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GENERALIZED FOURIER-FEYNMAN TRANSFORM AND

SEQUENTIAL TRANSFORMS ON FUNCTION SPACE

Jae Gil Choi and Seung Jun Chang∗

Abstract. In this paper we first investigate the existence of the gener-
alized Fourier-Feynman transform of the functional F given by

F (x) = ν̂((e1, x)
∼, . . . , (en, x)

∼),

where (e, x)∼ denotes the Paley-Wiener-Zygmund stochastic integral with
x in a very general function space Ca,b[0, T ] and ν̂ is the Fourier transform

of complex measure ν on B(Rn) with finite total variation. We then
define two sequential transforms. Finally, we establish that the one is

to identify the generalized Fourier-Feynman transform and the another
transform acts like an inverse generalized Fourier-Feynman transform.

1. Introduction

Let C0[0, T ] denote one-parameter Wiener space. The concept of an L1 ana-
lytic Fourier-Feynman transform(FFT) for functionals on Wiener space C0[0, T ]
was introduced by Brue in [1]. This transform and its properties are similar
in many respects to the ordinary Fourier function transform. Further works
involving the L2–L2 theory and the Lp–Lp′ theory, 1/p + 1/p′ = 1, includes
[2, 14]. In [10], Huffman, Park and Skoug defined a convolution product for
functionals on Wiener space, and they obtained various results for the analytic
FFT and the convolution product [10], [11], [12]. Also see the references in [16]
for further informations and results.

In [9], Chang and Skoug defined a generalized analytic Fourier-Feynman
transform(GFFT) for functionals on very general function space Ca,b[0, T ]. The
function space Ca,b[0, T ], induced by generalized Brownian motion process, was
introduced by J. Yeh [17, 18] and was used extensively by Chang and Chung
[7], Chang and Skoug [9], and Chang, Chung and Skoug [8]. The GFFT theory
on Ca,b[0, T ] have been developed in many papers including [3, 5, 6, 9].
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In this paper we investigate the existence of the GFFT for bounded cylinder
functionals of the form

F (x) = ν̂((e1, x)
∼, . . . , (en, x)

∼),

where (e, x)∼ denotes the Paley-Wiener-Zygmund stochastic integral with x in
function space Ca,b[0, T ] and ν̂ is the Fourier transform of complex measure ν on
B(Rn) with finite total variation. We define sequential P and N function space
transforms of such cylinder functionals. We then study relationships between
the sequential P-transform and the GFFT of the functionals on Ca,b[0, T ] and
present a version of the inverse GFFT via the sequential N -transform.

The Wiener process used in [1], [2], [10], [11], [12], [14] is free of drift and
stationary in time while the stochastic process used in this paper, as well as in
[3], [4], [5], [6], [7], [8], [9] is nonstationary in time and is subject to a drift a(t).
It turns out, as noted in Remark 4.1 below, that including a drift term a(t)
makes establishing the existence of the GFFT of functionals on Ca,b[0, T ] very
difficult. However, when a(t) ≡ 0 and b(t) = t on [0, T ], the general function
space Ca,b[0, T ] reduces to the Wiener space C0[0, T ].

2. Preliminaries

Let D = [0, T ] and let (Ω,W, P ) be a probability measure space. A real-
valued stochastic process Y on (Ω,W, P ) and D is called a generalized Brown-
ian motion process if Y (0, ω) = 0 almost everywhere and for 0 = t1 < t2 < · · · <
tn ≤ T , the n-dimensional random vector (Y (t1, ω), . . . , Y (tn, ω)) is normally
distributed with density function

Kn(⃗t, u⃗) =

( n∏
j=1

2π
(
b(tj)− b(tj−1)

))−1/2

× exp

{
− 1

2

n∑
j=1

[
(uj − a(tj))− (uj−1 − a(tj−1))

]2
b(tj)− b(tj−1)

}
,

where u⃗ = (u1, . . . , un), u0 = 0, t⃗ = (t1, . . . , tn), a(t) is an absolutely continuous
real-valued function on [0, T ] with a(0) = 0, a′(t) ∈ L2[0, T ], and b(t) is a
strictly increasing, continuously differentiable real-valued function with b(0) =
0 and b′(t) > 0 for each t ∈ [0, T ].

In [18], Yeh shows that the generalized Brownian motion process Y deter-
mined by a(·) and b(·) is a Gaussian process with mean function a(t) and
covariance function r(s, t) = min{b(s), b(t)}, and that the probability measure
µ induced by Y , taking a separable version, is supported by Ca,b[0, T ] (which is
equivalent to the Banach space of continuous functions x on [0, T ] with x(0) = 0
under the sup norm). Hence, (Ca,b[0, T ],B(Ca,b[0, T ]), µ) is the function space
induced by Y where B(Ca,b[0, T ]) is the Borel σ-algebra of Ca,b[0, T ]. We
then complete this function space to obtain (Ca,b[0, T ],W(Ca,b[0, T ]), µ) where
W(Ca,b[0, T ]) is the set of all Wiener measurable subsets of Ca,b[0, T ].
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A subset B of Ca,b[0, T ] is said to be scale-invariant measurable [13] provided
ρB ∈ W(Ca,b[0, T ]) for all ρ > 0, and a scale-invariant measurable set N is said
to be scale-invariant null provided µ(ρN) = 0 for all ρ > 0. A property that
holds except on a scale-invariant null set is said to be hold scale-invariant almost
everywhere(s-a.e.). If two functionals F and G are equal s-a.e., we write F ≈ G.

In this paper, as in [3], [4], [5], [6], [8], [9], we consider the incomplete
function space (Ca,b[0, T ], B(Ca,b[0, T ]), µ) and we denote the function space
integral of a B(Ca,b[0, T ])-measurable functional F by

E[F ] =

∫
Ca,b[0,T ]

F (x)dµ(x)

whenever the integral exists.
Let L2

a,b[0, T ] be the separable Hilbert space of functions on [0, T ] which
are Lebesgue measurable and square integrable with respect to the Lebesgue-
Stieltjes measures on [0, T ] induced by b(t) and a(t): i.e.,

L2
a,b[0, T ] =

{
v :

∫ T

0

v2(s)db(s) < +∞ and

∫ T

0

v2(s)d|a|(s) < +∞
}
,

where |a|(t) denote the total variation function of a(t). The inner product

on L2
a,b[0, T ] is defined by (u, v)a,b =

∫ T

0
u(t)v(t)d[b(t) + |a|(t)]. Note that

∥u∥a,b =
√
(u, u)a,b = 0 if and only if u(t) = 0 a.e. on [0, T ] and that all

functions of bounded variation on [0, T ] are elements of L2
a,b[0, T ]. Also note

that if a(t) ≡ 0 and b(t) = t, then L2
a,b[0, T ] = L2[0, T ]. In fact,

(L2
a,b[0, T ], ∥ · ∥a,b) ⊂ (L2

0,b[0, T ], ∥ · ∥0,b) = (L2[0, T ], ∥ · ∥2)

since the two norms ∥ · ∥0,b and ∥ · ∥2 are equivalent.
For each v ∈ L2

a,b[0, T ], the Paley-Wiener-Zygmund(PWZ) stochastic inte-

gral ⟨v, x⟩ is given by the formula

⟨v, x⟩ = lim
n→∞

∫ T

0

n∑
j=1

(v, ϕj)a,bϕj(t)dx(t)

for µ-a.e. x ∈ Ca,b[0, T ], where {ϕj}∞j=1 is a complete orthonormal set of
real-valued functions of bounded variation on [0, T ] such that (ϕj , ϕk)a,b = δjk
(the Kronecker delta). If v is of bounded variation on [0, T ], then the PWZ

stochastic integral ⟨v, x⟩ equals the Riemann-Stieltjes integral
∫ T

0
v(t)dx(t) for

s-a.e. x ∈ Ca,b[0, T ].
Let

C ′
a,b[0, T ] =

{
w ∈ Ca,b[0, T ] : w(t) =

∫ t

0

z(s)db(s) for some z ∈ L2
a,b[0, T ]

}
.



1068 JAE GIL CHOI AND SEUNG JUN CHANG

For w ∈ C ′
a,b[0, T ], with w(t) =

∫ t

0
z(s)db(s) for t ∈ [0, T ], let Dt : C

′
a,b[0, T ] →

L2
a,b[0, T ] be defined by the formula

Dtw = z(t) =
w′(t)

b′(t)
.

Then C ′
a,b ≡ C ′

a,b[0, T ] with inner product

(w1, w2)C′
a,b

=

∫ T

0

Dtw1Dtw2db(t) =

∫ T

0

z1(t)z2(t)db(t)

is a separable Hilbert space. Note that the two separable Hilbert spaces
L2
a,b[0, T ] and C

′
a,b[0, T ] are homeomorphic.

Throughout this paper we assume a ∈ C ′
a,b[0, T ] and, for notational conve-

nience, we use the notation (w, x)∼ instead of ⟨Dtw, x⟩. Then we see that for
each w in C ′

a,b[0, T ], the random variable x 7→ (w, x)∼ is Gaussian with mean

(w, a)C′
a,b

and variance ∥w∥2C′
a,b

, and that (w,αx)∼ = α(w, x)∼ = (αw, x)∼

for any real number α, w ∈ C ′
a,b[0, T ] and x ∈ Ca,b[0, T ]. We also see that

if {w1, . . . , wn} is an orthonormal set in C ′
a,b[0, T ], then the random variables

(wi, x)
∼’s are independent. From these we obtain the following integration

formula for the function space Ca,b[0, T ].
Let {e1, . . . , en} be an orthonormal set in C ′

a,b[0, T ], let g : Rn → C be a

Borel measurable function and let G : Ca,b[0, T ] → C be given by equation

G(x) = g((e1, x)
∼, . . . , (en, x)

∼).

Then

E[G] =

∫
Ca,b[0,T ]

g((e1, x)
∼, . . . , (en, x)

∼)dµ(x)

= (2π)−n/2

∫
Rn

g(u1, . . . , un)

× exp

{
−

n∑
j=1

[uj − (ej , a)C′
a,b

]2

2

}
du1 · · · dun

(2.1)

in the sense that if either side of equation (2.1) exists, both sides exist and
equality holds.

Throughout this paper, let C, C+ and C̃+ denote the complex numbers, the
complex numbers with positive real part, and the nonzero complex numbers
with nonnegative real part, respectively. For each λ ∈ C̃+, λ

−1/2 (or λ1/2) is
always chosen to have positive real part. The following integration formula is
used several times in this paper:

(2.2)

∫
R
exp{−αu2 + βu}du =

(
π

α

)1/2

exp
{β2

4α

}
for complex numbers α and β with Re(α) > 0.
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3. Bounded cylinder functionals

In this section, we introduce a class of certain bounded cylinder functionals
and state the concepts of the generalized analytic Feynman integral and the
GFFT on function space Ca,b[0, T ]. We then establish the existence of the
GFFT of such cylinder functionals.

A functional F is called a cylinder functional on Ca,b[0, T ] if there exists a
finite subset {h1, . . . , hm} of C ′

a,b[0, T ] such that

(3.1) F (x) = ϕ((h1, x)
∼, . . . , (hm, x)

∼), x ∈ Ca,b[0, T ],

where ϕ is a complex-valued Borel measurable function on Rm. It is easy to
show that for given cylinder functional F of the form (3.1) there exists an
orthonormal subset {e1, . . . , en} of C ′

a,b[0, T ] such that F is expressed as

(3.2) F (x) = f((e1, x)
∼, . . . , (en, x)

∼), x ∈ Ca,b[0, T ],

where f is a complex-valued Borel measurable function on Rn. Thus we lose
no generality in assuming that every cylinder functional on Ca,b[0, T ] is of the
form (3.2).

Definition 3.1. Let M(Rn) denote the space of complex-valued Borel mea-
sures on B(Rn). It is well known that a complex-valued Borel measure ν nec-
essarily has a finite total variation ∥ν∥, and M(Rn) is a Banach algebra under
the norm ∥ · ∥ and with convolution as multiplication.

For ν ∈ M(Rn), the Fourier transform ν̂ of ν is a complex-valued function
defined on Rn by the formula

(3.3) ν̂(u⃗) =

∫
Rn

exp

{
i

n∑
j=1

ujvj

}
dν(v⃗),

where u⃗ = (u1, . . . , un) and v⃗ = (v1, . . . , vn) are in Rn.

Let {e1, . . . , en} be an orthonormal subset of C ′
a,b[0, T ]. Define the functional

F : Ca,b[0, T ] → C by

(3.4) F (x) = ν̂((e1, x)
∼, . . . , (en, x)

∼), x ∈ Ca,b[0, T ],

where ν̂ is the Fourier transform of ν in M(Rn). Then F is a bounded cylinder
functional and |ν̂(u⃗)| ≤ ∥ν∥ < +∞. Throughout this paper, we fix the positive
integer n.

Next (see [9, 5, 6, 4]) we state the definition of the generalized analytic
Feynman integral and the GFFT.

Definition 3.2. Let F : Ca,b[0, T ] → C be a scale-invariant measurable func-

tional such that the function space integral J(λ) = E[F (λ−1/2·)] exists as a
finite number for all λ > 0. If there exists a function J∗(λ) analytic in C+

such that J∗(λ) = J(λ) for all λ > 0, then J∗(λ) is defined to be the analytic
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function space integral of F over Ca,b[0, T ] with parameter λ, and for λ ∈ C+

we write
Eanλ [F ] ≡ Eanλ

x [F (x)] = J∗(λ).

Let q ̸= 0 be a real number and let F be a functional such that Eanλ [F ] exists
for all λ ∈ C+. If the following limit exists, we call it the generalized analytic
Feynman integral of F with parameter q and we write

Eanfq [F ] ≡ Eanfq
x [F (x)] = lim

λ→−iq
Eanλ [F ],

where λ→ −iq through values in C+.

Definition 3.3. For λ ∈ C+ and y ∈ Ca,b[0, T ], let

Tλ(F )(y) = Eanλ
x [F (y + x)].

For p ∈ (1, 2], we define the Lp analytic GFFT, T
(p)
q (F ) of F , by the formula

(λ ∈ C+),

T (p)
q (F )(y) = l. i.m.

λ→−iq
Tλ(F )(y)

if it exists; i.e., for each ρ > 0,

lim
λ→−iq

∫
Ca,b[0,T ]

∣∣Tλ(F )(ρy)− T (p)
q (F )(ρy)

∣∣p′

dµ(y) = 0,

where 1/p+ 1/p′ = 1. We define the L1 analytic GFFT, T
(1)
q (F ) of F , by the

formula (λ ∈ C+)

(3.5) T (1)
q (F )(y) = lim

λ→−iq
Tλ(F )(y)

if it exists.

We note that for 1 ≤ p ≤ 2, T
(p)
q (F ) is defined only s-a.e.. We also note that

if T
(p)
q (F ) exists and if F ≈ G, then T

(p)
q (G) exists and T

(p)
q (G) ≈ T

(p)
q (F ).

From the definition of the L1 analytic GFFT, we can see that for q ∈ R− {0},

(3.6) Eanfq [F ] = T (1)
q (F )(0)

if it exists [5, 9].

Lemma 3.4. Let {e1, . . . , en} be an orthonormal subset of Ca,b[0, T ]. Then
for all ζ ∈ C+, the function space integral

Ex

[
exp

{
iζ

n∑
j=1

(ej , x)
∼vj

}]
exists and is given by the formula

(3.7) Ex

[
exp

{
iζ

n∑
j=1

(ej , x)
∼vj

}]
= exp

{
− ζ2

2

n∑
j=1

v2j + iζ

n∑
j=1

(ej , a)C′
a,b
vj

}
.

Proof. Using (2.1), the Fubini theorem, and (2.2), it follows that the equation
(3.7) holds for all ζ ∈ C+. □
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For convenience we use the following notation throughout this paper:

ψe⃗(λ; v⃗) ≡ ψe1,...,en(λ; v1, . . . , vn)

= exp

{
− 1

2λ

n∑
j=1

v2j + iλ−1/2
n∑

j=1

(ej , a)C′
a,b
vj

}
(3.8)

for an orthonormal subset {e1, . . . , en} of C ′
a,b[0, T ], λ ∈ C̃+ and v⃗ = (v1, . . . ,

vn) ∈ Rn.
In next theorem, we show that the analytic function space integral Tλ(F )(y)

= Eanλ
x [F (y + x)] of the functional F given by equation (3.4) exists.

Theorem 3.5. Let F be given by the equation (3.4). Then for all λ ∈ C+,
Tλ(F ) exists and is given by the formula

(3.9) Tλ(F )(y) =

∫
Rn

exp

{
i

n∑
j=1

(ej , y)
∼vj

}
ψe⃗(λ; v⃗)dν(v⃗),

where ψe⃗(λ; v⃗) is given by the equation (3.8).

Proof. By (3.4), (3.3), the Fubini theorem, (3.7) with ζ replaced with λ−1/2,
and (3.8), we have that for all λ > 0,

J(λ) = Ex[F (y + λ−1/2x)] =

∫
Rn

exp

{
i

n∑
j=1

(ej , y)
∼vj

}
ψe⃗(λ; v⃗)dν(v⃗).

Now let

J∗(λ) =

∫
Rn

exp

{
i

n∑
j=1

(ej , y)
∼vj

}
ψe⃗(λ; v⃗)dν(v⃗)

for λ ∈ C+. Then J
∗(λ) = J(λ) for all λ > 0. We will use the Morera theorem

to show that J∗(λ) is analytic on C+. Let {λl}∞l=1 be a sequence in C+ such

that λl → λ through C+. Then λ
−1/2
l → λ−1/2 and Re(λl) ̸= 0 for all l ∈ N.

Thus we have that for each l ∈ N,∣∣∣∣ exp{i n∑
j=1

(ej , y)
∼vj

}
ψe⃗(λl; v⃗)

∣∣∣∣ = ∣∣ψe⃗(λl; v⃗)
∣∣(3.10)

=

∣∣∣∣ exp{− 1

2λl

n∑
j=1

v2j + iλ
−1/2
l

n∑
j=1

(ej , a)C′
a,b
vj

}∣∣∣∣
= exp

{
− 1

2

n∑
j=1

(√
Re(λl)

|λl|
vj +

|λl|Im(λ
−1/2
l )√

Re(λl)
(ej , a)C′

a,b

)2

+
1

2

n∑
j=1

|λl|2(Im(λ
−1/2
l ))2

Re(λl)
(ej , a)

2
C′

a,b

}
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≤ exp

{
|λl|2(Im(λ

−1/2
l ))2

2Re(λl)

n∑
j=1

(ej , a)
2
C′

a,b

}
.

Since ν ∈ M(Rn), we see that∣∣∣∣ ∫
Rn

exp

{
|λl|2(Im(λ

−1/2
l ))2

2Re(λl)

n∑
j=1

(ej , a)
2
C′

a,b

}
dν(v⃗)

∣∣∣∣
≤

∫
Rn

exp

{
|λl|2(Im(λ

−1/2
l ))2

2Re(λl)

n∑
j=1

(ej , a)
2
C′

a,b

}
d|ν|(v⃗)

= exp

{
|λl|2(Im(λ

−1/2
l ))2

2Re(λl)

n∑
j=1

(ej , a)
2
C′

a,b

}
∥ν∥ < +∞

for each l ∈ N. Furthermore we have that

lim
l→∞

∫
Rn

exp

{
|λl|2(Im(λ

−1/2
l ))2

2Re(λl)

n∑
j=1

(ej , a)
2
C′

a,b

}
d|ν|(v⃗)

=

∫
Rn

exp

{
|λ|2(Im(λ−1/2))2

2Re(λ)

n∑
j=1

(ej , a)
2
C′

a,b

}
d|ν|(v⃗).

Thus, by Theorem 4.17 in [15, p. 92], J∗(λ) is continuous on C+. Since k(λ) ≡
exp{i

∑n
j=1(ej , y)

∼vj}ψe⃗(λ; v⃗) is analytic on C+, applying the Fubini theorem,
we have ∫

△
J∗(λ)dλ =

∫
Rn

∫
△
k(λ)dλdν(v⃗) = 0

for all rectifiable simple closed curve △ lying in C+. Thus by the Morera
theorem, J∗(λ) is analytic on C+. Therefore the analytic function space integral
J∗(λ) = Eanλ

x [F (y + x)] ≡ Tλ(F )(y) exists and is given by equation (3.9). □

4. Generalized Fourier-Feynman transform

The remark below will be very useful in the development of our results for
the GFFT of functionals given by equation (3.4).

Remark 4.1. If a(t) ≡ 0 on [0, T ], then for all F given by equation (3.4), the

L1 analytic GFFT T
(1)
q (F ) will always exist for all real q ̸= 0 and be given by

the formula

T (1)
q (F )(y) =

∫
Rn

exp

{
i

n∑
j=1

(ej , y)
∼vj

}
ψe⃗(−iq; v⃗)dν(v⃗)

=

∫
Rn

exp

{
i

n∑
j=1

(ej , y)
∼vj −

i

2q

n∑
j=1

v2j

}
dν(v⃗).

However for a(t) as in Section 2, and proceeding formally using equations (3.4)

and (3.9), we see that T
(1)
q (F )(y) will be given by equation (4.2) below if it
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exists. But the integral on the right-hand side of (4.2) might not exist if the
real part of

lnψe⃗(−iq; v⃗) =
{
− i

2q

n∑
j=1

v2j + i(−iq)−1/2
n∑

j=1

(ej , a)C′
a,b
vj

}
is positive. However, by Cauchy-Schwartz inequality,

∣∣ψe⃗(−iq; v⃗)
∣∣ ≤ exp

{∥a∥C′
a,b√

|2q|

n∑
j=1

|vj |
}
,

and so the L1 GFFT T
(1)
q (F ) of F will certainly exist provided the associated

measure ν of F satisfies the condition∫
Rn

exp

{∥a∥C′
a,b√

|2q|

n∑
j=1

|vj |
}
d|ν|(v⃗) < +∞.(4.1)

Note that in case a(t) ≡ 0 and b(t) = t on [0, T ], the function space Ca,b[0, T ]
reduces to the classical Wiener space C0[0, T ] and (ej , a)C′

a,b
= 0 for all j =

1, . . . , n. Hence for all λ ∈ C̃+,

∣∣ψe⃗(λ; v⃗)
∣∣ = ∣∣∣∣ exp{− 1

2λ

n∑
j=1

v2j

}∣∣∣∣ = exp

{
− Re(λ)

2|λ|2
n∑

j=1

v2j

}
≤ 1.

Theorem 4.2. Let F be given by the equation (3.4). Let q0 be a positive real
number. Suppose that the associated measure ν of F satisfies condition (4.1)
with q replaced with q0. Then for all real q with |q| > q0, the L1 GFFT of F ,

T
(1)
q (F ) exists and is given by the formula

(4.2) T (1)
q (F )(y) =

∫
Rn

exp

{
i

n∑
j=1

(ej , y)
∼vj

}
ψe⃗(−iq; v⃗)dν(v⃗),

where ψe⃗(−iq; v⃗) is given by the equation (3.8).

Proof. Let {λl}∞l=1 be a sequence in C+ such that λl → −iq through C+. Then
ψe⃗(λl; v⃗) converges to ψe⃗(−iq; v⃗). By Theorem 3.5,

Tλl
(F )(y) =

∫
Rn

exp

{
i

n∑
j=1

(ej , y)
∼
}
ψe⃗(λl; v⃗)dν(v⃗)

exists for all l ∈ N. Since |arg(λ−1/2
l )| < π/4 for every l ∈ N and λ

−1/2
l =

Re(λ
−1/2
l ) + iIm(λ

−1/2
l ) → (−iq)−1/2 = 1/

√
|2q|+ isign(q)/

√
|2q|, we see that

Re(λ
−1/2
l ) > |Im(λ

−1/2
l )| for every l ∈ N and there exists a sufficiently large
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k ∈ N such that |Im(λ
−1/2
l )| < 1/

√
|q0| for every l ≥ k. Thus for each l ≥ k,

|ψe⃗(λl; v⃗)| =
∣∣∣∣ exp{− 1

2

(
[Re(λ

−1/2
l )]2 − [Im(λ

−1/2
l )]2

+ iRe(λ
−1/2
l )Im(λ

−1/2
l )

) n∑
j=1

v2j

+ i
(
Re(λ

−1/2
l ) + iIm(λ

−1/2
l )

) n∑
j=1

(ej , a)C′
a,b
vj

}∣∣∣∣
< exp

{∥a∥C′
a,b√

|2q0|

n∑
j=1

|vj |
}

and so, by condition (4.1) with q replaced with q0,∣∣Tλl
(F )(y)

∣∣ ≤ ∫
Rn

∣∣ψe⃗(λl; v⃗)
∣∣d|ν|(v⃗)

<

∫
Rn

exp

{∥a∥C′
a,b√

|2q0|

n∑
j=1

|vj |
}
d|ν|(v⃗) < +∞.

Also, by condition (4.1) with q replaced with q0, we have∣∣∣∣ ∫
Rn

exp

{
i

n∑
j=1

(ej , y)
∼vj

}
ψe⃗(−iq; v⃗)dν(v⃗)

∣∣∣∣
≤

∫
Rn

∣∣ψe⃗(−iq; v⃗)
∣∣d|ν|(v⃗)

<

∫
Rn

exp

{∥a∥C′
a,b√

|2q0|

n∑
j=1

|vj |
}
d|ν|(v⃗) < +∞.

Hence by (3.5), (3.9) and the dominated convergence theorem, we have the
equation (4.2). □

The following corollary follows from equations (3.6) and (4.2).

Corollary 4.3. Let F and q0 be as in Theorem 4.2. Then for all real q with
|q| > q0, the generalized analytic Feynman integral of F , Eanfq [F ] exists and is
given by the formula

Eanfq [F ] =

∫
Rn

ψe⃗(−iq; v⃗)dν(v⃗),

where ψe⃗(−iq; v⃗) is given by the equation (3.8).

Theorem 4.4. Let F and q0 be as in Theorem 4.2. Then for all p ∈ (1, 2] and

all real q with |q| > q0, the Lp GFFT of F , T
(p)
q (F ) exists and is given by the

right hand side of equation (4.2).
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Proof. It was shown in the proof of Theorem 3.5 that Tλ(F )(y) given by equa-
tion (3.9) is an analytic function of λ throughout C+. In view of the definition
of the Lp analytic GFFT, it suffices to show that for each ρ > 0,

lim
λ→−iq

∫
Ca,b[0,T ]

∣∣Tλ(F )(ρy)− T (p)
q (F )(ρy)

∣∣p′

dµ(y) = 0.

Given positive real number q0 > 0, let Γq0 = {λ ∈ C̃+ : |Im(λ−1/2)| <
(2q0)

−1/2}. Then for all real q with |q| > q0,

(−iq)−1/2 = 1/
√
2|q|+ isign(q)/

√
2|q| ∈ Γq0

and for all λ ∈ Γq0 ,

(4.3)
∣∣ψe⃗(λ; v⃗)

∣∣ < exp

{
∥a∥C′

a,b√
|2q0|

n∑
j=1

|vj |

}
.

Fixing p ∈ (1, 2] and using inequalities (4.3) and (4.1), we obtain that for
all ρ > 0 and all λ ∈ Γq0 ,∣∣Tλ(F )(ρy)− T (p)

q (F )(ρy)
∣∣p′

≤
(∫

Rn

∣∣∣∣ exp{iρ n∑
j=1

(ej , y)
∼
}∣∣∣∣{∣∣ψe⃗(λ; v⃗)

∣∣+ ∣∣ψe⃗(−iq; v⃗)
∣∣}dν(v⃗))p′

≤
(
2

∫
Rn

exp

{∥a∥C′
a,b√

|2q0|

n∑
j=1

|vj |
}
d|ν|(v⃗)

)p′

< +∞.

Hence by the dominated convergence theorem, we see that for all p ∈ (1, 2] and
all ρ > 0,

lim
λ→−iq

∫
Ca,b[0,T ]

∣∣Tλ(F )(ρy)− T (p)
q (F )(ρy)

∣∣p′

dµ(y)

=

∫
Ca,b[0,T ]

∣∣∣∣ ∫
Rn

exp

{
iρ

n∑
j=1

(ej , y)
∼
}

lim
λ→−iq

{
ψe⃗(λ; v⃗)− ψe⃗(−iq; v⃗)

}
dν(v⃗)

∣∣∣∣p′

dµ(y)

= 0

which concludes the proof of Theorem 4.4. □

5. Sequential function space transforms

In this section, we introduce two (non-analytic) sequential transforms of
cylinder functionals discussed in Sections 3 and 4. We establish that the one
is to identify the GFFT and the another transform acts like an inverse GFFT.
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For an orthonormal subset {e1, . . . , en} of C ′
a,b[0, T ], λ ∈ C+ and x ∈

Ca,b[0, T ], let

W+
e⃗ (λ;x) ≡ λn/2 exp

{(
1− λ

2

) n∑
j=1

[(ej , x)
∼]2

+ (λ1/2 − 1)

n∑
j=1

(ej , a)C′
a,b

(ej , x)
∼
}(5.1)

and

W−
e⃗ (λ;x) ≡ λn/2 exp

{(
1− λ

2

) n∑
j=1

[(ej , x)
∼]2

+
(
(−λ)1/2 − 1

) n∑
j=1

(ej , a)C′
a,b

(ej , x)
∼ +

n∑
j=1

(ej , a)
2
C′

a,b

}
.

Definition 5.1. Let F and {e1, . . . , en} be related by the equation (3.2) and
let q be a nonzero real number. We define the sequential P-transform of F
with parameter q (if it exists) by

(5.2) Pe⃗,q(F )(y) = lim
l→∞

∫
Ca,b[0,T ]

F (y + x)W+
e⃗ (λl;x)dµ(x),

where {λl}∞l=1 is any sequence in C+ with λl → −iq.
We also define the sequentialN -transform of F with parameter q (if it exists)

by

Ne⃗,q(F )(y) = lim
l→∞

∫
Ca,b[0,T ]

F (y + x)W−
e⃗ (λl;x)dµ(x),

where {λl}∞l=1 is any sequence in C+ with λl → −iq.

Remark 5.2. Let {e1, . . . , en} be an orthonormal subset C ′
a,b[0, T ]. Then ap-

plying equations (2.1) and (2.2), we can see that for all λ ∈ C+,∫
Ca,b[0,T ]

W+
e⃗ (λ;x)dµ(x) =

∫
Ca,b[0,T ]

W−
e⃗ (λ;x)dµ(x) = 1.

In our next theorems we establish the existence of the sequential P and
N -transforms of functional F given by equation (3.4).

Theorem 5.3. Let F and {e1, . . . , en} be related by the equation (3.4). Let q0
be a positive real number. Suppose that the associated measure ν of F satisfies
condition (4.1) with q replaced with q0. Then for all real q with |q| > q0, the
sequential P-transform of F , Pe⃗,q(F ) exists and is given by the right hand side
of equation (4.2).
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Proof. Let {λl}∞l=1 be any sequence in C+ with λl → −iq. By (3.4), (5.1), the
Fubini theorem, (2.1) and (2.2), we have that for every l ∈ N,

∫
Ca,b[0,T ]

F (y + x)W+
e⃗ (λl;x)dµ(x)

=

∫
Rn

exp

{
i

n∑
j=1

(ej , y)
∼vj

}(
λl
2π

)n/2 ∫
Rn

exp

{
− λl

2

n∑
j=1

u2j

+
n∑

j=1

(
λ
1/2
l (ej , a)C′

a,b
+ ivj

)
uj −

1

2

n∑
j=1

(ej , a)
2
C′

a,b

}
du⃗dν(v⃗)

=

∫
Rn

exp

{
i

n∑
j=1

(ej , y)
∼vj −

1

2λl

n∑
j=1

v2j + iλ
−1/2
l

n∑
j=1

(ej , a)C′
a,b
vj

}
dν(v⃗)

=

∫
Rn

exp

{
i

n∑
j=1

(ej , y)
∼vj

}
ψe⃗(λl; v⃗)dν(v⃗).

(5.3)

Applying (3.10), we see that the absolute value of the last expression of (5.3)
is less than

exp

{ |λl|2
(
Im(λ

−1/2
l )

)2
2Re(λl)

n∑
j=1

(ej , a)
2
C′

a,b

}
∥ν∥,

and so the function space integral given by (5.3) exists for each l ∈ N. Using
equations (5.2), (5.3) and the dominated convergence theorem with the tech-
niques similar to those used in the proof of Theorem 4.2, we have the desired
result. □

By similar methods, we obtain the following theorem.

Theorem 5.4. Let F , {e1, . . . , en} and q0 be as in Theorem 5.3. Then for all
real q with |q| > q0, the sequential N -transform of F , Ne⃗,q(F ) exists and is
given by the formula

Ne⃗,q(F )(y) =

∫
Rn

exp

{
i

n∑
j=1

(ej , y)
∼vj −

i

2q

n∑
j=1

v2j

− i(iq)−1/2
n∑

j=1

(ej , a)C′
a,b
vj

}
dν(v⃗).

(5.4)

Next we present concluding remarks.

(1) Let F , {e1, . . . , en} and q0 be as in Theorem 5.3. Then by Theorems 4.2

and 4.4, we have that for all real q with |q| > q0, the GFFT T
(p)
q (F ) of F is

given by the right hand side of equation (4.2), and by Theorem 5.3, we have

(5.5) T (p)
q (F )(y) = Pe⃗,q(F )(y).
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For nonzero real number q with |q| > q0, define a set function νq : B(Rn) → C
by

νq(B) =

∫
Rn

ψe⃗(−iq; v⃗)dν(v⃗), B ∈ B(Rn),

where ν is the associated measure of F and ψe⃗(−iq; v⃗) is given by the equation
(3.8). Then using condition (4.1) with q replaced with q0, we see that νq is a

complex measure on B(Rn) with finite total variation, and T
(p)
q (F ) and Pe⃗,q(F )

can be expressed as

T (p)
q (F )(y) = Pe⃗,q(F )(y) =

∫
Rn

exp

{
i

n∑
j=1

(ej , y)
∼vj

}
dνq(v⃗)

for all p ∈ [1, 2].
(2) For positive real number q and complex measure νq discussed above, we

assume ∫
Rn

exp

{∥a∥C′
a,b√

|2q|

n∑
j=1

|vj |
}
d|νq|(v⃗)

≤
∫
Rn

exp

{
2∥a∥C′

a,b√
|2q|

n∑
j=1

|vj |
}
d|ν|(v⃗) < +∞.

(5.6)

Then by equations (5.4) and (5.5), we have that for all p ∈ [1, 2] and all nonzero
real number q,

Ne⃗,−q(T
(p)
q (F ))(y) = Ne⃗,−q(Pe⃗,q(F ))(y)

=

∫
Rn

exp

{
i

n∑
j=1

(ej , y)
∼vj +

i

2q

n∑
j=1

v2j

− i(−iq)−1/2
n∑

j=1

(ej , a)C′
a,b
vj

}
dνq(v⃗)

=

∫
Rn

exp

{
i

n∑
j=1

(ej , y)
∼vj +

i

2q

n∑
j=1

v2j

− i(−iq)−1/2
n∑

j=1

(ej , a)C′
a,b
vj

}
ψe⃗(−iq; v⃗)dνq(v⃗)

= F (y).

(5.7)

By similar arguments we can see that T
(p)
−q (Ne⃗,q(F ))(y) = F (y). That is to say,

the equation (5.7) tells us that sequential transform Ne⃗,−q plays a prominent

role as an inverse transform of GFFT T
(p)
q for functionals F given by equation

(3.4).
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6. Examples

In this section we present several interesting functionals to apply our results
in previous sections.

Example 6.1. For given m⃗ = (m1, . . . ,mn) ∈ Rn and σ⃗2 = (σ2
1 , . . . , σ

2
n) ∈ Rn

with σ2
j > 0, j = 1, . . . , n, let ν

m⃗,σ⃗2 be the Gaussian measure given by

(6.1)

ν
m⃗,σ⃗2(B) =

( n∏
j=1

2πσ2
j

)−1/2 ∫
B

exp

{
−

n∑
j=1

(uj −mj)
2

2σ2
j

}
du⃗, B ∈ B(Rn).

Then ν
m⃗,σ⃗2 ∈ M(Rn) and

ν̂
m⃗,σ⃗2(u⃗) = exp

{
− 1

2

n∑
j=1

σ2
ju

2
j + i

n∑
j=1

mjuj

}
.

Using the equation (6.1), the Fubini theorem and equation (2.2), we have
that for all nonzero real number q,∫

Rn

exp

{∥a∥C′
a,b√

|2q|

n∑
j=1

|vj |
}
d|ν

m⃗,σ⃗2 |(v⃗)

<
n∏

j=1

[
exp

{σ2
j ∥a∥2C′

a,b

2|2q|
−
mj∥a∥C′

a,b√
|2q|

}
+ exp

{σ2
j ∥a∥2C′

a,b

2|2q|
+
mj∥a∥C′

a,b√
|2q|

}]
and the Gaussian measure ν

m⃗,σ⃗2 satisfies conditions (4.1) and (5.6) for all q ∈
R− {0}. Thus we can apply our results in previous sections to the functionals
of the form

F1(x) = ν̂
m⃗,σ⃗2((e1, x)

∼, . . . , (en, x)
∼)

= exp

{
− 1

2

n∑
j=1

σ2
j [(ej , x)

∼]2 + i
n∑

j=1

mj(ej , x)
∼
}
,

(6.2)

where {e1, . . . , en} is an orthonormal set in C ′
a,b[0, T ].

By Theorems 4.2, 4.4, 5.3 and 5.4, for all q ∈ R− {0} and all p ∈ [1, 2], the

Lp GFFT T
(p)
q (F1), the sequential P-transform Pe⃗,q(F1) and the sequential

N -transform Ne⃗,q(F1) exist and are given by

T (p)
q (F1)(y) = Pe⃗,q(F1)

=

( n∏
j=1

2πσ2
j

)−1/2 ∫
Rn

exp

{
i

n∑
j=1

(ej , y)
∼vj −

i

2q

n∑
j=1

v2j

+ i(−iq)−1/2
n∑

j=1

(ej , a)C′
a,b
vj −

n∑
j=1

(vj −mj)
2

2σ2
j

}
dv⃗
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=

( n∏
j=1

q

q + iσ2
j

)1/2

exp

{ n∑
j=1

qσ2
j

2(q + iσ2
j )

(
i(ej , y)

∼

+ i(−iq)−1/2(ej , a)C′
a,b

+
mj

σ2
j

)2

− m2

2σ2
j

}
and

Ne⃗,q(F1) =

( n∏
j=1

q

q + iσ2
j

)1/2

exp

{ n∑
j=1

qσ2
j

2(q + iσ2
j )

(
i(ej , y)

∼

− i(iq)−1/2(ej , a)C′
a,b

+
mj

σ2
j

)2

− m2

2σ2
j

}
,

respectively. Furthermore,

Ne⃗,−q(T
(p)
q (F1))(y) = Ne⃗,−q(Pe⃗,q(F1))(y)

= T
(p)
−q (Ne⃗,q(F1))(y) = Pe⃗,−q(Ne⃗,q(F1))(y) = F1(y)

for all q ∈ R− {0}.

Example 6.2. Let S : C ′
a,b[0, T ] → C ′

a,b[0, T ] be the linear operator defined

by Sw(t) =
∫ t

0
w(s)db(s). Then the adjoint operator S∗ of S is given by

S∗w(t) =

∫ t

0

(
w(T )− w(s)

)
db(s).

It is easily shown that S is injective. Let

(6.3) γ(t) =
√
3b−3/2(T )b(t).

Using an integration by parts formula, we see that {S∗γ} is an orthonormal
set in C ′

a,b[0, T ] and

1√
3
b3/2(T )(S∗γ, x)∼ = (S∗b, x)∼ =

∫ T

0

x(t)db(t).

In the case n = 1, e1 = S∗γ, m⃗ = m1 = 0 and σ⃗2 = σ2
1 = 2b3(T )/3, the

functional F1 given by equation (6.2) can be rewritten by

(6.4) F2(x) = exp

{
−
(∫ T

0

x(t)db(t)

)2}
.

We give the transforms studied in this paper for functional F2.

T (p)
q (F2)(y)

= PS⃗∗γ,q(F2)

=

(
3q

3q + i2b3(T )

)1/2

exp

{
3q

3q + i2b3(T )
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×
(
i

∫ T

0

y(t)db(t) + i(−iq)−1/2

∫ T

0

a(t)db(t)

)2}
and

NS⃗∗γ,q(F2) =

(
3q

3q + i2b3(T )

)1/2

exp

{
3q

3q + i2b3(T )

×
(
i

∫ T

0

y(t)db(t)− i(iq)−1/2

∫ T

0

a(t)db(t)

)2}
.

Example 6.3. The functional

(6.5) F3(x) = exp

{
i

∫ T

0

x(t)db(s)

}
also is a functional under our consideration because

F3(x) = exp{i(S∗b, x)∼} = exp

{
i√
3
b3/2(T )(S∗γ, x)∼

}
=

∫
R
exp{i(S∗γ, x)∼v}dδ1(v) = δ̂1((S

∗γ, x)∼),

where γ is given by equation (6.3) and δ1 is the Dirac measure concentrated

at v = b3/2(T )/
√
3 in R. Clearly, δ1 satisfies condition (4.1) and (5.6) for all

q ∈ R− {0}.
We finally present the two transforms of F3.

T (p)
q (F3)(y) = PS∗γ,q(F3)

= exp

{
i

∫ T

0

y(t)db(t)− i

6q
b3(T ) + i(−iq)1/2

∫ T

0

a(t)db(t)

}
and

NS∗γ,q(F3) = exp

{
i

∫ T

0

y(t)db(t)− i

6q
b3(T )− i(iq)1/2

∫ T

0

a(t)db(t)

}
.

Remark 6.4. The functionals given by equations (6.4) and (6.5) arise naturally
in quantum mechanics.

References

[1] M. D. Brue, A functional transform for Feynman integrals similar to the Fourier trans-

form, Thesis, University of Minnesota, Minneapolis, 1972.
[2] R. H. Cameron and D. A. Storvick, An L2 analytic Fourier-Feynman transform, Michi-

gan Math. J. 23 (1976), no. 1, 1–30.
[3] S. J. Chang, Conditional generalized Fourier-Feynman transform of functionals in a

Fresnel type class, Commun. Korean Math. Soc. 26 (2011), no. 2, 273–289.
[4] S. J. Chang, J. G. Choi, and H. S. Chung, Generalized analytic Feynman integral via

function space integral of bounded cylinder functionals, Bull. Korean Math. Soc. 48
(2011), no. 3, 475–489.



1082 JAE GIL CHOI AND SEUNG JUN CHANG

[5] S. J. Chang, J. G. Choi, and D. Skoug, Integration by parts formulas involving gen-
eralized Fourier-Feynman transforms on function space, Trans. Amer. Math. Soc. 355
(2003), no. 7, 2925–2948.

[6] , Generalized Fourier-Feynman transforms, convolution products, and first vari-

ations on function space, Rocky Mountain J. Math. 40 (2010), no. 3, 761–788.
[7] S. J. Chang and D. M. Chung, Conditional function space integrals with applications,

Rocky Mountain J. Math. 26 (1996), no. 1, 37–62.

[8] S. J. Chang, H. S. Chung, and D. Skoug, Integral transforms of functionals in
L2(Ca,b[0, T ]), J. Fourier Anal. Appl. 15 (2009), no. 4, 441–462.

[9] S. J. Chang and D. Skoug, Generalized Fourier-Feynman transforms and a first varia-
tion on function space, Integral Transforms Spec. Funct. 14 (2003), no. 5, 375–393.

[10] T. Huffman, C. Park, and D. Skoug, Analytic Fourier-Feynman transforms and convo-
lution, Trans. Amer. Math. Soc. 347 (1995), no. 2, 661–673.

[11] , Convolutions and Fourier-Feynman transforms of functionals involving multi-
ple integrals, Michigan Math. J. 43 (1996), no. 2, 247–261.

[12] , Convolution and Fourier-Feynman transforms, Rocky Mountain J. Math. 27
(1997), no. 3, 827–841.

[13] G. W. Johnson and D. L. Skoug, Scale-invariant measurability in Wiener space, Pacific
J. Math. 83 (1979), no. 1, 157–176.

[14] , An Lp analytic Fourier-Feynman transform, Michigan Math. J. 26 (1979), no.
1, 103–127.

[15] H. L. Royden, Real Analysis (Third edition), Macmillan, 1988.

[16] D. Skoug and D. Storvick, A survey of results involving transforms and convolutions in
function space, Rocky Mountain J. Math. 34 (2004), no. 3, 1147–1175.

[17] J. Yeh, Singularity of Gaussian measures on function space induced by Brownian motion
processes with non-stationary increments, Illinois J. Math. 15 (1971), 37–46.

[18] , Stochastic Processes and the Wiener Integral, Marcel Dekker, Inc., New York,
1973.

Jae Gil Choi
Department of Mathematics
Dankook University

Cheonan 330-714, Korea
E-mail address: jgchoi@dankook.ac.kr

Seung Jun Chang
Department of Mathematics
Dankook University
Cheonan 330-714, Korea

E-mail address: sejchang@dankook.ac.kr


