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Abstract

The class of quasi-convex functions contain all those finite convex functions which
are defined on finite closed intervals of real line. The aim of this paper is to establish
the bounds of the sum of left and right fractional integral operators using
quasi-convex functions. An identity is formulated which is used to find
Hadamard-type inequalities for quasi-convex functions. Connections with some
known results are analyzed. Furthermore, some implications are derived by
considering some examples of quasi-convex functions.
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1 Introduction

Definition 1 Let I be an interval of real numbers. Then a function f : I → R is said to be

convex function, if for all a,b ∈ I and 0≤ t ≤ 1 the following inequality holds:

f
(

ta + (1 – t)b
)

≤ tf (a) + (1 – t)f (b).

A convex function is interpreted very nicely in the coordinate plane by the Hadamard

inequality

f

(

a + b

2

)

≤
1

b – a

∫ b

a

f (x)dx≤
f (a) + f (b)

2
,

where f : I →R is a convex function on I and a,b ∈ I , a < b.

The Hadamard inequality provides the estimations of integral mean of a real valued

function f . It is also considered as a base of defining a convex function, whereas convex

functions lead to enrichment of the literature of the subjects like mathematical analysis,

functional analysis, statistical analysis, graph theory andmany other areas ofmathematics.

One of the celebrated fields is the theory of inequalities which is actually developed on a

very fast track due to convex functions. Convex functions are also very attractive because

of their graphical representation and fascinating properties and characterizations (see [26,

pp. 2–15]).
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Afinite convex function which is defined on a closed interval is bounded above bymaxi-

mumof its values at the end points, but the converse needs not be true. This factmotivates

us to define another class of functions, called quasi-convex functions.

Definition 2 (See, e.g., [14], p. 302) Let I be an interval of real numbers. Then a function

f : I → R is said to be quasi-convex function, if for all a,b ∈ I and 0 ≤ t ≤ 1 the following

inequality holds:

f
(

ta + (1 – t)b
)

≤ max

{

f (a), f (b)
}

. (1)

Example 1.1 ([15, p. 83]) The function f : [–2, 2] →R, given by

f (x) =

⎧

⎨

⎩

1, x ∈ [–2,–1],

x2, x ∈ (–1, 2]

is not a convex function on [–2, 2] but it is quasi-convex function on [–2, 2].

Therefore it is noted that the class of quasi-convex functions contains the class of fi-

nite convex functions defined on finite closed intervals. The Hadamard and Hadamard-

type inequalities for quasi-convex functions have been studied by many researchers (see

[14, 15, 28] and the references therein). For more fractional inequalities of Hadamard and

Hadamard-type we suggest references [1, 2, 8, 10–13, 21]. Our aim is to study these in-

equalities in fractional calculus.

Fractional calculus is the study of classical calculus in a general form. For example

integration and differentiation of arbitrary order is the key of this subject. There are a

lot of integral representations of derivatives and integrations of functions of arbitrary

order. For details see [5, 18–20, 23, 30]. Next we give the definition of a generalized

Mittag-Leffler function E
γ ,δ,k,c
μ,α,l (·;p) which leads to generalized fractional integral opera-

tors. Mittag-Leffler functions are very useful in the solution of differential equations due

to their natural existence in their solutions. For details we suggest [3, 4, 7, 16, 18, 19].

Definition 3 ([6, p. 1381, Eq. (2.8)]) Letμ,α, l,γ , c ∈ C,ℜ(μ),ℜ(α),ℜ(l) > 0,ℜ(c) > ℜ(γ ) >

0 with p ≥ 0, δ > 0 and 0 < k ≤ δ + ℜ(μ). Then the extended generalized Mittag-Leffler

function E
γ ,δ,k,c
μ,α,l (t;p) is defined by

E
γ ,δ,k,c
μ,α,l (t;p) =

∞
∑

n=0

βp(γ + nk, c – γ )

β(γ , c – γ )

(c)nk

Γ (μn + α)

tn

(l)nδ

, (2)

where βp is the generalized beta function defined by

βp(x, y) =

∫ 1

0

tx–1(1 – t)y–1e
–

p
t(1–t) dt

and (c)nk is the Pochhammer symbol defined as (c)nk =
Γ (c+nk)

Γ (c)
.

In [6], properties of the generalized Mittag-Leffler function are discussed and it is given

that E
γ ,δ,k,c
μ,α,l (t;p) is absolutely convergent for k < δ + ℜ(μ). Let S be the sum of series of
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absolute terms of the Mittag-Leffler function E
γ ,δ,k,c
μ,α,l (t;p), then we have |E

γ ,δ,k,c
μ,α,l (t;p)| ≤ S.

We use this property of the Mittag-Leffler function frequently in our results. Also in [6,

p. 1384, Eqs. (2.11) and (2.12)], the derivative property of the generalized Mittag-Leffler

function is discussed.

Theorem 1.2 If m ∈N, ω,μ,α, l,γ , c ∈C, ℜ(μ),ℜ(α),ℜ(l) > 0, ℜ(c) > ℜ(γ ) > 0 with p≥ 0,

δ > 0 and 0 < k < δ +ℜ(μ), then

(

d

dt

)m

E
γ ,δ,k,c
μ,α,l (t;p)

=
(c)mk

(l)mδ

∞
∑

n=0

βp(γ + (n +m)k, c – γ )

β(γ , c – γ )

(c +mk)nk

Γ (μ(n +m) + α)

(n + 1)mt
n

(l +mδ)nδ

,

(

d

dt

)m
[

tα–1E
γ ,δ,k,c
μ,α,l

(

ωtμ;p
)]

= tα–m–1E
γ ,δ,k,c
μ,α–m,l

(

ωtμ;p
)

, ℜ(α) >m.

(3)

Remark 1.3 (2) is a generalization of the following functions:

(i) setting p = 0, it reduces to the Salim–Faraj function E
γ ,δ,k,c
μ,α,l (t) defined in [27, p. 2,

Eq. (6)],

(ii) setting l = δ = 1, it reduces to the function E
γ ,k,c
μ,α (t;p) defined by Rahman et al. in

[25, p. 4247, Eq. (2.1)],

(iii) setting p = 0 and l = δ = 1, it reduces to the Shukla–Prajapati function E
γ ,k
μ,α(t)

defined in [29, p. 798, Eq. (1.4)] see also [30, p. 3, Eq. (1.13)],

(iv) setting p = 0 and l = δ = k = 1, it reduces to the Prabhakar function E
γ
μ,α(t) defined

in [24, p. 7, Eq. (1.3)].

The upcoming generalized fractional integral operators containing the extended gener-

alized Mittag-Leffler function has been used to generalize several fractional integral in-

equalities for convex and related functions (see [10, 13, 17] and the references therein).

These operators are also useful to generalize fractional differential equations having their

solutions in terms of Mittag-Leffler functions. The left-sided and right-sided generalized

fractional integral operators ǫ
γ ,δ,k,c
μ,α,l,ω,a+ and ǫ

γ ,δ,k,c
μ,α,l,ω,b– are defined as follows:

Definition 4 ([6, p. 1385, Eq. (2.13)]) Let ω,μ,α, l,γ , c ∈ C, ℜ(μ),ℜ(α),ℜ(l) > 0, ℜ(c) >

ℜ(γ ) > 0 with p ≥ 0, δ > 0 and 0 < k ≤ δ + ℜ(μ). Let f ∈ L1[a,b] and x ∈ [a,b]. Then the

generalized fractional integral operators ǫ
γ ,δ,k,c
μ,α,l,ω,a+ f and ǫ

γ ,δ,k,c
μ,α,l,ω,b– f are defined by

(

ǫ
γ ,δ,k,c
μ,α,l,ω,a+ f

)

(x;p) =

∫ x

a

(x – t)α–1E
γ ,δ,k,c
μ,α,l

(

ω(x – t)μ;p
)

f (t)dt (4)

and

(

ǫ
γ ,δ,k,c
μ,α,l,ω,b– f

)

(x;p) =

∫ b

x

(t – x)α–1E
γ ,δ,k,c
μ,α,l

(

ω(t – x)μ;p
)

f (t)dt. (5)

In [6], several properties of the extended generalized Mittag-Leffler function and cor-

responding generalized fractional operators have been studied. In particular in [10, p. 3,

Eqs. (5) and (6)], it is proved that

(

ǫ
γ ,δ,k,c
μ,α,l,ω,a+1

)

(x;p) = (x – a)αE
γ ,δ,k,c
μ,α+1,l

(

w(x – a)μ;p
)

(6)
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and we denoted

Cα,ω,a+ (x;p) =
(

ǫ
γ ,δ,k,c
μ,α,l,ω,a1

)

(x;p).

Similarly

(

ǫ
γ ,δ,k,c
μ,β ,l,ω,b–1

)

(x;p) = (b – x)βE
γ ,δ,k,c
μ,β+1,l

(

w(b – x)μ;p
)

(7)

and we denoted

Cβ ,ω,b– (x;p) =
(

ǫ
γ ,δ,k,c
μ,β ,l,ω,b–1

)

(x;p),

which we will use in our results in the sequel.

Remark 1.4 (4) and (5) are the generalizations of the following fractional integral opera-

tors:

(i) setting p = 0, it reduces to the fractional integral operators defined by Salim–Faraj

in [27, p. 2, Eq. (8)],

(ii) setting l = δ = 1, it reduces to the fractional integral operators defined by Rahman et

al. in [25, p. 4247, Eq. (2.2)],

(iii) setting p = 0 and l = δ = 1, it reduces to the fractional integral operators defined by

Srivastava–Tomovski in [30, p. 5, Eq. (2.12)],

(iv) setting p = 0 and l = δ = k = 1, it reduces to the fractional integral operators defined

by Prabhakar in [24, p. 7, Eqs. (1.2) and (1.4)],

(v) setting p = ω = 0, it reduces to the left-sided and right-sided Riemann–Liouville

fractional integrals.

Fractional integral inequalities are very important in the theory and applications of dif-

ferential equations. Such inequalities are also of great importance in the mathematical

modeling of the fractional boundary value problems. The aim of this paper is to establish

an estimation of the generalized fractional integral operators (4), (5) studied in [6] by using

quasi-convex functions. Actually this is a compact formula which gives estimations of all

fractional integral operators comprised in Remark 1.4. Further we prove some estimations

of the Hadamard-type inequality given in [17, Theorem 2.1, p. 4]. Finally, these results are

applied to particular quasi-convex functions, in the result some recurrence inequalities

for the generalized Mittag-Leffler functions are obtained.

We organize the results in next two sections. In Sect. 2, first we give the estimate of the

sum of left-sided and right-sided generalized fractional integrals defined in (4) and (5).

Then an identity is established to give the estimations of the Hadamard-type inequality

[17, Theorem 2.1, p. 4]. Also we reproduce several published results as particular cases of

these results. In Sect. 3, applications of these results are discussed by using some examples

of quasi-convex functions.

2 Main results

The very first result provides the bound of the sum of the left-sided and right-sided frac-

tional integrals via quasi-convex functions.
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Theorem 2.1 Let f : [a,b]→R be a function such that f ∈ L1[a,b] with a < b. If f is quasi-

convex on [a,b], then for generalized fractional integral operators (4) and (5) the following

inequality holds:

(

ǫ
γ ,δ,k,c

μ,α,l,ω′ ,a+
f
)

(b;p) +
(

ǫ
γ ,δ,k,c

μ,β ,l,ω′ ,b–
f
)

(a;p)

≤ max

{

f (a), f (b)
}(

Cα,ω′ ,a+ (b;p) +Cβ ,ω′ ,b– (a;p)
)

, (8)

where ω′ = ω
(b–a)μ

.

Proof Since f is quasi-convex function, by using (1) one can has the following inequality:

∫ 1

0

tα–1E
γ ,δ,k,c
μ,α,l

(

ωtμ;p
)

f
(

ta + (1 – t)b
)

dt

≤ max

{

f (a), f (b)
}

∫ 1

0

tα–1E
γ ,δ,k,c
μ,α,l

(

ωtμ;p
)

dt. (9)

Make the substitution x = ta + (1 – t)b, that is, t = b–x
b–a

in the inequality (9). Then it takes

the form

∫ b

a

(

b – x

b – a

)α–1

E
γ ,δ,k,c
μ,α,l

(

ω

(

b – x

b – a

)μ

;p

)

f (x)
dx

b – a

≤ max

{

f (a), f (b)
}

∫ b

a

(

b – x

b – a

)α–1

E
γ ,δ,k,c
μ,α,l

(

ω

(

b – x

b – a

)μ

;p

)

dx

b – a
. (10)

By using (4) of Definition 4, one can get

(

ǫ
γ ,δ,k,c

μ,α,l,ω′ ,a+
f
)

(b;p) ≤ Cα,ω′ ,a+ (b;p)max

{

f (a), f (b)
}

. (11)

Also by using quasi-convexity in the form f ((1 – t)a + tb) ≤ max{f (a), f (b)}, the following

inequality can be obtained:

∫ 1

0

tβ–1E
γ ,δ,k,c
μ,β ,l

(

ωtμ;p
)

f
(

(1 – t)a + tb
)

dt

≤ max

{

f (a), f (b)
}

∫ 1

0

tβ–1E
γ ,δ,k,c
μ,β ,l

(

ωtμ;p
)

dt. (12)

Now make the substitution y = (1 – t)a + tb, that is, t = y–a
b–a

in the inequality (12). Then it

takes the form

∫ b

a

(

y – a

b – a

)β–1

E
γ ,δ,k,c
μ,β ,l

(

ω

(

y – a

b – a

)μ

;p

)

f (y)
dy

b – a

≤ max

{

f (a), f (b)
}

∫ b

a

(

y – a

b – a

)β–1

E
γ ,δ,k,c
μ,β ,l

(

ω

(

y – a

b – a

)μ

;p

)

dy

b – a
. (13)

By using (5) of Definition 4, one can get

(

ǫ
γ ,δ,k,c

μ,β ,l,ω′ ,b–
f
)

(a;p) ≤ Cβ ,ω′ ,b– (a;p)max

{

f (a), f (b)
}

. (14)

Adding (11) and (14), we get (8), which is the required result. �
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Corollary 2.2 Setting α = β in (8), then we get the following inequality:

(

ǫ
γ ,δ,k,c

μ,α,l,ω′ ,a+
f
)

(b;p) +
(

ǫ
γ ,δ,k,c

μ,α,l,ω′ ,b–
f
)

(a;p)

≤ max

{

f (a), f (b)
}(

Cα,ω′ ,a+ (b;p) +Cα,ω′ ,b– (a;p)
)

. (15)

Corollary 2.3 ([22, Theorem2.1, p. 169]) Settingω = p = 0 in (15), thenwe get the following

inequality for the Riemann–Liouville fractional integrals:

Iαa+ f (b) + Iαb– f (a)≤
2(b – a)α

Γ (α + 1)
max

{

f (a), f (b)
}

. (16)

Remark 2.4 If we take α = 1 in (16), thenwe get the following inequality for a quasi-convex

function, which is related to the Hadamard inequality given by Dragomir and Pearce in [9,

Theorem 3.3, p. 381]:

1

b – a

∫ b

a

f (t)dt ≤ max

{

f (a), f (b)
}

. (17)

The following identity is very important to give the Hadamard-type inequalities.

Lemma 2.5 Let f : [a,b] → R be a function such that f ′ ∈ L1[a,b] with a < b. Then for the

generalized fractional integral operators (4) and (5) the following identity holds:

f (a) + f (b)

2
–

1

2(b – a)α–1E
γ ,δ,k,c
μ,α,l (ω;p)

×
[(

ǫ
γ ,δ,k,c

μ,α–1,l,ω′ ,a+
f
)

(b;p) +
(

ǫ
γ ,δ,k,c

μ,α–1,l,ω′ ,b–
f
)

(a;p)
]

=
b – a

2E
γ ,δ,k,c
μ,α,l (ω;p)

∫ 1

0

(

(1 – t)α–1E
γ ,δ,k,c
μ,α,l

(

ω(1 – t)μ;p
)

– tα–1E
γ ,δ,k,c
μ,α,l

(

ωtμ;p
))

× f ′
(

ta + (1 – t)b
)

dt, (18)

where ω′ = ω
(b–a)μ

.

Proof One can note that

b – a

2E
γ ,δ,k,c
μ,α,l (ω;p)

∫ 1

0

(

(1 – t)α–1E
γ ,δ,k,c
μ,α,l

(

ω(1 – t)μ;p
)

– tα–1E
γ ,δ,k,c
μ,α,l

(

ωtμ;p
))

× f ′
(

ta + (1 – t)b
)

dt

=
b – a

2E
γ ,δ,k,c
μ,α,l (ω;p)

∫ 1

0

(1 – t)α–1E
γ ,δ,k,c
μ,α,l

(

ω(1 – t)μ;p
)

f ′
(

ta + (1 – t)b
)

dt

–
b – a

2E
γ ,δ,k,c
μ,α,l (ω;p)

∫ 1

0

tα–1E
γ ,δ,k,c
μ,α,l

(

ωtμ;p
)

f ′
(

ta + (1 – t)b
)

dt. (19)
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Wefirst consider the first term of right hand side of (19): putting z = 1– t, that is, t = 1–z

and using the derivative property (3) of the Mittag-Leffler function, it takes the form

b – a

2E
γ ,δ,k,c
μ,α,l (ω;p)

∫ 1

0

zα–1E
γ ,δ,k,c
μ,α,l

(

ωzμ;p
)

f ′
(

(1 – z)a + zb
)

dz

=
b – a

2E
γ ,δ,k,c
μ,α,l (ω;p)

[

E
γ ,δ,k,c
μ,α,l (ω;p)f (b)

b – a

–
1

b – a

∫ 1

0

zα–2E
γ ,δ,k,c
μ,α–1,l

(

ωzμ;p
)

f
(

(1 – z)a + zb
)

dz

]

.

Making substitution x = (1 – z)a + zb in the above and then using (5) of Definition 4, we

get

b – a

2E
γ ,δ,k,c
μ,α,l (ω;p)

∫ 1

0

zα–1E
γ ,δ,k,c
μ,α,l

(

ωzμ;p
)

f ′
(

(1 – z)a + zb
)

dz

=
b – a

2E
γ ,δ,k,c
μ,α,l (ω;p)

[

E
γ ,δ,k,c
μ,α,l (ω;p)f (b)

b – a
–

1

(b – a)α

(

ǫ
γ ,δ,k,c

μ,α–1,l,ω′ ,b–
f
)

(a;p)

]

. (20)

Similarly consider the second term of right hand side of (19), we get

–
b – a

2E
γ ,δ,k,c
μ,α,l (ω;p)

∫ 1

0

tα–1E
γ ,δ,k,c
μ,α,l

(

ωtμ;p
)

f ′
(

ta + (1 – t)b
)

dt

= –
b – a

2E
γ ,δ,k,c
μ,α,l (ω;p)

[

–
E

γ ,δ,k,c
μ,α,l (ω;p)f (a)

b – a
+

1

(b – a)α

(

ǫ
γ ,δ,k,c

μ,α–1,l,ω′ ,a+ f
)

(b;p)

]

,

here we use substitution x = ta + (1 – t)b.

Now by using the final form of both terms in (19), identity (18) is established. �

In the following we give a Hadamard-type inequality by using the above lemma.

Theorem 2.6 Let f : [a,b] → R be a differentiable function such that f ′ ∈ L1[a,b] with

a < b. If |f ′| is quasi-convex on [a,b], then for the generalized fractional integral operators

(4) and (5) the following inequality holds:

∣

∣

∣

∣

f (a) + f (b)

2
–

1

2(b – a)α–1E
γ ,δ,k,c
μ,α,l (ω;p)

×
[(

ǫ
γ ,δ,k,c

μ,α–1,l,ω′ ,a+ f
)

(b;p) +
(

ǫ
γ ,δ,k,c

μ,α–1,l,ω′ ,b– f
)

(a;p)
]

∣

∣

∣

∣

≤
(b – a)S

αE
γ ,δ,k,c
μ,α,l (ω;p)

max

{
∣

∣f ′(a)
∣

∣,
∣

∣f ′(b)
∣

∣

}

(21)

for k < δ +ℜ(μ), where ω′ = ω
(b–a)μ

.
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Proof Using Lemma 2.5 and the properties of the modulus, we have

∣

∣

∣

∣

f (a) + f (b)

2
–

1

2(b – a)α–1E
γ ,δ,k,c
μ,α,l (ω;p)

×
[(

ǫ
γ ,δ,k,c

μ,α–1,l,ω′ ,a+
f
)

(b;p) +
(

ǫ
γ ,δ,k,c

μ,α–1,l,ω′ ,b–
f
)

(a;p)
]

∣

∣

∣

∣

≤
b – a

2E
γ ,δ,k,c
μ,α,l (ω;p)

∫ 1

0

∣

∣(1 – t)α–1E
γ ,δ,k,c
μ,α,l

(

ω(1 – t)μ;p
)

– tα–1E
γ ,δ,k,c
μ,α,l

(

ωtμ;p
)
∣

∣

×
∣

∣f ′(ta + (1 – t)b
∣

∣dt

≤
b – a

2E
γ ,δ,k,c
μ,α,l (ω;p)

(∫ 1

0

∣

∣(1 – t)α–1E
γ ,δ,k,c
μ,α,l

(

ω(1 – t)μ;p
)
∣

∣

+

∫ 1

0

∣

∣tα–1E
γ ,δ,k,c
μ,α,l

(

ωtμ;p
)
∣

∣

)

∣

∣f ′(ta + (1 – t)b
∣

∣dt. (22)

Since |f ′| is quasi-convex, also using absolute convergence of the Mittag-Leffler function,

we have

∣

∣

∣

∣

f (a) + f (b)

2
–

1

2(b – a)α–1E
γ ,δ,k,c
μ,α,l (ω;p)

×
[(

ǫ
γ ,δ,k,c

μ,α–1,l,ω′ ,a+
f
)

(b;p) +
(

ǫ
γ ,δ,k,c

μ,α–1,l,ω′ ,b–
f
)

(a;p)
]

∣

∣

∣

∣

≤
(b – a)S

2E
γ ,δ,k,c
μ,α,l (ω;p)

(∫ 1

0

∣

∣(1 – t)α–1
∣

∣dt +

∫ 1

0

∣

∣tα–1
∣

∣dt

)

max

{∣

∣f ′(a)
∣

∣,
∣

∣f ′(b)
∣

∣

}

. (23)

After simple calculation we get (21), which is the required result. �

Corollary 2.7 Setting ω = p = 0 in (21), then we get the following inequality for Riemann–

Liouville fractional integrals:

∣

∣

∣

∣

f (a) + f (b)

2
–

Γ (α)

2(b – a)α–1

[

Iα–1a+ f (b) + Iα–1b– f (a)
]

∣

∣

∣

∣

≤
b – a

α
max

{
∣

∣f ′(a)
∣

∣,
∣

∣f ′(b)
∣

∣

}

. (24)

Corollary 2.8 If we take α = 2 in (24), then we get the following inequality for a quasi-

convex function:

∣

∣

∣

∣

f (a) + f (b)

2
–

1

b – a

∫ b

a

f (t)dt

∣

∣

∣

∣

≤
b – a

2
max

{
∣

∣f ′(a)
∣

∣,
∣

∣f ′(b)
∣

∣

}

.

In the following we give the Hadamard-type inequality by using Lemma 2.5, Hölder’s

inequality and quasi-convexity of |f ′|q.

Theorem 2.9 Let f : [a,b] → R be a differentiable function such that f ′ ∈ L1[a,b] with

a < b. If |f ′|q, q > 1 is quasi-convex on [a,b], then for the generalized fractional integral
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operators (4) and (5) the following inequality holds:

∣

∣

∣

∣

f (a) + f (b)

2
–

1

2(b – a)α–1E
γ ,δ,k,c
μ,α,l (ω;p)

×
[(

ǫ
γ ,δ,k,c

μ,α–1,l,ω′ ,a+
f
)

(b;p) +
(

ǫ
γ ,δ,k,c

μ,α–1,l,ω′ ,b–
f
)

(a;p)
]

∣

∣

∣

∣

≤
(b – a)S

E
γ ,δ,k,c
μ,α,l (ω;p)

1

((α – 1)p + 1)
1
p

(

max

{
∣

∣f ′(a)
∣

∣

q
,
∣

∣f ′(b)
∣

∣

q}) 1
q (25)

for k < δ +ℜ(μ) and 1
p
+ 1

q
= 1, where ω′ = ω

(b–a)μ
.

Proof From Lemma 2.5, properties of the modulus and Hölder’s inequality, we have

∣

∣

∣

∣

f (a) + f (b)

2
–

1

2(b – a)α–1E
γ ,δ,k,c
μ,α,l (ω;p)

×
[(

ǫ
γ ,δ,k,c

μ,α–1,l,ω′ ,a+ f
)

(b;p) +
(

ǫ
γ ,δ,k,c

μ,α–1,l,ω′ ,b– f
)

(a;p)
]

∣

∣

∣

∣

≤
b – a

2E
γ ,δ,k,c
μ,α,l (ω;p)

∫ 1

0

∣

∣(1 – t)α–1E
γ ,δ,k,c
μ,α,l

(

ω(1 – t)μ;p
)

– tα–1E
γ ,δ,k,c
μ,α,l

(

ωtμ;p
)
∣

∣

×
∣

∣f ′(ta + (1 – t)b
∣

∣dt

≤
b – a

2E
γ ,δ,k,c
μ,α,l (ω;p)

(∫ 1

0

∣

∣(1 – t)α–1E
γ ,δ,k,c
μ,α,l

(

ω(1 – t)μ;p
)
∣

∣

+

∫ 1

0

∣

∣tα–1E
γ ,δ,k,c
μ,α,l

(

ωtμ;p
)
∣

∣

)

∣

∣f ′(ta + (1 – t)b
∣

∣dt

≤
b – a

2E
γ ,δ,k,c
μ,α,l (ω;p)

((∫ 1

0

∣

∣(1 – t)α–1E
γ ,δ,k,c
μ,α,l

(

ω(1 – t)μ;p
)
∣

∣

p
dt

)
1
p

+

(∫ 1

0

∣

∣tα–1E
γ ,δ,k,c
μ,α,l

(

ωtμ;p
)
∣

∣

p
dt

)
1
p
)

(

∫ 1

0

∣

∣f ′
(

ta + (1 – t)b
∣

∣

q
dt

)
1
q . (26)

Since |f ′|q is quasi-convex, also using absolute convergence of theMittag-Leffler function,

we have

∣

∣

∣

∣

f (a) + f (b)

2
–

1

2(b – a)α–1E
γ ,δ,k,c
μ,α,l (ω;p)

×
[(

ǫ
γ ,δ,k,c

μ,α–1,l,ω′ ,a+ f
)

(b;p) +
(

ǫ
γ ,δ,k,c

μ,α–1,l,ω′ ,b– f
)

(a;p)
]

∣

∣

∣

∣

≤
(b – a)S

2E
γ ,δ,k,c
μ,α,l (ω;p)

((∫ 1

0

∣

∣(1 – t)α–1
∣

∣

p
dt

)
1
p

+

(∫ 1

0

∣

∣tα–1
∣

∣

p
dt

)
1
p
)

×
(

max{
∣

∣f ′(a)
∣

∣

q
,
∣

∣f ′(b)
∣

∣

q) 1
q . (27)

After simple calculation we get (25), which is the required result. �
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Corollary 2.10 Setting ω = p = 0 in (25), then we get the following inequality for the

Riemann–Liouville fractional integrals:

∣

∣

∣

∣

f (a) + f (b)

2
–

Γ (α)

2(b – a)α–1

[

Iα–1a+ f (b) + Iα–1b– f (a)
]

∣

∣

∣

∣

≤
b – a

((α – 1)p + 1)
1
p

(

max

{
∣

∣f ′(a)
∣

∣

q
,
∣

∣f ′(b)
∣

∣

q}) 1
q . (28)

Corollary 2.11 If we take α = 2 in (28), then we get the following inequality for the quasi-

convex function:

∣

∣

∣

∣

f (a) + f (b)

2
–

1

b – a

∫ b

a

f (t)dt

∣

∣

∣

∣

≤
b – a

(p + 1)
1
p

(

max

{
∣

∣f ′(a)
∣

∣

q
,
∣

∣f ′(b)
∣

∣

q}) 1
q .

Theorem 2.12 Let f : [a,b] → R be a differentiable function such that f ′ ∈ L1[a,b] with

a < b. If |f ′|q, q ≥ 1 is quasi-convex on [a,b], then for the generalized fractional integral

operators (4) and (5) the following inequality holds:

∣

∣

∣

∣

f (a) + f (b)

2
–

1

2(b – a)α–1E
γ ,δ,k,c
μ,α,l (ω;p)

×
[(

ǫ
γ ,δ,k,c

μ,α–1,l,ω′ ,a+
f
)

(b;p) +
(

ǫ
γ ,δ,k,c

μ,α–1,l,ω′ ,b–
f
)

(a;p)
]

∣

∣

∣

∣

≤
(b – a)S

αE
γ ,δ,k,c
μ,α,l (ω;p)

(

max

{
∣

∣f ′(a)
∣

∣

q
,
∣

∣f ′(b)
∣

∣

q}) 1
q (29)

for k < δ +ℜ(μ), where ω′ = ω
(b–a)μ

.

Proof From Lemma 2.5, properties of the modulus and the power mean inequality, we

have

∣

∣

∣

∣

f (a) + f (b)

2
–

1

2(b – a)α–1E
γ ,δ,k,c
μ,α,l (ω;p)

×
[(

ǫ
γ ,δ,k,c

μ,α–1,l,ω′ ,a+ f
)

(b;p) +
(

ǫ
γ ,δ,k,c

μ,α–1,l,ω′ ,b– f
)

(a;p)
]

∣

∣

∣

∣

≤
b – a

2E
γ ,δ,k,c
μ,α,l (ω;p)

∫ 1

0

∣

∣(1 – t)α–1E
γ ,δ,k,c
μ,α,l

(

ω(1 – t)μ;p
)

– tα–1E
γ ,δ,k,c
μ,α,l

(

ωtμ;p
)
∣

∣

×
∣

∣f ′(ta + (1 – t)b
∣

∣dt

≤
b – a

2E
γ ,δ,k,c
μ,α,l (ω;p)

(∫ 1

0

∣

∣(1 – t)α–1E
γ ,δ,k,c
μ,α,l

(

ω(1 – t)μ;p
)

– tα–1E
γ ,δ,k,c
μ,α,l

(

ωtμ;p
)
∣

∣dt

)1– 1
q

× (

∫ 1

0

∣

∣(1 – t)α–1E
γ ,δ,k,c
μ,α,l

(

ω(1 – t)μ;p
)

– tα–1E
γ ,δ,k,c
μ,α,l

(

ωtμ;p
)
∣

∣

∣

∣f ′
(

ta + (1 – t)b
∣

∣

q
dt

)
1
q . (30)
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Since |f ′|q is quasi-convex, also using absolute convergence of theMittag-Leffler function,

we have

∣

∣

∣

∣

f (a) + f (b)

2
–

1

2(b – a)α–1E
γ ,δ,k,c
μ,α,l (ω;p)

×
[(

ǫ
γ ,δ,k,c

μ,α–1,l,ω′ ,a+
f
)

(b;p) +
(

ǫ
γ ,δ,k,c

μ,α–1,l,ω′ ,b–
f
)

(a;p)
]

∣

∣

∣

∣

≤
(b – a)S

2E
γ ,δ,k,c
μ,α,l (ω;p)

(∫ 1

0

∣

∣(1 – t)α–1
∣

∣dt +

∫ 1

0

∣

∣tα–1
∣

∣dt

)

(

max

{∣

∣f ′(a)
∣

∣

q
,
∣

∣f ′(b)
∣

∣

q}) 1
q . (31)

After simple calculation we get (29), which is the required result. �

Corollary 2.13 Settingω = p = 0 in (29), then we get the following inequality for Riemann–

Liouville fractional integrals:

∣

∣

∣

∣

f (a) + f (b)

2
–

Γ (α)

2(b – a)α–1

[

Iα–1a+ f (b) + Iα–1b– f (a)
]

∣

∣

∣

∣

≤
b – a

α

(

max

{
∣

∣f ′(a)
∣

∣

q
,
∣

∣f ′(b)
∣

∣

q}) 1
q . (32)

Corollary 2.14 If we take α = 2 in (32), then we get the following inequality for a quasi-

convex function:

∣

∣

∣

∣

f (a) + f (b)

2
–

1

b – a

∫ b

a

f (t)dt

∣

∣

∣

∣

≤
b – a

2

(

max

{
∣

∣f ′(a)
∣

∣

q
,
∣

∣f ′(b)
∣

∣

q}) 1
q .

3 Applications

Let us consider the function f (x) = x2. The function f is convex on [a,b] and |f ′(x)| = 2|x|,

which is again a convex function on [a,b]. Since f and |f ′| are convex and finite on [a,b],

they are quasi-convex. Results of the previous section are applied for this function and

inequalities among the generalized extended Mittag-Leffler function are established.

Theorem 3.1 The Mittag-Leffler function defined in (2) satisfies the following recurrence

inequality:

2E
γ ,δ,k,c
μ,α+3,l

(

ω′(b – a)μ;p
)

– E
γ ,δ,k,c
μ,α+2,l

(

ω′(b – a)μ;p
)

≤ E
γ ,δ,k,c
μ,α+1,l

(

ω′(b – a)μ;p
)

[

max{a2,b2} – (a2 + b2)

2(b – a)2

]

, (33)

where ω′ = ω
(b–a)μ

.

Proof For the function f (t) = t2 the generalized fractional integral operator is evaluated as

follows:

(

ǫ
γ ,δ,k,c
μ,α,l,ω,a+ f

)

(x;p)

=

∫ x

a

(x – t)α–1E
γ ,δ,k,c
μ,α,l

(

w(x – t)μ;p
)

t2 dt
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=

∫ x

a

(x – t)α–1
∞

∑

n=0

βp(γ + nk, c – γ )

β(γ , c – γ )

(c)nk

Γ (μn + α)

ωn(x – t)μn

(l)nδ

t2 dt

=

∞
∑

n=0

βp(γ + nk, c – γ )

β(γ , c – γ )

(c)nk

Γ (μn + α)

ωn

(l)nδ

∫ x

a

(x – t)μn+α–1t2 dt

= (x – a)α
[

a2E
γ ,δ,k,c
μ,α+1,l

(

ω(x – a)μ;p
)

+ 2a(x – a)E
γ ,δ,k,c
μ,α+2,l

(

ω(x – a)μ;p
)

+ 2(x – a)2E
γ ,δ,k,c
μ,α+3,l

(

ω(x – a)μ;p
)]

. (34)

Similarly

(

ǫ
γ ,δ,k,c
μ,α,l,ω,b– f

)

(x;p) = (b – x)α
[

b2E
γ ,δ,k,c
μ,α+1,l

(

ω(b – x)μ;p
)

– 2b(b – x)

× E
γ ,δ,k,c
μ,α+2,l

(

ω(b – x)μ;p
)

+ 2(b – x)2E
γ ,δ,k,c
μ,α+3,l

(

ω(b – x)μ;p
)]

. (35)

Using (8) of Theorem 2.1 for the function t2, it takes the form

(b – a)α
[

a2E
γ ,δ,k,c
μ,α+1,l

(

ω′(b – a)μ;p
)

+ 2a(b – a)E
γ ,δ,k,c
μ,α+2,l

(

ω′(b – a)μ;p
)

+ 2(b – a)2E
γ ,δ,k,c
μ,α+3,l

(

ω′(b – a)μ;p
)]

+ (b – a)β
[

b2E
γ ,δ,k,c
μ,β+1,l

(

ω′(b – a)μ;p
)

– 2b(b – a)E
γ ,δ,k,c
μ,β+2,l

(

ω′(b – a)μ;p
)

+ 2(b – a)2E
γ ,δ,k,c
μ,β+3,l

(

ω′(b – a)μ;p
)]

≤ 2max

{

a2,b2
}(

(b – a)αE
γ ,δ,k,c
μ,α+1,l

(

ω′(b – a)μ;p
)

+ (b – a)βE
γ ,δ,k,c
μ,β+1,l

(

ω′(b – a)μ;p
))

. (36)

Now taking α = β in (36), then after simplification we get (33). �

Theorem 3.2 The Mittag-Leffler function defined in (2) satisfies the following recurrence

inequality:

∣

∣

∣

∣

a2 + b2

2
–

1

2E
γ ,δ,k,c
μ,α,l (ω;p)

[(

a2 + b2
)

E
γ ,δ,k,c
μ,α,l

(

ω′(b – a)μ;p
)

+ 2(b – a)2
(

2E
γ ,δ,k,c
μ,α+2,l

(

ω′(b – a)μ;p
)

– E
γ ,δ,k,c
μ,α+1,l

(

ω′(b – a)μ;p
))]

∣

∣

∣

∣

≤
2(b – a)S

αE
γ ,δ,k,c
μ,α,l (ω;p)

max

{

|a|, |b|
}

, (37)

where ω′ = ω
(b–a)μ

.

Proof By using (34), (35) and f (t) = t2, |f ′(t)| = 2|t| in (21) of Theorem 2.6, we have

∣

∣

∣

∣

a2 + b2

2
–

1

2(b – a)α–1E
γ ,δ,k,c
μ,α,l (ω;p)

×
[

(b – a)α
(

(b – a)–1
(

a2 + b2
)

E
γ ,δ,k,c
μ,α,l

(

ω′(b – a)μ;p
)
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– 2(b – a)E
γ ,δ,k,c
μ,α+1,l

(

ω′(b – a)μ;p
)

+ 4(b – a)E
γ ,δ,k,c
μ,α+2,l

(

ω′(b – a)μ;p
))]

∣

∣

∣

∣

≤
(b – a)S

αE
γ ,δ,k,c
μ,α,l (ω;p)

max

{

2|a|, 2|b|
}

. (38)

After simplification we get (37). �

Theorem 3.3 The Mittag-Leffler function defined in (2) satisfies the following recurrence

inequality:

∣

∣

∣

∣

a2 + b2

2
–

1

2E
γ ,δ,k,c
μ,α,l (ω;p)

[(

a2 + b2
)

E
γ ,δ,k,c
μ,α,l

(

ω′(b – a)μ;p
)

+ 2(b – a)2
(

2E
γ ,δ,k,c
μ,α+2,l

(

ω′(b – a)μ;p
)

– E
γ ,δ,k,c
μ,α+1,l

(

ω′(b – a)μ;p
))]

∣

∣

∣

∣

≤
2(b – a)S

E
γ ,δ,k,c
μ,α,l (ω;p)

1

((α – 1)p + 1)
1
p

(

max

{

|a|q, |b|q
})

1
q , (39)

where ω′ = ω
(b–a)μ

.

Proof By using (34), (35) and f (t) = t2, |f ′(t)| = 2|t| in (25) of Theorem 2.9, we have

∣

∣

∣

∣

a2 + b2

2
–

1

2(b – a)α–1E
γ ,δ,k,c
μ,α,l (ω;p)

×
[

(b – a)α
(

(b – a)–1
(

a2 + b2
)

E
γ ,δ,k,c
μ,α,l

(

ω′(b – a)μ;p
)

– 2(b – a)E
γ ,δ,k,c
μ,α+1,l

(

ω′(b – a)μ;p
)

+ 4(b – a)E
γ ,δ,k,c
μ,α+2,l

(

ω′(b – a)μ;p
))]

∣

∣

∣

∣

≤
(b – a)S

E
γ ,δ,k,c
μ,α,l (ω;p)

1

((α – 1)p + 1)
1
p

(

max

{(

2|a|
)q
,
(

2|b|
)q}) 1

q . (40)

After simplification we get (39). �

Theorem 3.4 The Mittag-Leffler function defined in (2) satisfies the following recurrence

inequality:

∣

∣

∣

∣

a2 + b2

2
–

1

2E
γ ,δ,k,c
μ,α,l (ω;p)

[(

a2 + b2
)

E
γ ,δ,k,c
μ,α,l

(

ω′(b – a)μ;p
)

+ 2(b – a)2
(

2E
γ ,δ,k,c
μ,α+2,l

(

ω′(b – a)μ;p
)

– E
γ ,δ,k,c
μ,α+1,l

(

ω′(b – a)μ;p
))]

∣

∣

∣

∣

≤
2(b – a)S

αE
γ ,δ,k,c
μ,α,l (ω;p)

(

max

{

|a|q, |b|q
})

1
q , (41)

where ω′ = ω
(b–a)μ

.

Proof By using (34), (35) and f (t) = t2, |f ′(t)| = 2|t| in (29) of Theorem 2.12, we have

∣

∣

∣

∣

a2 + b2

2
–

1

2(b – a)α–1E
γ ,δ,k,c
μ,α,l (ω;p)

×
[

(b – a)α
(

(b – a)–1
(

a2 + b2
)

E
γ ,δ,k,c
μ,α,l

(

ω′(b – a)μ;p
)



Ullah et al. Advances in Difference Equations         ( 2019)  2019:15 Page 14 of 16

– 2(b – a)E
γ ,δ,k,c
μ,α+1,l

(

ω′(b – a)μ;p
)

+ 4(b – a)E
γ ,δ,k,c
μ,α+2,l

(

ω′(b – a)μ;p
))]

∣

∣

∣

∣

≤
2(b – a)S

αE
γ ,δ,k,c
μ,α,l (ω;p)

(

max

{

|a|q, |b|q
})

1
q . (42)

After simplification we get (41). �

Next we give the following proposition for further results.

Proposition 3.5 For the generalized fractional integral operators (4) and (5) the following

identity holds:

(

ǫ
γ ,δ,k,c
μ,α,l,ω,a+ f

)

(x;p) +
(

ǫ
γ ,δ,k,c
μ,β ,l,ω,b– f

)

(x;p)

= Γ (ρ + 1)
[

(x – a)α+ρE
γ ,δ,k,c
μ,α+ρ+1,l

(

ω(x – a)μ;p
)

+ (b – x)β+ρE
γ ,δ,k,c
μ,β+ρ+1,l

(

ω(b – x)μ;p
)]

. (43)

Proof Consider the power function f (x) = (x – a)ρ , ρ ≥ 1. It is clear that f is convex on

finite interval [a,b], therefore it is quasi-convex. So, for the function f (t) = (t – a)ρ , ρ ≥ 1

the generalized fractional integral operator (4) is evaluated as follows:

(

ǫ
γ ,δ,k,c
μ,α,l,ω,a+ f

)

(x;p)

=

∫ x

a

(x – t)α–1E
γ ,δ,k,c
μ,α,l

(

ω(x – t)μ;p
)

(t – a)ρ dt

=

∫ x

a

(x – t)α–1
∞

∑

n=0

βp(γ + nk, c – γ )

β(γ , c – γ )

(c)nk

Γ (μn + α)

ωn(x – t)μn

(l)nδ

(t – a)ρ dt

=

∞
∑

n=0

βp(γ + nk, c – γ )

β(γ , c – γ )

(c)nk

Γ (μn + α)

ωn

(l)nδ

∫ x

a

(x – t)μn+α–1(t – a)ρ dt, (44)

now making the substitution t = x – u(x – a), to establish

∫ x

a

(x – t)μn+α–1(t – a)ρ dt = (x – a)μn+α+ρβ(μn + α,ρ + 1),

therefore, (44) takes the following form:

(

ǫ
γ ,δ,k,c
μ,α,l,ω,a+ f

)

(x;p)

= (x – a)α+ρ

∞
∑

n=0

βp(γ + nk, c – γ )

β(γ , c – γ )

(c)nk

Γ (μn + α)

ωn(x – a)μn

(l)nδ

Γ (μn + α)Γ (ρ + 1)

Γ (μn + α + ρ + 1)

= Γ (ρ + 1)(x – a)α+ρE
γ ,δ,k,c
μ,α+ρ+1,l

(

ω(x – a)μ;p
)

. (45)

Now consider the function f (x) = (b – x)ρ , ρ ≥ 1 which is also convex on finite interval

[a,b], therefore it is quasi-convex. So, for the function f (t) = (b– t)ρ , ρ ≥ 1 the generalized

fractional integral operator (5) is evaluated as follows:

(

ǫ
γ ,δ,k,c
μ,β ,l,ω,b– f

)

(x;p)

=

∫ b

x

(t – x)β–1E
γ ,δ,k,c
μ,β ,l

(

ω(t – x)μ;p
)

(b – t)ρ dt
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=

∫ b

x

(t – x)β–1
∞

∑

n=0

βp(γ + nk, c – γ )

β(γ , c – γ )

(c)nk

Γ (μn + β)

ωn(t – x)μn

(l)nδ

(b – t)ρ dt

=

∞
∑

n=0

βp(γ + nk, c – γ )

β(γ , c – γ )

(c)nk

Γ (μn + β)

ωn

(l)nδ

∫ b

x

(t – x)μn+β–1(b – t)ρ dt, (46)

now making the substitution t = b – u(b – x), to establish

∫ b

x

(t – x)μn+β–1(b – t)ρ dt = (b – x)μn+β+ρβ(μn + β ,ρ + 1),

therefore, (46) takes the following form:

(

ǫ
γ ,δ,k,c
μ,β ,l,ω,b– f

)

(x;p)

= (b – x)β+ρ

∞
∑

n=0

βp(γ + nk, c – γ )

β(γ , c – γ )

(c)nk

Γ (μn + β)

ωn(b – x)μn

(l)nδ

Γ (μn + β)Γ (ρ + 1)

Γ (μn + β + ρ + 1)

= Γ (ρ + 1)(b – x)β+ρE
γ ,δ,k,c
μ,β+ρ+1,l

(

ω(b – x)μ;p
)

. (47)

Adding (45) and (47), then we get required identity (43). �

Theorem 3.6 The Mittag-Leffler function defined in (2) satisfies the following recurrence

inequality:

E
γ ,δ,k,c
μ,α+ρ+1,l

(

ω′(b – a)μ;p
)

+ E
γ ,δ,k,c
μ,β+ρ+1,l

(

ω′(b – a)μ;p
)

≤
1

Γ (ρ + 1)

(

E
γ ,δ,k,c
μ,α+1,l

(

ω′(b – a)μ;p
)

+ E
γ ,δ,k,c
μ,β+1,l

(

ω′(b – a)μ;p
))

, (48)

where ω′ = ω
(b–a)μ

.

Proof By using (6), (45) and f (x) = (x – a)ρ , ρ ≥ 1 in (11), we have

E
γ ,δ,k,c
μ,α+ρ+1,l

(

ω′(b – a)μ;p
)

≤
1

Γ (ρ + 1)
E

γ ,δ,k,c
μ,α+1,l

(

ω′(b – a)μ;p
)

. (49)

Now by using (7), (47) and f (x) = (b – x)ρ , ρ ≥ 1 in (14), we have

E
γ ,δ,k,c
μ,β+ρ+1,l

(

ω′(b – a)μ;p
)

≤
1

Γ (ρ + 1)
E

γ ,δ,k,c
μ,β+1,l

(

ω′(b – a)μ;p
)

. (50)

Adding (49) and (50), then we get the required inequality (48). �
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6. Andrić, M., Farid, G., Pečarić, J.: A further extension of Mittag-Leffler function. Fract. Calc. Appl. Anal. 21(5), 1377–1395

(2018)
7. Baltaeva, U., Agarwal, P.: Boundary value problems for the third order loaded equation with non characteristic type

change boundaries. Math. Methods Appl. Sci. 41(9), 3307–3315 (2018)
8. Choi, J., Agarwal, P.: Certain fractional integral inequalities involving hypergeometric operators. East Asian Math. J.

30(3), 283–291 (2014)
9. Dragomir, S.S., Pearce, C.E.M.: Quasi-convex functions and Hadamard’s inequality. Bull. Aust. Math. Soc. 57, 377–385

(1998)
10. Farid, G., Khan, K.A., Latif, N., Rehman, A.U., Mehmood, S.: General fractional integral inequalities for convex and

m-convex functions via an extended generalized Mittag-Leffler function. J. Inequal. Appl. 2018(2018), 243 (2018)
11. Farid, G., Rehman, A.U., Zahra, M.: On Hadamard inequalities for k-fractional integrals. Nonlinear Funct. Anal. Appl.

21(3), 463–478 (2016)
12. Farid, G., Rehman, A.U., Zahra, M.: On Hadamard inequalities for relative convex function via fractional integrals.

Nonlinear Anal. Forum 21(1), 77–86 (2016)
13. Farid, G., Rehman, A.Ur., Mehmood, S.: Hadamard and Fejér–Hadamard type integral inequalities for harmonically

convex functions via an extended generalized Mittag-Leffler function. J. Math. Comput. Sci. 8(5), 630–643 (2018)
14. Hussain, R., Ali, A., Latif, A., Gulshan, G.: Some k-fractional associates of Hermite–Hadamard’s inequality for

quasi-convex functions and applications to special means. Fract. Differ. Calc. 7(2), 301–309 (2017)
15. Ion, D.A.: Some estimates on the Hermite–Hadamard inequality through quasi-convex functions. An. Univ. Craiova,

Ser. Mat. Inform. 34, 82–87 (2007)
16. Jain, S., Agarwal, P., Kilicman, A.: Pathway fractional integral operator associated with 3m-parametric Mittag-Leffler

functions. Int. J. Appl. Comput. Math. 4, 115 (2018)
17. Kang, S.M., Farid, G., Nazeer, W., Tariq, B.: Hadamard and Fejér–Hadamard inequalities for extended generalized

fractional integrals involving special functions. J. Inequal. Appl. 2018(2018), 119 (2018)
18. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland

Mathematics Studies, vol. 204. Elsevier, New York (2006)
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