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GENERALIZED FRACTIONAL INTEGRAL OPERATORS

AND FRACTIONAL MAXIMAL OPERATORS

IN THE FRAMEWORK OF MORREY SPACES

YOSHIHIRO SAWANO, SATOKO SUGANO, AND HITOSHI TANAKA

Abstract. The action of the generalized fractional integral operators and the
generalized fractional maximal operators is investigated in the framework of
Morrey spaces. A typical property of the functions which belongs to Morrey
spaces under pointwise multiplication by the generalized fractional integral
operators and the generalized fractional maximal operators is established. The
boundedness property of the fractional integral operators on the predual of
Morrey spaces is shown as well. A counterexample concerning the Fefferman-
Phong inequality is given by the use of the characteristic function of the Cantor
set.

1. Introduction

The purpose of the present paper is to study certain estimates related to the
generalized fractional integral operator, defined by

Tρf(x) =

∫
Rn

f(y)
ρ(|x− y|)
|x− y|n dy,

where ρ : [0,∞) → [0,∞) is a suitable function, and to the generalized fractional
maximal operator, defined by

Mρf(x) = sup
x∈Q∈Q

ρ(�(Q))

|Q|

∫
Q

|f(y)| dy,

in the framework of Morrey spaces. Here, we use the notation Q to denote the
family of all cubes in Rn with sides parallel to the coordinate axes, �(Q) to denote
the sidelength of Q and |Q| to denote the volume of Q. If ρ(t) ≡ tnα, 0 < α <
1, the operators Tρ and Mρ are the usual fractional integral operator (the Riesz
potential) and the usual fractional maximal operator, which we write as Iα and
Mα, respectively. The fractional integral operator is one of the important tools in
harmonic analysis with a background in partial differential equations. In fact, for a
nice function f on Rn, the solution of Laplace equation Δu = f can be represented
by using a fractional integral operator (cf. [19]).
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The integral kernel of Iα, |y|nα/|y|n, has singularity at zero and infinity. One
could expect more singularity to the integral kernel Tρ, ρ(|y|)/|y|n, for example, up
to logarithmic factors. However, it is impossible to add any more singularity in the
framework of the (ordinal) Lebesgue spaces. By use of the other function spaces
that cover the Lebesgue spaces, the theory of the generalized fractional integral
operator Tρ has been developed by many authors who have focused their interest
mainly on giving the sufficient conditions in order to obtain the boundedness of Tρ

on those spaces (see [6, 7, 8, 12, 13, 14]).
Morrey spaces, which were introduced by C. Morrey in order to study regularity

questions which appear in the Calculus of Variations, describe local regularity more
precisely than Lebesgue spaces and widely use not only harmonic analysis but also
partial differential equations (cf. [10]). To define Morrey spaces we recall some
definitions and notation.

All cubes are assumed to have their sides parallel to the coordinate axes. We
denote by Q the family of all cubes in Rn. For Q ∈ Q we use the notation �(Q)
to denote the sidelength of Q and cQ to denote a cube with the same center as Q,
but with sidelength c�(Q). |E| denotes the Lebesgue measure of E ⊂ Rn.

Let 0 < p < ∞ and φ : [0,∞) → [0,∞) be a suitable function. For a function f
locally in Lp(Rn) we set

(1.1) ‖f‖p,φ = sup
Q∈Q

φ(�(Q))

(
1

|Q|

∫
Q

|f(x)|p dx
)1/p

.

We will call the Morrey spaceMp,φ(Rn) = Mp,φ the subset of all functions f locally
in Lp(Rn) for which ‖f‖Mp,φ = ‖f‖p,φ is finite. Applying Hölder’s inequality to
(1.1), we see that ‖f‖p1,φ ≥ ‖f‖p2,φ, provided that p1 ≥ p2 > 0. This tells us that
Mp1,φ ⊂ Mp2,φ when p1 ≥ p2 > 0.

We now claim that without loss of generality we may assume

(1.2) φ(t) is nondecreasing and φ(t)pt−n is nonincreasing.

Indeed, if we let

φ1(t) = sup
t′∈[0,t]

φ(t′),

then

‖f‖p,φ ≤ ‖f‖p,φ1
≤ 2n/p‖f‖p,φ.

This holds by using the simple geometric fact that for any cubes Q ∈ Q and any
positive numbers t′ ≤ �(Q),

1

|Q|

∫
Q

|f(x)|p dx ≤ 2n sup
Q′∈Q:Q′⊂Q,�(Q′)=t′

1

|Q′|

∫
Q′

|f(x)|p dx.

Next, if we let

φ2(t) = tn/p sup
t′≥t

φ(t′)t′−n/p,

then ‖f‖p,φ = ‖f‖p,φ2
. Hereafter, we always assume that φ satisfies (1.2).

If φ(t) ≡ tn/p0 , p0 ≥ p, Mp,φ is the usual Morrey space, and we write this for
Mp,p0 and the norm for ‖ · ‖Mp,p0 . Then we have the inclusion

(1.3) Lp0 = Mp0,p0 ⊂ Mp1,p0 ⊂ Mp2,p0

when p0 ≥ p1 ≥ p2 > 0.
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A classical result for the fractional integral operator Iα, which is known as the
Hardy-Littlewood-Sobolev inequality, is that it is bounded from Lp to Lq provided
that 1/q = 1/p−α (cf. [19]). More generally, Iα is bounded from the Morrey space
Mp,p0 to Mq,q0 provided that 1 < p ≤ p0 < ∞, 1 < q ≤ q0 < ∞, 1/q0 = 1/p0 − α
and q/q0 = p/p0. This result was first due to Adams [1, Theorem 1.3] and was
reproved by Chiarenza and Frasca [3, Theorem 2]. If q/q0 = p/p0 is replaced by
1/q = 1/p − α, then, since f in Mp,p0 implies f locally in Lp, using the Hardy-
Littlewood-Sobolev inequality locally and taking care of the larger scales by cruder
estimates, one has a naive bound for Iα (cf. [15, Theorem 1]).

For a nice function f in Rn, n > 2, and a weight w ∈ Mp,n/2, 1 < p ≤ n/2, it
holds that ∫

Rn

|f(x)|2w(x) dx ≤ C‖w‖Mp,n/2

∫
Rn

|∇f |(x)2 dx.

This is the so-called Fefferman-Phong inequality obtained in [9] and has been widely
used in partial differential equations. In [15], Olsen obtained an interesting inequal-
ity concerning fractional integral operators on the Morrey spaces, which can be
understood as a sort of Fefferman-Phong inequality since one has (cf. [19, p. 125])

|f(x)| ≤ C

n∑
j=1

∫
Rn

∣∣∣∣ ∂f∂xj
(x− y)

∣∣∣∣ |y|−n+1 dy.

The original proof due to Olsen is somehow complicated and implicitly involves the
Calderón-Zygmund decomposition. In [20], the second and third authors gave an
alternative proof based on a variant of the good-λ inequality of Fefferman and Stein
introduced in [5]. In [21], the third author gave another simple proof and extended
the result to vector-valued functions. His proof is based on the idea of C. Pérez
introduceed in [17] (cf. Lemma 2.1). In the present paper, we introduce Olsen’s
inequality for the generalized fractional integral operator Tρ (Theorem 1.1) and
for the generalized fractional maximal operator Mρ (Theorem 1.7). As a corollary
(Corollary 1.2), we have a boundedness property of Tρ on the Morrey spaces, which
is closely related to the theorem due to Eridani, Gunawan and Nakai [8, Theorem
3.1].

It is evident that Mαf(x) ≤ CIαf(x) for all nonnegative functions f due to the
estimate

rnα

rn

∫
|y−x|<r

f(y) dy ≤ Iαf(x), x ∈ Rn, r > 0.

However, as the examples f(y) = |y|−nα and x = 0 show, the reverse inequality is
false. In view of this, it is a significant relation between Iα and Mα that

(1.4)

∫
Rn

|Iαf(x)|p dx ≤ C

∫
Rn

Mαf(x)
p dx, p > 1.

This relation can be proved by use of the good-λ inequality of Fefferman and Stein.
In [2], motivated by the development of the theory of capacities for potentials of
functions of the Morrey space, Adams and Xiao extended this relation to the Mor-
rey space Mp,p0 . In [21], the third author extended it further to the vector-valued
functions. In the present paper, concerning (1.4), we introduce some relations be-
tween the generalized fractional operator and the generalized fractional maximal
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operator in the framework of the Morrey spaces Mp,φ (Theorem 1.3). Theorem 1.3
is a generalization of the result in [21], which was found when analysing the proof
of Olsens’s inequality. Theorem 1.3 and a boundedness property of the general-
ized fractional maximal operator (Lemma 2.6) give us a generalization of Olsen’s
inequality (Theorem 1.1).

In the third section, we prove a dual version of Olsen’s inequality on the predual
of Morrey spaces (Theorem 3.1). As a corollary (Corollary 3.2), we have the bound-
edness properties of the operator Tρ on the predual of a Morrey space. The results
are new even for Iα as far as we know. In the last section, we discuss the optimality
of our estimates for the fractional integral operator (the Riesz potential) Iα and
give an interesting counterexample concerning to the Fefferman-Phong inequality
by use of the characteristic function of the Cantor set.

The Hardy-Littlewood maximal operator M is defined by

Mf(x) = sup
x∈Q∈Q

1

|Q|

∫
Q

|f(y)| dy.

It is well known that the Hardy-Littlewood maximal operator M is bounded on the
Morrey space Mp,p0 with 1 < p ≤ p0 < ∞ (see [3, Theorem 1]). A boundedness
property of the Hardy-Littlewood maximal operator M on the Morrey space Mp,φ,
p > 1, was first proved by Nakai [11]. Our new result in Lemma 2.4 will cover his
result, and we shall not postulate a superfluous assumption in [11].

Following [8], in the definition of Tρ we always postulate the Dini and the dou-
bling conditions on ρ.

(1) ρ satisfies the Dini condition

(1.5)

∫ 1

0

ρ(s)

s
ds < ∞;

(2) ρ satisfies the doubling condition

(1.6)
1

C1
≤ ρ(s)

ρ(t)
≤ C1 if

1

2
≤ s

t
≤ 2.

A function ρ satisfying (1.6) is said to satisfy the doubling condition (with a dou-
bling constant C1). We notice that, satisfying (1.2), φ satisfies the doubling condi-
tion (with a doubling constant 2n/p). If ρ satisfies the doubling condition, then

(1.7)
log 2

C1
ρ(t) ≤

∫ t

t/2

ρ(s)

s
ds ≤ log 2 · C1ρ(t) for all t > 0.

We define for ρ satisfying (1.5) and (1.6)

ρ̃(t) =

∫ t

0

ρ(s)

s
ds.

We now state our main theorems.

Theorem 1.1. Let 1 < p < ∞, q > r, 0 ≤ b ≤ 1, a > 1 and (a + b − 1)r = ap.
Suppose that ρ satisfies (1.5), (1.6) and that ρ̃(t)max(ap,bq)t−n is nonincreasing.1

1The fact that condition ρ̃(t)max(ap,bq)t−n is nonincreasing implies that ρ̃(t)apt−n and
ρ̃(t)bqt−n are nonincreasing, since

ρ̃(t)min(ap,bq)t−n = ρ̃(t)min(ap,bq)−max(ap,bq) · ρ̃(t)max(ap,bq)t−n.
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Then

‖g · Tρf‖r,ρ̃a+b−1 ≤ C‖g‖q,ρ̃b‖f‖p,ρ̃a ,

where the constant C is independent of f and g.

Theorem 1.1 is a generalization of [15, Theorem 2] and [20, Theorem 1]. Theorem
1.1 is no longer true when q = r (see Proposition 4.1).

Letting b = 0 and g ≡ 1 in Theorem 1.1, we have the following:

Corollary 1.2. Let 1 < p < ∞, a > 1 and (a− 1)r = ap. Then

‖Tρf‖r,ρ̃a−1 ≤ C‖f‖p,ρ̃a .

Corollary 1.2 is a generalization of [1, Theorem 1.3].

Theorem 1.3. Let 1 ≤ p < ∞,

{
p ≤ q if p = 1,
p < q if p > 1,

0 ≤ b ≤ 1 and b < a. Suppose

that ρ satisfies (1.5), (1.6) and that ρ̃(t)max(ap,bq)t−n is nonincreasing. Then

‖g · Tρf‖p,ρ̃a ≤ C‖g‖q,ρ̃b‖Mρ̃1−bf‖p,ρ̃a ,

where the constant C is independent of f and g.

Corollary 1.4. Let 1 ≤ p < ∞ and a > 0. Then

‖Tρf‖p,ρ̃a ≤ C‖Mρ̃f‖p,ρ̃a .

Corollary 1.4 is a generalization of [2, Theorem 4.2].
Letting b = 1 in Theorem 1.3, we have the following corollary as well.

Corollary 1.5. Let 1 ≤ p < ∞,

{
p ≤ q if p = 1,
p < q if p > 1,

and a > 1. Then

‖g · Tρf‖p,ρ̃a ≤ C‖g‖q,ρ̃‖Mf‖p,ρ̃a .

Remark 1.6. The functions belonging to the Morrey space have been used as weights
in the Fefferman-Phong inequality. Corollary 1.5 would be interesting to give a
better understanding of this fact, since the right-hand side contains no ρ factors.

It would be interesting to compare Theorem 1.3 with the following Theorem 1.7.

Theorem 1.7. Let 0 < p < ∞, 0 ≤ b ≤ 1 and b ≤ a. Suppose that ρ is nonde-
creasing and ρ(t)apt−n is nonincreasing. Then

‖g ·Mρf‖p,ρa ≤ C‖g‖p,ρb‖Mρ1−bf‖p,ρa ,

where the constant C is independent of f and g.

We restate Theorem 1.1 in terms of the fractional integral operator Iα. The
result holds by letting ρ(t) ≡ tnα, aα = 1/p0 and b α = 1/q0.

Proposition 1.8. Let 0 < α < 1, 1 < p ≤ p0 < ∞, 1 < q ≤ q0 ≤ ∞ and
1 < r ≤ r0 < ∞. Suppose that q > r, 1/p0 > α, 1/q0 ≤ α, 1/r0 = 1/q0 + 1/p0 − α
and r/r0 = p/p0. Then

‖g · Iαf‖Mr,r0 ≤ C‖g‖Mq,q0‖f‖Mp,p0 ,

where the constant C is independent of f and g.
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Remark 1.9. Our result is stronger than that of Olsen. In fact, Olsen’s theorem
[15, Theorem 2] is stated with r/r0 = p/p0 replaced by 1/r = 1/q0+1/p−α. Then
the target spaces of our result are strictly smaller than that of Olsen by noticing
the inclusion (1.3). A simple calculation suffices to verify this fact: If r/r0 = p/p0
and 1/r0 = 1/q0 + 1/p0 − α, then

1

r
=

1

r0

p0
p

=

(
1

q0
+

1

p0
− α

)
p0
p

=

(
1

q0
− α

)
p0
p

+
1

p
≤ 1

q0
+

1

p
− α,

where we have used the fact that 1/q0 − α ≤ 0 and p0/p ≥ 1.

Remark 1.10. If r/r0 = p/p0 = q/q0, then our result can be proved by using
Hölder’s inequality. Indeed, the boundedness property of Iα on the Morrey space
gives us that

‖Iαf‖Ms,s0 ≤ C‖f‖Mp,p0 ,

where 1/s0 = 1/p0 − α and 1/s = p0/(p s0). If r/r0 = p/p0 = q/q0 and 1/r0 =
1/q0 + 1/p0 − α, we also have

1/r0 = 1/q0 + 1/s0 and 1/r = 1/q + 1/p.

2. Proof of the theorems

The letter C will be used for constants that may change from one occurrence
to another. Constants with subscripts, such as C1, C2, do not change in different
occurrences. For any 1 < p < ∞ we will write p′ for the conjugate number defined
by 1/p + 1/p′ = 1. Hereafter, for the sake of simplicity, for any Q ∈ Q and
0 < p < ∞ we will write

mQ(f) =
1

|Q|

∫
Q

f(x) dx and m
(p)
Q (f) = mQ(|f |p)1/p.

2.1. Proof of Theorem 1.3. First, we shall prove Theorem 1.3. Except for some
sufficient modifications, the proof of the theorem follows the argument in [21].
We denote by D the family of all dyadic cubes in Rn. We assume that f and g
are nonnegative, which may be done without any loss of generality thanks to the
positivity of the integral kernel. We will denote by B(x, r) the ball centered at x
and of radius r. We begin by discretizing the operator Tρf following the idea of
C. Pérez (see [17]):

Tρf(x) =
∑
ν∈Z

∫
2ν−1<|x−y|≤2ν

f(y)
ρ(|x− y|)
|x− y|n dy

≤ C
∑
ν∈Z

ρ(2ν)

2nν

∫
B(x,2ν)

f(y) dy

≤ C
∑
ν∈Z

∑
Q∈D:Q�x, �(Q)=2ν

ρ(�(Q))

|Q|

∫
3Q

f(y) dy

= C
∑
Q∈D

ρ(�(Q))

|Q|

∫
3Q

f(y) dy · χQ(x)

= C
∑
Q∈D

ρ(�(Q))m3Q(f) · χQ(x),
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where we have used the doubling condition of ρ for the first inequality. To prove
Theorem 1.3, thanks to the doubling condition of ρ̃a, which holds by use of the fact
that ρ̃(t)a is nondecreasing and ρ̃(t)apt−n is nonincreasing, it suffices to show that(∫

Q0

(g(x)Tρf(x))
p dx

)1/p

≤ C‖g‖q,ρ̃b‖Mρ̃1−bf‖p,ρ̃a |Q0|1/pρ̃(�(Q0))
−a,

for all dyadic cubes Q0. Hereafter, we let{
D1(Q0) = {Q ∈ D : Q ⊂ Q0},
D2(Q0) = {Q ∈ D : Q � Q0}.

Let us define for i = 1, 2

Fi(x) =
∑

Q∈Di(Q0)

ρ(�(Q))m3Q(f)χQ(x),

and we shall estimate (∫
Q0

(g(x)Fi(x))
p
dx

)1/p

.

The case i = 1 and p = 1. We need the following crucial lemma, the proof of which
is straightforward and is omitted (see [17, 21]).

Lemma 2.1. For a nonnegative function h in L∞(Q0), we let γ0 = mQ0
(h) and

c = 2n+1. For k = 1, 2, . . . let

Dk =
⋃

Q∈D1(Q0):mQ(h)>γ0ck

Q.

Considering the maximal cubes with respect to inclusion, we can write

Dk =
⋃
j

Qk,j ,

where the cubes {Qk,j} ⊂ D1(Q0) are nonoverlapping. By virtue of the maximality
of Qk,j one has that

γ0c
k < mQk,j

(h) ≤ 2nγ0c
k.

Let

E0 = Q0 \D1 and Ek,j = Qk,j \Dk+1.

Then {E0} ∪ {Ek,j} is a disjoint family of sets which decomposes Q0 and satisfies

(2.1) |Q0| ≤ 2|E0| and |Qk,j | ≤ 2|Ek,j |.

Also, we set

D0 = {Q ∈ D1(Q0) : mQ(h) ≤ γ0c} ,
Dk,j =

{
Q ∈ D1(Q0) : Q ⊂ Qk,j , γ0c

k < mQ(h) ≤ γ0c
k+1

}
.

Then

(2.2) D1(Q0) = D0 ∪
⋃
k,j

Dk,j .
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We need only verify that

(2.3)

∫
Q0

g(x)F1(x) dx ≤ C‖g‖q,ρ̃b

∫
Q0

Mρ̃1−bf(x) dx.

Inserting the definition of F1, we have∫
Q0

g(x)F1(x) dx =
∑

Q∈D1(Q0)

ρ(�(Q))m3Q(f)

∫
Q

g(x) dx.

Letting h = g, we shall apply Lemma 2.1 to the estimate of this quantity. Retaining
the same notation as in Lemma 2.1 and noticing (2.2), we have∫

Q0

g(x)F1(x) dx

=
∑

Q∈D0

ρ(�(Q))m3Q(f)

∫
Q

g(x) dx+
∑
k,j

∑
Q∈Dk,j

ρ(�(Q))m3Q(f)

∫
Q

g(x) dx.

We first evaluate

(2.4)
∑

Q∈Dk,j

ρ(�(Q))m3Q(f)

∫
Q

g(x) dx.

It follows from the definition of Dk,j that (2.4) is bounded by

Cγ0c
k+1

∑
Q∈Dk,j

ρ(�(Q))

∫
3Q

f(y) dy.

The support condition and (1.7) gives us that

∑
Q∈Dk,j

ρ(�(Q))

∫
3Q

f(y) dy =

log2 �(Qk,j)∑
ν=−∞

ρ(2ν)

⎛
⎝ ∑

Q∈Dk,j : �(Q)=2ν

∫
3Q

f(y) dy

⎞
⎠

≤ C

∫
3Qk,j

f(y) dy

⎛
⎝log2 �(Qk,j)∑

ν=−∞
ρ(2ν)

⎞
⎠

≤ C

∫
3Qk,j

f(y) dy

(∫ �(Qk,j)

0

ρ(s)

s
ds

)

= Cρ̃(�(Qk,j))

∫
3Qk,j

f(y) dy.

If we invoke relations |Qk,j | ≤ 2|Ek,j | and γ0c
k < mQk,j

(g), then (2.4) is bounded
by

Cρ̃(�(Qk,j))m3Qk,j
(f)mQk,j

(g) |Ek,j |.
Now we have from the definition of the Morrey norm that

mQk,j
(g) ≤ m

(q)
Qk,j

(g) ≤ ‖g‖q,ρ̃b ρ̃(�(Qk,j))
−b,

and we conclude that

(2.4) ≤ C‖g‖q,ρ̃b ρ̃(�(Qk,j))
1−bm3Qk,j

(f)|Ek,j | ≤ C‖g‖q,ρ̃b

∫
Ek,j

Mρ̃1−bf(x) dx.

Here, we have used the fact that ρ̃ is nondecreasing and

ρ̃(�(3Qk,j))
1−bm3Qk,j

(f) ≤ inf
y∈Qk,j

Mρ̃1−bf(y).
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Similarly, we have∑
Q∈D0

ρ(�(Q))m3Q(f)

∫
Q

g(x) dx ≤ C‖g‖q,ρ̃b

∫
E0

Mρ̃1−bf(x) dx.

Summing up all factors, we obtain (2.3) by noticing {E0} ∪ {Ek,j} is a disjoint
family of sets which decomposes Q0.

The case i = 1 and p > 1. In this case we establish

(2.5)

(∫
Q0

(g(x)F1(x))
p dx

)1/p

≤ C‖g‖q,ρ̃b

(∫
Q0

Mρ̃1−bf(x)p dx

)1/p

by the duality argument. Take a nonnegative function w ∈ Lp′
(Q0), 1/p+1/p′ = 1,

satisfying that ‖w‖Lp′ (Q0)
= 1 and that(∫

Q0

(g(x)F1(x))
p dx

)1/p

=

∫
Q0

g(x)F1(x)w(x) dx.

Letting h = g w, we shall apply Lemma 2.1 to estimate this quantity. It follows
that ∫

Q0

g(x)F1(x)w(x) dx =
∑

Q∈D1(Q0)

ρ(�(Q))m3Q(f)

∫
Q

g(x)w(x) dx(2.6)

=
∑

Q∈D0

ρ(�(Q))m3Q(f)

∫
Q

g(x)w(x) dx

+
∑
k,j

∑
Q∈Dk,j

ρ(�(Q))m3Q(f)

∫
Q

g(x)w(x) dx.

First, we evaluate

(2.7)
∑

Q∈Dk,j

ρ(�(Q))m3Q(f)

∫
Q

g(x)w(x) dx.

It follows from the same argument as above that (2.7) is bounded by

(2.8) Cρ̃(�(Qk,j))m3Qk,j
(f)mQk,j

(g w) |Ek,j |.
These yield

(2.8) ≤ Cρ̃(�(Qk,j))
1−bm3Qk,j

(f)ρ̃(�(Qk,j))
bmQk,j

(g · w)|Ek,j |

≤ C

∫
Ek,j

Mρ̃1−bf(x)Mρ̃b [g · w](x) dx.

Similarly, we have∑
Q∈D0

ρ(�(Q))m3Q(f)

∫
Q

g(x)w(x) dx ≤ C‖g‖q,ρ̃b

∫
E0

Mρ̃1−bf(x)Mρ̃b [g · w](x) dx.

Summing up all factors we obtain

(2.6) ≤ C

∫
Q0

Mρ̃1−bf(x)Mρ̃b [g · w](x) dx.

Another application of Hölder’s inequality gives us that

(2.6) ≤ C

(∫
Q0

Mρ̃1−bf(x)p dx

)1/p (∫
Q0

Mρ̃b [g · w](x)p′
dx

)1/p′

.
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The fact p′ > q′ and the Lp′/q′-boundedness of the maximal operator M yield

(2.6) ≤ C‖g‖q,ρ̃b

(∫
Q0

Mρ̃1−bf(x)p dx

)1/p (∫
Q0

w(x)p
′
dx

)1/p′

= C‖g‖q,ρ̃b

(∫
Q0

Mρ̃1−bf(x)p dx

)1/p

.

This is our desired inequality.

The case i = 2 and p ≥ 1. By a property of the dyadic cubes, for all x ∈ Q0 we
have

F2(x) =
∑

Q∈D2(Q0)

ρ(�(Q))m3Q(f)

and

ρ(�(Q))m3Q(f) = ρ(�(Q))ρ̃(�(Q))b−1 · ρ̃(�(Q))1−bm3Q(f)

≤ ρ(�(Q))ρ̃(�(Q))b−1mQ(Mρ̃1−bf).

It follows that

mQ(Mρ̃1−bf) ≤ m
(p)
Q (Mρ̃1−bf) ≤ ‖Mρ̃1−bf‖p,ρ̃a ρ̃(�(Q))−a.

Inserting these estimates, we obtain

F2(x) ≤ C‖Mρ̃1−bf‖p,ρ̃a

∑
Q∈D2(Q0)

ρ(�(Q))ρ̃(�(Q))b−a−1(2.9)

≤ C‖Mρ̃1−bf‖p,ρ̃a

∞∑
ν=1+log2 �(Q0)

ρ(2ν)ρ̃(2ν)b−a−1

≤ C‖Mρ̃1−bf‖p,ρ̃a

∫ ∞

�(Q0)

ρ̃(s)b−a−1 ρ(s)

s
ds.

Here, in the last inequality we have used (1.7) and the fact that ρ̃ is nondecreasing.
Now we see that∫ ∞

�(Q0)

ρ̃(s)b−a−1 ρ(s)

s
ds =

∫ ∞

�(Q0)

d

ds

(
1

b− a
ρ̃(s)b−a

)
ds ≤ ρ̃(�(Q0))

b−a

a− b
,

where we have used b < a for the last inequality. Thus, for all x ∈ Q0 we obtain

F2(x) ≤ C‖Mρ̃1−bf‖p,ρ̃a ρ̃(�(Q0))
b−a

and(∫
Q0

(g(x)F2(x))
p dx

)1/p

≤ Cm
(p)
Q0

(g)‖Mρ̃1−bf‖p,ρ̃a ρ̃(�(Q0))
b−a|Q0|1/p

≤ C ρ̃(�(Q0))
b−am

(q)
Q0

(g)‖Mρ̃1−bf‖p,ρ̃a |Q0|1/p

≤ C‖g‖q,ρ̃b‖Mρ̃1−bf‖p,ρ̃a ρ̃(�(Q0))
−a|Q0|1/p.

This is our desired inequality.

Remark 2.2. Let 1 ≤ p < ∞. Suppose that φ satisfies (1.2). In the course of the
proof, if we let b = 0 and g ≡ 1, then we have(∫

Q0

F1(x)
p dx

)1/p

≤ C

(∫
Q0

Mρ̃f(x)
p dx

)1/p

.
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Also, if we mimic the way to obtain (2.9), then for all x ∈ Q0 we have

F2(x) ≤ C‖Mρ̃f‖p,φ
∫ ∞

�(Q0)

ρ(s)

s ρ̃(s)φ(s)
ds,

and hence(∫
Q0

F2(x)
p dx

)1/p

≤ C‖Mρ̃f‖p,φ |Q0|1/p
∫ ∞

�(Q0)

ρ(s)

s ρ̃(s)φ(s)
ds.

These imply

‖Tρf‖p,φ ≤ C‖Mρ̃f‖p,φ
if, for all t ≥ 0, φ satisfies further that

φ(t)

∫ ∞

t

ρ(s)

s ρ̃(s)φ(s)
ds ≤ C.

Remark 2.3. Let 1 ≤ p, q < ∞. Suppose that φ satisfies (1.2). Then, similarly, we
see that

C

(∫
Q0

Tρf(x)
q dx

)1/q

≤
(∫

Q0

Mρ̃f(x)
q dx

)1/q

+ |Q0|1/q‖f‖p,φ
∫ ∞

�(Q0)

ρ(s)

s φ(s)
ds.

2.2. Proof of Theorem 1.1. We need some lemmas.

Lemma 2.4. Let p > 1. Suppose that φ satisfies (1.2). Then

‖Mf‖p,φ ≤ C‖f‖p,φ.

Proof. Fix a cube Q0. Let f1 = χ3Q0
f and f2 = f − f1. Then Mf(x) ≤ Mf1(x) +

Mf2(x). It follows from the definition of M that for all x ∈ Q0,

Mf2(x) = sup
x∈Q∈Q: �(Q)≥�(Q0)

1

|Q|

∫
Q

|f(y)| dy.

Suppose that x ∈ Q0, x ∈ Q ∈ Q and �(Q) ≥ �(Q0). Then

φ(�(Q0))mQ(|f |) ≤ φ(�(Q))m
(p)
Q (|f |) ≤ ‖f‖p,φ,

where we have used Hölder’s inequality and the fact that φ is nondecreasing.
This gives us that

φ(�(Q0))Mf2(x) ≤ ‖f‖p,φ for all x ∈ Q0

and that

φ(�(Q0))m
(p)
Q0

(Mf)p ≤ φ(�(Q0))m
(p)
Q0

(Mf1)
p + φ(�(Q0))m

(p)
Q0

(Mf2)
p

≤ Cφ(�(3Q0))m
(p)
3Q0

(f) + ‖f‖p,φ ≤ C‖f‖p,φ,

where we have used Lp boundedness of the maximal operator M . This implies our
desired inequality. �

Remark 2.5. A similar proof can be found in [18, Theorem 2.3].

Lemma 2.6. Let 1 < p ≤ q < ∞. Suppose that φ satisfies (1.2). Then

‖Mφ1−p/qf‖q,φp/q ≤ C‖f‖p,φ.
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Proof. Let x ∈ Rn be a fixed point. For every cube Q � x we see that

φ(�(Q))1−p/qmQ(|f |) ≤ min(φ(�(Q))1−p/qMf(x) , φ(�(Q))−p/q‖f‖p,φ)
≤ sup

t≥0
min(t1−p/qMf(x) , t−p/q‖f‖p,φ)

= ‖f‖1−p/q
p,φ Mf(x)p/q.

This implies

Mφ1−p/qf(x)q ≤ ‖f‖q−p
p,φ Mf(x)p.

It follows from Lemma 2.4 that for every cube Q0,

m
(q)
Q0

(Mφ1−p/qf) ≤ ‖f‖1−p/q
p,φ m

(p)
Q0

(Mf)p/q ≤ C‖f‖p,φφ(�(Q0))
−p/q.

The desired inequality then follows. �

For b = 1 Theorem 1.1 can be proved by using Corollary 1.5 and Lemma 2.4,
and for b < 1 it can be proved by using the following:

Lemma 2.7. Let 1 < p < ∞, a > 1 and (a − 1)q = ap. Assume that ρ(t) is
nondecreasing and ρ(t)apt−n is nonincreasing. Then

‖Mρf‖q,ρa−1 ≤ C‖f‖p,ρa .

Proof. To prove this lemma we merely check all the conditions of Lemma 2.6 when
φ = ρa. �

Remark 2.8. Let 1 < p ≤ q < ∞. Suppose that φ satisfies (1.2). Remark 2.3 and
Lemma 2.6 give us that

‖Tρf‖q,φp/q ≤ C‖f‖p,φ
if, for all t ≥ 0, φ satisfies further that

φ(t)p/q
∫ ∞

t

ρ(s)

s φ(s)
ds ≤ C and ρ̃(t) ≤ Cφ(t)1−p/q.

This condition can be restated as

ρ̃(t)

φ(t)
+

∫ ∞

t

ρ(s)

s φ(s)
ds ≤ Cφ(t)−p/q, t ≥ 0,

and can be seen in [8, Theorem 3.1] with some superfluous conditions.

2.3. Proof of Theorem 1.7. Since the operator Mρ is nonlinear, an alternative
approach will be necessary. First of all, we notice that ρ satisfies the doubling
condition (with the doubling constant 2ap), which can be proved by using the
conditions postulated on ρ. The monotonicity of ρ yields

1

C2
Mρf(x) ≤ Md;ρf(x) ≤ C2Mρf(x) for a.e. x ∈ Rn,

where

Md;ρf(x) = sup
x∈Q∈D

ρ(�(Q))m3Q(f).

Thanks to the doubling condition of ρ, to prove Theorem 1.7 it suffices to show
that(∫

Q0

(g(x)Md;ρf(x))
p
dx

)1/p

≤ C‖g‖p,ρb‖Md;ρ1−bf‖p,ρa |Q0|1/pρ(�(Q0))
−a,
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for all dyadic cubes Q0. Fix Q0 ∈ D and recall D1(Q0), D2(Q0) defined earlier.
Then it follows that

Md;ρf(x) ≤ M̂d;ρf(x) + M̌d;ρf(x),

provided that {
M̂d;ρf(x) = supx∈Q∈D1(Q0) ρ(�(Q))m3Q(f),

M̌d;ρf(x) = supx∈Q∈D2(Q0) ρ(�(Q))m3Q(f).

If Q ∈ D2(Q0), then

ρ(�(Q))m3Q(f) = ρ(�(Q))bm
(p)
Q

(
ρ(�(Q))1−bm3Q(f)

)
≤ ρ(�(Q))b−aρ(�(Q))am

(p)
Q (Md;ρ1−bf)

≤ ρ(�(Q0))
b−a‖Md;ρ1−bf‖p,ρa .

Here, we have used Q0 ⊂ Q and b ≤ a. For all x ∈ Q0 this implies that

M̌d;ρf(x) ≤ ρ(�(Q0))
b−a‖Md;ρ1−bf‖p,ρa ,

and hence

ρ(�(Q0))
am

(p)
Q0

(g M̌d;ρf) ≤ ‖g‖p,ρb‖Md;ρ1−bf‖p,ρa .

Thus, we concentrate ourselves on estimating the integral∫
Q0

(
g(x)M̂d;ρf(x)

)p

dx.

A standard density argument allows us to assume that f is bounded. One knows
that for each λ > 0 there exists a nonoverlapping collection of maximal (with
respect to inclusion) dyadic cubes {Qλ

i } ⊂ D1(Q0) such that

{x ∈ Q0 : M̂d;ρf(x) > λ} =
⋃
i

Qλ
i .

It follows from the definitions that

ρ(�(Qλ
i )) ≥

ρ(�(Q0))m3Q0
(f)

‖f‖L∞(3Q0)

for every λ > 0 and i.
In view of the distribution function of M̂d;ρf , we can rewrite the integral as

p

∫ ∞

0

∑
i

gp(Qλ
i )λ

p−1 dλ,

where gp(Q) =
∫
Q
g(x)p dx. For every Q ∈ {Qλ

i }λ>0 \ {Q0} define the mother cube

μ(Q) by a minimal cube Q′ such that Q ⊂ Q′ ∈ {Qλ
i } and �(Q) < �(Q′). Then

we can rewrite the integral further (assuming that μ(Q0) is an empty set and the
integral over μ(Q0) is understood as zero) as∑

Q∈{Qλ
i }

gp(Q)
(
(ρ(�(Q))m3Q(f))

p −
(
ρ(�(μ(Q)))m3μ(Q)(f)

)p)
.
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By use of gp(Q) ≤ ‖g‖p,ρb
p|Q|ρ(�(Q))−bp and ρ(�(Q)) ≤ ρ(�(μ(Q))), this term is

bounded by a ‖g‖p,ρb
p multiple of the following:

∑
Q∈{Qλ

i }

|Q|
((

ρ(�(Q))

ρ(�(Q))b
m3Q(f)

)p

−
(
ρ(�(μ(Q)))

ρ(�(Q))b
m3μ(Q)(f)

)p)(2.10)

≤
∑

Q∈{Qλ
i }

|Q|
((

ρ(�(Q))1−bm3Q(f)
)p − (

ρ(�(μ(Q)))1−bm3μ(Q)(f)
)p)

.

For x ∈ Q0 define the cube Qx by a minimal cube Q such that x ∈ Q ∈ {Qλ
i }, and

define an operator S by

Sf(x) = ρ(�(Qx))
1−bm3Qx

(f).

Then we assert that (2.10) is equal to

∫
Q0

Sf(x)p dx. In fact, by Fubini’s theorem

∑
Q∈{Qλ

i }

|Q|
((

ρ(�(Q))1−bm3Q(f)
)p − (

ρ(�(μ(Q)))1−bm3μ(Q)(f)
)p)

=

∫
Q0

∑
Q∈{Qλ

i }

((
ρ(�(Q))1−bm3Q(f)

)p − (
ρ(�(μ(Q)))1−bm3μ(Q)(f)

)p)
χQ(x) dx

=

∫
Q0

(
ρ(�(Qx))

1−bm3Qx
(f)

)p
dx =

∫
Q0

Sf(x)p dx.

Clearly, from Sf(x) ≤ Md;ρ1−bf(x), we obtain(∫
Q0

(
g(x)M̂d;ρf(x)

)p

dx

)1/p

≤ ‖g‖p,ρb

(∫
Q0

Md;ρ1−bf(x)p dx

)1/p

.

This is our desired inequality.

3. A dual version of Olsen’s inequality

In this section, as an application of Theorem 1.1, we consider a dual version of
Olsen’s inequality on the predual of a Morrey space (Theorem 3.1). As a corollary
(Corollary 3.2), we have the boundedness properties of the operator Tρ on the
predual of a Morrey space. We shall define the block spaces following [16].

Let 1 < p < ∞ and 1/p+1/p′ = 1. Suppose that φ satisfies (1.2). We say that a
function b on Rn is a (p′, φ)-block provided that b is supported on a cube Q ⊂ Rn

and satisfies

(3.1) m
(p′)
Q (b) ≤ φ(�(Q))

|Q| .

If, in addition, b is a continuous function, then we say that b is a continuous (p′, φ)-

block. The space Bp′,φ(Rn) = Bp′,φ is defined by the set of all functions f locally

in Lp′
(Rn) with the norm

‖f‖Bp′,φ = inf

{
‖{λk}‖l1 : f =

∑
k

λkbk

}
< ∞,

where bk is a (p′, φ)-block and ‖{λk}‖l1 =
∑

k |λk| < ∞, and the infimum is taken

over all possible decompositions of f . If φ(t) ≡ tn/p0 , p0 ≥ p, Bp′,φ is the usual block
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space, which we write for Bp′,p′
0 and the norm for ‖ · ‖Bp′,p′0 , because the right-hand

side of (3.1) is equal to |Q|1/p0−1 = |Q|−1/p′
0 . Then we have the inclusion

Lp′
0 = Bp′

0,p
′
0 ⊃ Bp′

1,p
′
0 ⊃ Bp′

2,p
′
0

when 1 < p′0 ≤ p′1 ≤ p′2 < ∞. In [16, Theorem 1] or [22, Proposition 5], the
following is essentially proved:

The predual space of Mp,φ is Bp′,φ in the following sense: If g ∈
Mp,φ, then

∫
Rn

f(x)g(x) dx is an element of (Bp′,φ)∗. Moreover,

for any L ∈ (Bp′,φ)∗, there exists g ∈ Mp,φ such that

L(f) =

∫
Rn

f(x)g(x) dx, f ∈ Bp′,φ.

In this section we shall prove the following theorem.

Theorem 3.1. Let 1 < p < ∞, q > r, 0 ≤ b ≤ 1, a > 1 and (a + b − 1)r = ap.
Suppose that ρ satisfies (1.5), (1.6) and that ρ̃(t)max(ap,bq)t−n is nonincreasing.
Then

‖Tρ(g f)‖Bp′,ρ̃a ≤ C‖g‖Mq,ρ̃b ‖f‖Br′,ρ̃a+b−1 ,

if g is a continuous function.

Corollary 3.2. Let 1 < p < ∞, a > 1 and (a− 1)r = ap. Suppose that ρ satisfies
(1.5), (1.6) and that ρ̃(t)apt−n is nonincreasing. Then

‖Tρf‖Bp′,ρ̃a ≤ C‖f‖Br′,ρ̃a−1 .

To prove the theorem we need some elementary lemmas.

Lemma 3.3. For any cube Q and f locally in Lp′
(Rn) we have

‖χQf‖Bp′,φ ≤ |Q|1/p
φ(�(Q))

‖χQf‖p′ .

Proof. Just observe that

χQf =
|Q|1/p
φ(�(Q))

‖χQf‖p′b

with b a (p′, φ)-block. �

Lemma 3.4. A function f belongs to Bp′,φ if and only if there exists g ∈ Bp′,φ

such that |f(x)| ≤ g(x) a.e. x ∈ Rn.

Proof. Suppose that f ∈ Bp′,φ. Then there exist a (p′, φ)-block bk and a sequence

{λk} ∈ l1 such that f =
∑

k λkbk. Letting g =
∑

k |λk||bk|, we have g ∈ Bp′,φ and

|f | ≤ g. Conversely, suppose that there exists g ∈ Bp′,φ which satisfies |f(x)| ≤
g(x). Decompose g as g =

∑
k λ

′
kb

′
k, where b

′
k is a (p′, φ)-block and {λ′

k} ∈ l1. Then
we see that

χ{y: g(y) 
=0}(x) =
∑
k

λ′
k

1

g(x)
b′k(x),

and hence

f(x) =
∑
k

λ′
k

f(x)

g(x)
b′k(x).
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Since
|f(x)|
g(x)

≤ 1, the function
f(x)

g(x)
b′k(x) becomes a (p′, φ)-block. This proves the

lemma. �

Lemma 3.5. Let B̃p′,φ be the set of all functions f in Bp′,φ which is generated by
continuous (p′, φ)-blocks. Then B̃p′,φ is a dense subspace of Bp′,φ.

Proof. Suppose that f ∈ Bp′,φ. Then f admits a decomposition f =
∑

k λkbk,
where each bk is a (p′, φ)-block which is supported on a cube Qk and {λk} ∈ l1. If
ε > 0 is given, choose a continuous function ck such that |ck(x)| ≤ |bk(x)| and

‖bk − ck‖p′ ≤ φ(�(Qk))

|Qk|1/p
ε

‖{λk}‖l1
.

Now, we let g =
∑

k λkck. Since ck is a continuous (p′, φ)-block, g belongs to B̃p′,φ

and, by using Lemma 3.3, we see that

‖f − g‖Bp′,φ ≤
∑
k

|λk| · ‖bk − ck‖Bp′,φ ≤ ε.

Thus, the proof is complete. �

Proof of Theorem 3.1. Fix a continuous function g ∈ Mq,ρ̃b

so that it satisfies
‖g‖Mq,ρ̃b = 1. By Lemma 3.5 it suffices to show the continuity on the subspace

B̃r′,ρ̃a+b−1

. Moreover, thanks to the linearity, we may assume that f is a continuous
(r′, ρ̃a+b−1)-block. By the Hahn-Banach theorem, once we verify Tρ(g f) ∈ Bp′,ρ̃a

,
then

‖Tρ(g f)‖Bp′,ρ̃a

= sup
w

∣∣∣∣
∫
Rn

Tρ(g f)(x)w(x) dx

∣∣∣∣ = sup
w

∣∣∣∣
∫
Rn

g(x)Tρw(x) · f(x) dx
∣∣∣∣ ,

where the supremum is taken over all the normalized w ∈ Mp,ρ̃a

, and, by use
of Theorem 1.1, one would conclude that ‖Tρ(g f)‖Bp′,ρ̃a ≤ C. Thus, we need

only verify that Tρ(g f) belongs to Bp′,ρ̃a

. We may assume further without loss of
generality that f and g are nonnegative and that f is supported on a dyadic cube
Q0 ∈ D and satisfies

(3.2)

(∫
Q0

f(x)r
′
dx

)1/r′

≤ ρ̃(�(Q0))
a+b−1

|Q0|1/r
.

In the same manner as in the previous section, noting Lemma 3.4, we wish to
estimate

Fi(x) =
∑

Q∈Di(Q0)

ρ(�(Q))m3Q(g f)χQ(x), i = 1, 2,

in view of the decomposition into blocks.

The case i = 1. It follows from (1.7) that

(3.3) ρ(�(Q))m3Q(g f)χQ(x) ≤ Cρ̃(�(Q))m3Q(g f)χQ(x).
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First, we assert that the right-hand side of (3.3) becomes a (p′, ρ̃a)-block if Q ∈
D1(Q0). Indeed,(∫

Q

(ρ̃(�(Q))m3Q(g f)χQ(x))
p′

dx

)1/p′

= ρ̃(�(Q))m3Q(g f)|Q|1−1/p ≤ ρ̃(�(Q))|Q|1−1/p m
(r)
3Q(g)m

(r′)
3Q (f)

≤ Cρ̃(�(Q))|Q|1/r−1/pm
(q)
3Q(g)

(∫
Q0

f(y)r
′
dy

)1/r′

≤ Cρ̃(�(Q))1−b |Q|1/r−1/p ρ̃(�(Q0))
a+b−1

|Q0|1/r
≤ C

ρ̃(�(Q))a

|Q|1/p ,

where we have used (3.2) and the fact that q > r, m
(q)
3Q(g) ≤ ρ̃(�(Q))−b and

ρ̃(t)(a+b−1)rt−n is nonincreasing.
Let ε = ρ̃(�(Q0))

a−1|Q0|−n. Since g f is uniformly continuous, we can choose
δ > 0 such that |g(x)f(x)− g(y)f(y)| ≤ ε whenever |x − y| ≤ δ. Let F be the set

of all dyadic cubes Q ∈ D1(Q0) such that �(Q) ≤ δ

3
√
n
, and let F0 be the set of all

maximal (with respect to inclusion) cubes in F . Take a cube Q1 ∈ F0. Then, for
every dyadic cube Q ⊂ Q1, we see that

m3Q(g f) ≤ 1

|3Q|

∫
3Q

∣∣∣∣g(y)f(y)− min
z∈3Q1

g(z)f(z)

∣∣∣∣ dy + min
z∈3Q1

g(z)f(z)

≤ ε+m3Q1
(g f).

This gives us that ∑
Q∈D1(Q0):Q⊂Q1

ρ(�(Q))m3Q(g f)χQ(x)

≤ (ε+m3Q1
(g f))

⎛
⎝log2 �(Q1)∑

ν=−∞
ρ(2ν)

⎞
⎠χQ1

(x)

≤ C (ερ̃(�(Q1))χQ1
(x) + ρ̃(�(Q1))m3Q1

(g f)χQ1
(x)) .

These yield∑
Q∈F

ρ(�(Q))m3Q(g f)χQ(x)

≤ C
∑
Q∈F1

(ερ̃(�(Q))χQ(x) + ρ̃(�(Q1))m3Q1
(g f)χQ1

(x)) .

Since ρ̃(t)a−1t−n is nonincreasing,

ερ̃(�(Q))|Q|1−1/p = ρ̃(�(Q))|Q|1−1/p ρ̃(�(Q0))
a−1

|Q0|n
≤ ρ̃(�(Q))a

|Q|1/p .

This means that ερ̃(�(Q))χQ(x) becomes a (p′, ρ̃a)-block. Thus, we know that
F1 can be majorized by the finite sum of the (p′, ρ̃a)-blocks and conclude that

F1 ∈ Bp′,ρ̃a

.
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The case i = 2. For every cube Q ∈ D2(Q0) we have

ρ(�(Q))m3Q(g f)χQ(x) =
ρ(�(Q))

ρ̃(�(Q))a

∫
Q0

g(y)f(y) dy · ρ̃(�(Q))a
χQ(x)

|Q| .

Because ρ̃(�(Q))a
χQ(x)

|Q| becomes a (p′, ρ̃a)-block, we shall compute

(3.4)

∫
Q0

g(y)f(y) dy

∞∑
ν=1+log2 �(Q0)

ρ(2ν)

ρ̃(2ν)a
.

It follows from q > r and (3.2) that∫
Q0

g(y)f(y) dy = |Q0|mQ0
(g f) ≤ |Q0|m(r)

Q0
(g)m

(r′)
Q0

(f)

≤ |Q0|m(q)
Q0

(g)m
(r′)
Q0

(f) ≤ ρ̃(�(Q0))
a−1.

The fact that ρ̃ is nondecreasing and (1.7) yield that

∞∑
ν=1+log2 �(Q0)

ρ(2ν)

ρ̃(2ν)a
≤

∫ ∞

�(Q0)

ρ̃(s)−a ρ(s)

s
ds

=

∫ ∞

�(Q0)

d

ds

(
1

1− a
ρ̃(s)1−a

)
ds

≤ 1

a− 1
ρ̃(�(Q0))

1−a.

Multiplying both sides, we obtain (3.4) ≤ C, and hence F2 ∈ Bp′,ρ̃a

. The proof of
the theorem is now complete.

Remark 3.6. We do not know that if a function f satisfies

sup
w

∣∣∣∣
∫
Rn

f(x)w(x) dx

∣∣∣∣ < ∞,

where the supremum is taken over all the normalized w ∈ Mp,φ, then f belongs to
Bp′,φ.

We finish the section by restating Theorem 3.1 and Corollary 3.2 in terms of the
fractional integral operator Iα. The results hold by letting ρ(t) ≡ tnα, aα = 1/p0
and b α = 1/q0.

Proposition 3.7. Let 0 < α < 1, 1 < p ≤ p0 < ∞, 1 < q ≤ q0 ≤ ∞ and
1 < r ≤ r0 < ∞. Suppose that q > r, 1/p0 > α, 1/q0 ≤ α, 1/r0 = 1/q0 + 1/p0 − α
and r/r0 = p/p0. Then

‖Iα(g f)‖Bp′,p′0 ≤ C‖g‖Mq,q0‖f‖Br′,r′0

if g is a continuous function.

Proposition 3.8. Let 0 < α < 1, 1 < p ≤ p0 < ∞ and 1 < r ≤ r0 < ∞. Suppose
that 1/p0 > α, 1/r0 = 1/p0 − α and r/r0 = p/p0. Then

‖Iαf‖Bp′,p′0 ≤ C‖f‖Br′,r′0 .
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Remark 3.9. In Proposition 3.8, if r/r0 = p/p0 is replaced by 1/r = 1/p− α, then,
using the Hardy-Littlewood-Sobolev inequality locally and taking care of the larger
scales in the same manner as in the proof of Theorem 3.1, one has a naive bound
for Iα.

4. Sharpness of the results

Finally in this paper, from two points of view, we shall discuss the sharpness of
the results for the fractional integral operator (the Riesz potential) Iα. First, we
examine the optimality of the Fefferman-Phong inequality.

Let 0 < α < 1. If 1 < p ≤ p0 < ∞ and p < q ≤ 1/α, then

(4.1) ‖g · Iαf‖Mp,p0 ≤ C‖g‖Mq,1/α‖f‖Mp,p0 .

For the fractional integral operator Iα inequality (4.1) is crucial in the following
sense: Since one has (cf. [19, p. 118])

(4.2) Iα(Iβf) = Iα+βf, α, β > 0, α+ β < 1,

we obtain, when 1 < q ≤ q0, 1 < r ≤ r0, q > r and α− 1/q0 > 0,

‖g · Iαf‖Mr,r0 ≤ C‖g‖Mq,q0‖Iα−1/q0f‖Mr,r0 .

This and the Adams theorem (the boundedness of the Riesz potential in the classical
Morrey spaces) yield Proposition 1.8. We remark that, instead of (4.2), we have
verified Theorem 1.3 for the generalized fractional integral operator Tρ. We shall
prove the following.

Proposition 4.1. Let 1 < r ≤ r0 < ∞ and r < 1/α. Then, for any c > 0 we can
find positive measurable functions f and g such that

‖g · Iαf‖Mr,r0 > c‖g‖Mr,1/α‖f‖Mr,r0 .

This proposition can be proved by using the method developed in [4]. Although
the Fefferman-Phong inequality is elementary and has important applications, the
results corresponding to the Lebesgue spaces cannot be found in the literature as
far as we know. In (4.1), if one replaces the fractional integral operator Iα by the
fractional maximal operator Mα, then it holds when q = p (see Theorem 1.7 and
Lemma 2.4).

Proof. If the claim is not true, then, by noticing that the block space Br′,r′0 is the
predual space of the Morrey space Mr,r0 (see the previous section), there exists a
constant c0 > 0 such that

(4.3)

∣∣∣∣
∫
Rn

h(x) · g(x) · Iαf(x) dx
∣∣∣∣ ≤ c0‖h‖Br′,r′0‖g‖Mr,1/α‖f‖Mr,r0 .

Let 0 < δ < 1 be the solution to the equation

(4.4)

(
2

1− δ

)α

(1− δ)1/r = 1

and let N be a positive large integer.

Let E0 = Q0,1 =

[
0,

(
2

1− δ

)N
]n

. Delete from Q0,1 all but an open middle cube

P0,1, of side δ

(
2

1− δ

)N

, and the 2n closed corner cubes Q1,j , of side

(
2

1− δ

)N−1

,
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to obtain E1 =
2n⋃
j=1

Q1,j and F0 = P0,1. Continue in this way N steps: At the

k < N stage replace each cube of Ek−1 by an open middle cube Pk−1,j , of side

δ

(
2

1− δ

)N−k+1

, and the 2n closed corner cubes Qk,j , of side
(

2
1−δ

)N−k

, to obtain

Ek =

2nk⋃
j=1

Qk,j and Fk−1 =

2n(k−1)⋃
j=1

Pk−1,j . Thus EN contains 2nN closed unit cubes

and Fk, k = 0, 1, · · · , N − 1, contains 2nk open cubes of side δ

(
2

1− δ

)N−k

. Then,

we have the following:

(4.5)
|EN ∩Qk,j |

|Qk,j |
= (1− δ)n(N−k), k = 0, 1, · · · , N,

and

(4.6) |Qk,j |α
(
|EN ∩Qk,j |

|Qk,j |

)1/r

= 1, k = 0, 1, · · · , N,

where we have used (4.4).
We first let g(x) = χEN

(x). Then it follows from (4.6) and simple geometric
observation that

(4.7) ‖g‖Mr,1/α ≤ C.

It also follows from (4.4) and (4.5) that

|Q0,1|1/r
′
0

(
|EN |
|Q0,1|

)1/r′

= |EN ||Q0,1|−1/r0

(
|EN |
|Q0,1|

)−1/r

= 2nN |Q0,1|α−1/r0 .

This yields that
(
2nN |Q0,1|α−1/r0

)−1

g is an (r′, r′0)-block. Since the characteristic

function of a unit cube is also an (r′, r′0)-block, we obtain

(4.8) ‖g‖Br′,r′0 ≤
{

2nN |Q0,1|α−1/r0 , r0α < 1,
2nN , r0α ≥ 1.

For x ∈ EN we clearly have Iαg(x) ≥ C. For x ∈ Fk, k = 0, 1, · · · , N − 1, noting
that there exists a unique cube Qk,j containing x, we have

Iαg(x) ≥ C|Qk,j |α
|EN ∩Qk,j |

|Qk,j |
= C

((
2

1− δ

)α

(1− δ)

)n(N−k)

.

These yield Iαg(x) ≥ Cu(x), provided that

u(x) = g(x) +
N−1∑
k=0

((
2

1− δ

)α

(1− δ)

)n(N−k)

χFk
(x).
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It follows by using (4.4) again that((
2

1− δ

)α

(1− δ)

)r′

=

((
2

1− δ

)rα

(1− δ)r
)1/(r−1)

= 1− δ

and by using

|Fk| = 2nk · δn
(

2

1− δ

)n(N−k)

that ∫
Rn

u(x)r
′
dx = 2nN (1 +Nδn).

Similarly, we see that

(4.9)

∫
Qk,j

u(x)r
′
dx = 2n(N−k)(1 + (N − k)δn), k = 0, 1, · · · , N.

Finally, we wish to prove

(4.10) ‖u1/(r−1)‖Mr,r0 ≤
{

(1 +Nδn)1/r|Q0,1|1/r0−α, r0α < 1,
(1 +Nδn)1/r, r0α ≥ 1.

To this end, it suffices to check only for the cubes Qk,j and Pk,j . Since, by simple

geometric observation, the average of u1/(r−1) over all cubes Q ∈ Q, Q ⊂ Q0,1 and
�(Q) ≥ 1 can be controlled by the averages of that over cubes Qk,j and Pk,j . Hence,

|Qk,j |
1
r0

− 1
r

(∫
Qk,j

u(x)r
′
dx

)1/r

= |Qk,j |1/r0−α|Qk,j |α−1/r
(
2n(N−k)(1 + (N − k)δn)

)1/r

= (2n(N−k))−1/r|Qk,j |1/r0−α|Qk,j |α(1− δ)n(N−k)/r

×
(
2n(N−k)(1 + (N − k)δn)

)1/r

= |Qk,j |1/r0−α(1 + (N − k)δn)1/r,

where we have used (4.9) to obtain

|Pk,j |
1
r0

− 1
r

(∫
Pk,j

u(x)r
′
dx

)1/r

= (δn)
1
r0

− 1
r |Qk,j |

1
r0

− 1
r (2n(N−k)δn)1/r

= (δn)
1
r0

− 1
r (2n(N−k))−1/r|Qk,j |1/r0−α(2n(N−k)δn)1/r

= δn/r0 |Qk,j |1/r0−α.

These imply (4.10).
Letting f(x) = u(x)1/(r−1) and h(x) = g(x) in (4.3), using∫

Rn

h(x)g(x)Iαf(x) dx ≥ C

∫
Rn

u(x)r
′
dx = C2nN (1 +Nδn),

we obtain (1 +Nδn)1/r
′ ≤ C · c0 by (4.7), (4.8) and (4.10). This is impossible for

large N . �

Second, we shall prove that Proposition 1.8 is sharp in the following sense.
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Proposition 4.2. Let 0 < α < 1, 1 < p < p0 < ∞, 1 < q0 < ∞ and 1 < r <
r0 < ∞. Suppose that 1/r0 = 1/q0 + 1/p0 − α and r/r0 = p/p0. Then for every
0 < ε ≤ r0 − r, there exist f ∈ Mp,p0 and g ∈ Mq0p/p0,q0 such that

‖g · Iαf‖Mr+ε,r0 = ∞.

Proof. Let 1 < s < s0, 1/s0 = 1/p0 − α and s/s0 = p/p0. Then we can select an
f ∈ Mp,p0 that satisfies

‖Iαf‖Ms,s0 = 1 but ‖Iαf‖Ms+εs0/r0,s0 = ∞.

This is justified by Theorem 10 in [15].
First, a simple arithmetic shows that

‖g‖Mq0p/p0,q0 = 1, g ≡ (Iαf)
s0/q0

and

r

(
1 +

s0
q0

)
= rs0

(
1

s0
+

1

q0

)
= s0

r

r0
= s.

It then follows that

‖g · Iαf‖Mr+ε,r0

= sup
Q∈Q

(
1

|Q|1−(r+ε)/r0

∫
Q

Iαf(x)
(r+ε)(1+s0/q0) dx

)1/(r+ε)

= sup
Q∈Q

(
1

|Q|1−s/s0−ε/r0

∫
Q

Iαf(x)
s+εs0/r0 dx

)1/(r+ε)

= (‖Iαf‖Ms+εs0/r0,s0 )
r/(r+ε)

= ∞.

Therefore, the proof is now complete. �
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