possible to servability, and —quenching of quantum coherence/
obtain reasonably converged results with 10 000—20 000 trgnterference in large molecules or in the condensed phase has
jectories(depending on the coupling streng#f), which [in begn investigated recenltly m_ggvanety of systems both ex-
view of the high dimensionality of the Monte Carlo integral Perimentally and theoreticalf. The results of the present
(4Ng+2Ng=204)] is a rather small number. work suggest that the GFB-IVR is well suited to study these
Figure 10 shows the dynamics of the average position ifPhénomena.
the weak-coupling regime»7(=0.1). As was already dis-
cussed above, in this regime the dynamics is dominated b@CKNOWLEDGMENTS
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APPENDIX A: SIMPLIFIED DERIVATIVE FB-IVR

V. CONCLUSION In this section we outline the derivation of the simplified

In this work we have studied the capability of two dif- form of the derivative FB-IVR Eq(2.21). The starting point
ferent, recently proposed FB-IVR methods to describe quan$ the derivative FB-IVR expression E(2.18. The deriva-
tum coherencelinterference effects. We have found that onféve of the integrand in Eq(2.18 with respect to the mo-
can obtain drastically different results depending on whethef€ntum jumpA, comprises three parts: the derivative of the
a derivative or an integral representation of the observabl@ré-€xponential factor, of the action, and of the coherent
under consideration is used in the derivation of the FB-IVR state matrix element of the operatér i.e.,

To rationalize this finding it was shown that the derivative
FB-IVR can be thought of as an approximate version of the—i Tco(po,qo;Ap)eiso(Po,Qo:Ap)<p0q0|A|péqé)

LSC-IVR/classical Wigner approach and, therefore, cannot P

describe quantum interference effects beyond the very short < N _ R 9

time limit. The FB-IVR based on the integral representation ~ =€’ o(Po.oip) —|<DOQO|A|DB%>Eco(po,QO?Ap)
P

of the observable, on the other, is capable of describing
quantum interference effects. Whether even this integral ver- A, 0

sion of the FB-IVR is able to descritall interference con- +CO(pO’QO?AP)<DOQO|A|p0q0>Epso(po’qO;Ap)
tained in a semiclassical treatmene., via the full SC-IVR
approach, however, depends on the observable under con-

1% A
N —iC o Ap)—— Alpidoy |- Al
sideration(i.e., on the form of operatds). o{Po. 8o p)3Ap<pqu| 1PoGo) (A1)
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Note, that all derivatives are taken at the paky=0. The
derivative of the coherent statgygy) can be readily ob-

Generalized forward—backward IVR 9231

where for the last identity we have again used EBa).
Employing the identity

tained d J
— = -1
o ,4 _{(A_ : (_ Bla) aB(qo) 74, FeLR(Ap) = detR(A, )]t (R(2p)) 750 R(As) |
oA, Podo o d—0Jo Y 9P 9% (A5)
P which is valid for any nonsingular, parameter dependent ma-
. (qt) trix R(A ), the derivative of the pre-exponential factor reads
+ip |Podlo)- (A2) P 1 p
—0C oA == tr| [—/—R(A
Here, we have used the |dent|t|es, L?Ap o(Po.do: &) Ao 2 ( dA, (&) 2,=0
a90(c P+ Ap [9B(y)/90,]) o (A6)
Here, the matrixR is defined by
e 0 1 . 96 ap
Qo _ _ Po
el IV S N V7 12710 a2
_ 990(G,P) 7B(A) _ 7B(d(do,Po)) Asa R(4p)= 2(”1 aqoy Y
P et JPo ' oL
, /2 124y 1220 0, 12
aPy(auPut Ay [9B(ay)/9a,]) —irS ¢ 0.7 ) (A7)
IAp A,=0 and we have used thm(Ap—O)— 1. Utilizing the identities
(A3), the derivative of the pre-exponential factor can be fur-
_ ¢9po(ch 1pt) aB(Qt) _ aB(Qt(q01p0)) (ASb) ther S|mp||f|ed to
9Py e o J
The derivative of the action is given by [anCO(pO'QO;Ap) o
! p:
[ ; So(Po.do;Ap) =B(a)+| po- " i 9°B(q) 1 9°B(qy)
EY 0,40+ - t |
dA, P A0 0" 9A, 3,0 -3 (y,- ZCh Lo th ) A8)
47 IPg; Yi dqp;
=B(qg)—Po JB (QI)' (A4) Inserting Egs(A4), (A2), and (A8) into Eqg. (A1) and inte-
JPo grating by parts, gives
dqoedpg 1 1 A
CRER(t) = B 1+ —t—— A
0= | GoNB@] | 147 2| PR (Podiol Al podo)
2 ( 1yj7— s &q )(po%| %j)|po%>]- (A9)
Furthermore, using the identity
9 J . R R
iYj 27—+ =—|{PoYol A(d; — doj)|PoY0) = — An(Po.do) +27¥;{PoTol (aj — doj) A(Q; — do;j)| PoTlo)
(?pOJ &qOJ
(92 2
—+ — A A10
Yi (7ij 7 ‘9%1 H(Po,d0), ( )
whereAy(pg.do) denotes the Husimi distribution of the operafofcf. Eq. (2.22], we finally obtain
ddodp
CREB(t)= 2(;);’ B(q) AH(po o)~ 2 7(PoSl (& ~ do))A(G; ~ o)) [Podl)
dqodpo E( #? 1 9
1 = 7 ) | A(Go.po). (A11)
j (2 )N i &q(z,]- Yj op; H(Go-Po
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APPENDIX B: DERIVATION OF THE GFB-IVR A daedp, ( day dp; o
(ar|Ua;) > oy CilPo o) Cilprar)
In this Appendix we shall give an outline of the deriva- (2m)™J (2m)
tion of the GFB-IVR expression, Eq3.4). The basic idea x e [Si(Podo) + S-e(P( a1 1| pi )
of the derivation is to apply the modified Filinov method (p! ’|e“qs'3e‘psa| Y )
[cf. Eq. (3.2)] to the full double phase space SC-IVR, Eq. Pt Ot Pt PoClol G
(2.9. :f if(2)
To this end, let us first consider the unitary operator dzg(z)e" (B2)
To cast the integrand into a form where the Filinov transfor-
mation can be readily applied, we have defined a

0 =eMteiabeipsig—iHt, (B1)  4N-dimensional vector=(q, ,p; ,do.Po) and the function
N yi 12
9(2)=Ci(Po,do)C +(p{ ,a)) I 1 (—‘) : (B3)
Inserting the Herman—Kluk SC-IVR, Eqg2.2), for the aroTE e j=1 \ 7T

two  propagators gives the position matrix elementsThe “phase” functionf(z) involves the action and the ex-
of U, ponents of various coherent state matrix elements,

f(2)=Si(Po. o) +S_(P{ ,G{ )+ Po- (A —dg) + Po- (do— i) + 2(P{ +Py) - (A — )

i

I \2 2 1 ’ 2 I 1 ! 2 1 1 ’
(9~ doj) "+ (oj — Gij) "+ 5(Gy; ~ A) +Z; 7(pt,-—ptj) +5Lps (At +a0) = s (P +P) — ds* Ps]
|

1 T
+5 E 2 qs; 2 pSJ quSj(th th) j psj(ptj_ ptj) . (B4)
|
As we have discussed in Sec. lll, the modified Filinov\here the matrisxc contains the Filinov parameters. Defining
method replaces the integral in E@®2) by the vector
) — r_ ) —q, r_ _ ' ’r_ _ , (B?)
<qf|U|qi>=f d2g(2e" D H2), (85) y=(do— 0 Qo G+t ~ GG P — Py Ps)
we have for the first derivative df
with the Filinov factor of
— =Ky, B8
1+ic—— Lot B6 ” ’ >
ic 9202 P T 2 52°¢ E B8 ith the (4N X 4N) matrix K given by
LI S i 1
- o 57 -5
2o} d9; 2
% 1 [
! ! 2 2
K — apt apt . (Bg)
. lop " iaq T Log " iap T |
0 Y 5-— —5=— Y —57 —5.— 7
2090 2990 290y 2990
0 1ape T ioag T S L 7
20py 2 dpo 20py 2P 7
The matrix of second derivatives bfs given by
_(92f =KJ B10
gzoz (B10)

with the matrixJ given by
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(9_% a_q{) 0 0 with the NX N diagonal matrices,
aq  Ipy i
cg=diagcqy, - - - Cqn)> B16
w | 00 1 0 W~ dad Gy W (B1ea
=%l 1 o %% | (B11) c,=diagCpy, - - . Cpn)- (B16b)
Sy dpo
9 9 Using some straightforward but tedious matrix algebra, the
9Pt 9Pt X . ; .
0 1 BT product of the (4x4N)-dimensional determinant in the
0 0

Filinov factor F and theN-dimensional determinants in the
As usual in the application of the Filinov method to semi- pre-exponential factor€,,C_, can be cast into the follow-
classical propagatofS;*®“°we have neglected derivatives of ing form:

the monodromy matrix in the derivation of EB10). We

note in passing, that the approximate matrix of second de- [det(K +iJTc)]¥?
rivatives in Eq.(B10) can be shown to be symmetric, as it Ct(Po.Go)C—+(p; ,0) der K112
should be. ~ [detK)] »
The Filinov factor, therefore, reads N def(1+cy)(1+c,)—1] detD)
= e
F=[de(1+icKJI)]¥2exd — 3y"KT cKy]. (B12) B dety)
Within the modified Filinov method one can choose a rather  — Co(Po-0o;Ap.4q), (B17)

arbitrary matrixc of Filinov parameters, which may also

have a weak dependence on the coordinate®Vith the which defines the GFB-IVR pre-exponential fact@.
choice Here, A, ,A denote the momentum and coordinate jumps of

the trajectories at timg i.e.,

c=(KT)"tek1, (B13)
wherec denotes the new matrix of Filinov parameters yet to Gt =Gt Aq, (B18a
be defined, the Filinov factor simplifies, and one obtains
C=pit+A,. B18b
[delK +iJTc)]2 . Pe=Per p (B18b)
[de(K)] The diagonal matrices, ,c, contain they-scaled Filinov pa-

To eliminate the dependence of the Filinov factor on the'@meters,
initial and final state parameterg,q; we choose the new

Filinov matrix ¢ to be of the form cq=2diagCqr /1, - - - Cqn/ W), (B193
0 0 0 O _ .
0 0 0 0 Cp:2 d|agcp1’yl, PR ,CpN’yN), (Blgb)
=10 o K (B15)
Cq and the matrixD is given by the following combination of
0 0 0 ¢ monodromy matrix elements:
|
(apo iy 90| (1+Cq)(1+6y)+1( dpy +,%) E( %Jr dpg\ (L+¢q)(1+cy)+1 9G04 )
2\ap Vop{)(1cg)(1+cy)—11p0 ) a0l 2| Vaql " o (1+cq)(1+cp) 1199  dpo”
d d 1+c d d g . d “(1+¢ d d
+(ﬁ_-7& ¥(1+G) (ﬂ_,ﬂy ( q(g %P (1+6) ( P +iﬁ)_ (20
ap; apy ) (1+ Cg)(1+c,)—1199% o (7qt (1+cq)(1+cp) 1 f7po d0o
|
Changing integration variables according to Eg18), the Finally, to obtain the GFB-IVR for a correlation func-
GFB-IVR for the unitary operatod is given by tion,
5 f dalodpo f dagdsy Cag(t)=tr(Ae™Be ™) (B22)
= PoYo R . on
(2m™J 2m" with a general operatoB=B(p,q) we employ the Weyl

x gl[St(Po.a0) +S—t(p; .a/)] Co(Po,%,A Ag) representatiofi® of operatorB,
(1/2)(A, A (1/2)(A A
X @~ (V2(Aq~0s)Cq(Aqas) @~ (1/2)(Ap~Ps)Cp(Ap—Ps) . J'0|qups~

. —iqgPaipsd
X(pyqf|e”"'%Pe'Ppya ) podol - (B21) (2m)N B(ps,ag)e et (B23
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with

B(ps .00 = f dge P+ %(q+aJ B ). (B24)

Using the GFB-IVR forU and carrying out the integration
over gs andps, we obtain the GFB-IVR for the correlation
function,

ddodpo
cserw- |
X ei[sl(vaq0)+S—t(pt, vqt’)] XEO(pO .do ,Ap ,Aq)

(2m"

dA,dA,
(2m"

(Potol Alpgas)

X (p{ | B|pal). (B25)

where the operatoé is related toB(ps,qs)as follows:

é_ dpsdqs'é
(2m"

X e_(llz)(Aq_ 0ds)Cq(Ag—ds) ,

( ps , qs) ei qsﬁe7 i psaef(llz)(Apf ps)cp(Ap7 Ps)

(B26)

which corresponds to convolution with a Gaussian.
If the operatoB depends only on coordinates and not on
momentum, i.e.B=B(q), the Weyl transform is given by

B(ps,Gs) =B(ps) 8(qs), (B27)

whereB(py) is simply the Fourier representation of the func-
tion B(q) [cf. Eqg.(2.12)]. In this case the GFB-IVR expres-
sion can be simplified and we obtain the reg8l¥) in Sec.
1.
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