
Generalized Fragment Picking in Rosetta: Design,
Protocols and Applications
Dominik Gront1*, Daniel W. Kulp2, Robert M. Vernon3, Charlie E. M. Strauss2, David Baker4

1 Faculty of Chemistry, University of Warsaw, Warsaw, Poland, 2 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, United States of America,

3 Program in Molecular Structure and Function, Hospital For Sick Children, Toronto, Canada, 4 Department of Biochemistry, Howard Hughes Medical Institute, University

of Washington, Seattle, Washington, United States of America

Abstract

The Rosetta de novo structure prediction and loop modeling protocols begin with coarse grained Monte Carlo searches in
which the moves are based on short fragments extracted from a database of known structures. Here we describe a new
object oriented program for picking fragments that greatly extends the functionality of the previous program (nnmake) and
opens the door for new approaches to structure modeling. We provide a detailed description of the code design and
architecture, highlighting its modularity, and new features such as extensibility, total control over the fragment picking
workflow and scoring system customization. We demonstrate that the program provides at least as good building blocks for
ab-initio structure prediction as the previous program, and provide examples of the wide range of applications that are now
accessible.

Citation: Gront D, Kulp DW, Vernon RM, Strauss CEM, Baker D (2011) Generalized Fragment Picking in Rosetta: Design, Protocols and Applications. PLoS ONE 6(8):
e23294. doi:10.1371/journal.pone.0023294

Editor: Vladimir N. Uversky, University of South Florida College of Medicine, United States of America

Received April 22, 2011; Accepted July 12, 2011; Published August 24, 2011

Copyright: � 2011 Gront et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: DG was supported by a Marie Curie fellowship (FP7-people-IOF), project no. 221081. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dgront@chem.uw.edu.pl

Introduction

Rosetta structure prediction protocols [1] generally begin with

a low resolution coarse grained search of conformational space

that uses a library of short peptide fragments (typically 3 and 9

residues long) as a Monte Carlo move set. The principle

underlying fragment selection is that the set of conformations

sampled by a particular short sequence is likely to be reasonably

well approximated by the set of conformations that similar

sequence segments sample in known protein structures. For each

protein modeled, this library is selected from known structures

based on the amino acid sequence and any other available

information (see Fig. 1 for an illustrative example). The Rosetta

nnmake program, written in Fortran, has been used up until now

to pick fragments.

The extent to which the fragments recapitulate the actual local

structure of a protein determines in part the overall success rate of

structure prediction. The construction of the fragment libraries

seeks to accurately represent not the most probable conformation

for a given sequence segment, but the entire distribution of

conformations the sequence segment is likely to adopt in protein

structures. There is a tension between sampling too broadly (giving

too diffuse a library) and sampling too narrowly (risking missing a

critical set of torsion angles for a portion of the protein chain). The

old NNMAKE program deals with this by generating libraries in

which the frequencies of different secondary structural elements

parallels that output by secondary structure prediction programs.

Often there are non-congruent recommendations based on

different ‘‘expert’’ scoring functions that incorporate different

prior knowledge. Instead of using a single combined score, sets of

the fragments derived from each ‘‘expert’’ scoring function are

combined. Thus the resulting libraries represent a range of local

structure conformations for each position. The NNMAKE

architecture does not allow fine tuning of the tension in these

objectives as needed for different applications, and is brittle when

new prior information types are incorporated.

Local structural features such as kinks and bulges can result in

bottlenecks for conformational sampling [2]. It is therefore crucial

to start Rosetta modeling with the best possible fragments that

incorporate all the available prior knowledge. Recent develop-

ments using experimental data to pick fragments, notably NMR

chemical shift data (CS-ROSETTA), has shown that increases in

fragment library quality can dramatically improve the quality of

the resulting models. This has led to a demand for including many

new types of information and data into the fragment picking

process. Additionally, simultaneous design of sequence and

structure calls for libraries that can vary during a search process.

These evolving demands exceed the architectural limits of

NNMAKE.

The new fragment picker described in this paper is modular and

interactive to allow additional and evolving information content to

more tightly focus libraries in a simple extensible manner. Here,

we describe the new algorithm and demonstrate how it enables

implementation of new Rosetta protocols. The fully customizable

scoring function for fragment selection now allows use of any

experimental data or prior knowledge. Throughout the text, bold
italic font denotes fragment picking concepts while typewriter

font is used to name the object classes as declared in Rosetta

source code as well as names of files important to the picking

process.

PLoS ONE | www.plosone.org 1 August 2011 | Volume 6 | Issue 8 | e23294

Methods

The fragment library for a given protein is divided into sets for each

position along the chain. The fragments at each position span a 3 or 9

residue window, which is overlapping with neighboring position

windows. Thus to model a protein sequence composed of 100 amino

acid residues, one needs 10029 = 91 distinct sets of 9-mers and 97 sets

of 3-mers. Typically each set comprises 200 fragments. Such a library

contains 2400 possible triplets of W, Y, v backbone internal

coordinates for any given residue of a modeled protein.

To generate the fragment libraries, the new fragment picker

application reads a protein database file, a query sequence and few

other necessary parameters and then writes a file, the fragment

library, containing protein fragments of a desired length. The

whole process can be split into three main steps (see. Fig. 2): (1) a

fragment score function is created and database read in; (2)

candidates are picked, scored and collected; and (3) final fragments

are selected. The picking application is not only a stand-alone

computer program, but also a collection of objects combined into

a single pipeline. These parts can be modified or exchanged to

match a specific task, such as the loop design protocol described

below. The following section describes these fragment picking

steps in context of the overall workflow. For brevity, let us denote

the fragment length as LF, query sequence length as LQ and a

chunk (defined below) size as LC.

Input data
On startup, the application reads a number of input files. Some

of them are mandatory and others are optional, depending on the

chosen protocol, such as a quota definition file (see ‘‘Quota

protocol’’ below) or on the scoring system, e.g. including chemical

shifts or restraints. The mandatory input files are:

Figure 1. Overlapping fragment sets cover the query sequence. For each position in a query sequence (2gb1 in this example) there is a
distinct set of 200 3-mer and a set of 200 9-mer fragments. This implies that the internal degrees of freedom W, Y, v for any residue are restricted to a
set of 2400 combinations. For three example positions, W, Y pairs are plotted on a Ramachandran map: THR located in a strand, LYS located in a helix
and ASP located in a loop. Each red dot represents a W, Y pair from a fragment (2400 dots in each plot). Blue background in the maps shows the
region allowed for the given amino acid type, computed from a non-redundant PDB subset with the BioShell package [10,11].
doi:10.1371/journal.pone.0023294.g001

Figure 2. Overview of the fragment picking process. In the first
step the program reads in a structure database file and creates the
scoring system. During the second, iterative stage, each possible
fragment i.e. a local match between a query sequence and a structure
from the database is scored and sent to a candidates collector. In the
last stage selector object picks the final fragment set based on the
candidates gathered by the collector.
doi:10.1371/journal.pone.0023294.g002

Fragment Picking in Rosetta

PLoS ONE | www.plosone.org 2 August 2011 | Volume 6 | Issue 8 | e23294

– Query protein has to be defined by an amino acid sequence

which can be specified by a sequence file in FASTA format (-

in:file:fasta), a PsiBlast [3] sequence profile (-in:file:checkpoint),

or by a protein structure in PDB format (-in:file:s).

– Protein database file, nicknamed vall - is the source of all

fragments (see. Fig. 3). Because Rosetta expects that each LF -

residue fragment is continuous and provides 36LF degrees of

freedom, the selection process is limited to protein pieces with

no chain breaks, referred as chunks (VallChunk). The current

vall database is based on 9523 protein chains, on average a

chunk has 245 residues but the range varies greatly from 5 to

1491 residues. Chunks that are shorter than a fragment length

specified by a user are not taken into the picking process.

– Scoring system configuration file has a tabular structure. Each

line must contain at least four columns, that provide: (1) score

term name, (2) score priority, (3) score weight, (4) maximum

(worst) allowed score value. All the remaining fields in the line

are treated as scoring term parameters and are passed to the

relevant fragment score constructor. A detailed description of

the scoring system is in the ‘‘Fragment scoring’’ section.

Chunk-wise processing paradigm
After reading all the relevant input data, the application iterates

the actual fragment picking by processing each VallChunk

separately. Once a chunk has passed VallChunkFilter (e.g.

DenyPdbIdFilter which is used by the protocols described in the

next section), it is split into overlapping fragment candidates
and each candidate is tested how it fits to any position in the query

sequence. A fragment candidate is just a fragment-to-be;

practically there is no difference between candidates and

fragments that are written into an output file: fragments are just

these candidates who survived the selection process. Once a

fragment candidate has been scored, it is send to a fragment
collector. The procedure is repeated for every fragment size

requested by a user. After that the next vall chunk is considered

until the end of the vall database.

The chunk-wise processing assures that any vall chunk is

processed only once. Moreover, all per-residue score components

may be evaluated at once and stored in a LQ6LC array. Many

scores types are defined as a simple sum over all per-residue values

along a fragment. In such a case these per-residue values are just

read from a table without re-evaluating for overlapping fragments,

which in some applications brings a remarkable efficiency gain.

Unfortunately it also has a very serious drawback: we have to store

all fragment candidates that are selected for all requested fragment

sizes and all query sequence positions.

Fragment scoring scheme
Total score S for a fragment is calculated as a linear

combination of NS score terms

S~
XNs

i~1

wisi

where the scores Si and weights wi are defined within the score

configuration file (-frags::scoring::config). These scores describe a

fragment’s distance from the target, with lower values indicating a

closer match. Whenever possible the individual score functions

have been normalized such that a perfect match provides a score

of 0 and complete failure to match provides a score of 1.

The object-oriented design for fragment scoring is similar to the

Rosetta score function system. Its overall structure has been shown

in the Fig. 4. Each score term Si is a separate class, derived from

the same FragmentScoringMethod base virtual class and have its

own maker class. The FragmentScoringManager singleton

implements a factory pattern [4]. It registers the makers, reads a

file with score weights and creates the score function. The score

values are held and passed around as FragmentScoreMap objects.

Often a given score-type is the sum of independent scores for

each residue within the fragment. To avoid re-computing the

residue scores that are shared between overlapping fragments the

CachingScoringMethod, a class derived from FragmentScoring-

Method, sets up a cache of residue scores prior to fragment

scoring, filling a LQ6LC matrix of per-position score components.

Each fragment score is then calculated as a simple sum of cached

residue comparisons.

The fragment picking system provides several score types,

described in Table 1. The components Si are evaluated in the

order of decreasing priority, as assigned by the user. The user can

also provide a maximum (worst) value allowed for each score

component. If a given fragment exceeds that threshold, it is

immediately discarded and all the remaining score components

are not evaluated. In the most favorable situation, a restrictive

score component that can be evaluated quickly may be used with

the highest priority to avoid unnecessary calculations of the other

score components. This speed-up is significant only in the case of

non-caching scores; otherwise the full matrix of per-residue scores

is evaluated before any fragment is considered from a current

chunk.

It should be stressed that a single score function will always

attempt to saturate a fragment set with the winning option. For

example, if a given residue has been predicted to have 51% chance

to be in a helix and 49% chance to be in a strand then on its own

the SecondarySimilarity score will select fragments that are

helical at that position, even though a b-strand in this region is

almost as likely as an a-helix. If the addition of other score types

(ProfileScoreL1, AtomPairConstraintsScore or others) does not

counterbalance this effect, the fragments may be highly biased

toward some particular local geometry. To avoid this effect an

Figure 3. Organization of the structural database (nicknamed
as vall). The database is divided into chunks and each chunk is
composed of residues.
doi:10.1371/journal.pone.0023294.g003

Fragment Picking in Rosetta

PLoS ONE | www.plosone.org 3 August 2011 | Volume 6 | Issue 8 | e23294

optional quota mechanism can be used to select secondary

structure elements according to the prediction rates.

Collectors and selectors
PDB content is steadily growing and novel protein folds

continue to be observed. This also causes the vall database to

grow, which at its present size is large enough to create nearly 2

million fragment candidates (per query position). Storing all of

these candidates in memory at the same time is not feasible, even

for a moderate query protein size. Therefore, we provided the

fragment collector object, which defines the rules for deter-

mining which fragments should be kept in memory as current

candidates and which should be permanently rejected and

removed from memory. This system uses a separate fragment

collector for each user defined fragment size, and there are three

main CandidatesCollector implementations provided in the class

hierarchy:

– BoundedCollector is based on a bounded priority queue. A

bounded priority queue has a fixed pre-defined capacity and it

keeps only the top-K candidates according to their final

weighted scores. Inserting a good candidate forces the worst

candidate to leave the queue. The priority is defined by a

comparator object and can be customized by the user. The

sorting order imposed by BoundedCollector is defined in a

standard C++ way by a comparator object that provides

strict weak ordering operator. The default behavior imple-

mented in the picker is to compare total weighted scores of the

two compared fragments, but user may easily customize it by

passing a relevant object to a BoundedCollector constructor.

– GrabAllCollector collects all the fragments that successfully

passed the scoring stage. Its high memory usage makes it

impractical for picking fragments for all the positions in a query

sequence, but it might be very useful in some particular

application, e.g. to enumerate and score all possible loop

conformations that satisfy the score functions below a set of

restrictive thresholds.

– QuotaCollector is necessary when running a quota protocol

(see the next section).

One should note that the collecting process accumulates the

results during the chunk-wise vall processing. The decision

whether to keep or to ignore a given candidate is based only on the

fragments that were already processed. The program doesn’t know

anything about the candidates that will be collected from the

downstream vall chunks that have not been assessed yet. In some

applications a fragments final ranking depends upon the scoring

properties of the ensemble of other fragments. To accomplish this

without storing every fragment candidate, a compromise is to store

the top NC fragments according to a preliminary scoring criteria,

derive the final ensemble-based criteria, and then select the top

ranked subset, NF, of these.

Figure 4. UML diagram showing the relations between score
types. For the sake of clarity, only the base classes and the most
commonly used score types are shown.
doi:10.1371/journal.pone.0023294.g004

Table 1. Most common score types for fragment assessment.

score type name cacheable? input files (file format) comments

SequenceIdentity no amino acid sequence (FASTA, PDB) counts amino acid types that are identical

ProfileScoreL1 yes query sequence profile L1 measure between amino acid probabilities

SecondaryIdentity no secondary structure prediction (psipred-SS2) counts residues that have identical secondary structure

SecondarySimilarity yes secondary structure prediction (psipred-SS2) L1 measure based on predicted seondary structure
probabilities and the ‘‘true’’ observations as defined
by DSSP

CSScore yes chemical shifts (TALOS)

RamaScore yes secondary structure prediction (psipred-SS2) based on Ramachandran map probabilities

AtomPairConstraintsScore yes distance restaints (Rosetta cst file) any function based on the distance between
any two atoms contained within a fragment

DihedralConstraintsScore yes dihedral restaints (Rosetta cst file) any function based on the dihedral between
any four atoms contained within a fragment

FragmentCrmsd no reference structure (PDB) crmsd between a chunk fragment and a relevant
part of a reference structure as a score

A brief list of most commonly used fragment score types and their required input files.
doi:10.1371/journal.pone.0023294.t001

Fragment Picking in Rosetta

PLoS ONE | www.plosone.org 4 August 2011 | Volume 6 | Issue 8 | e23294

The final choice of fragments is made by a FragmentSelec-

tingRule object which returns NF best fragments, based on all the

NC candidates stored in a collector. The most obvious selection

algorithm is implemented in BestTotalScoreSelector class. In

this case the content of a collector is sorted according to the total

score and the best NF candidates are reported as fragments.

Obviously when NC = NF, the selection process doesn’t do

anything; it just returns the content of the collector. Therefore

in the cases where the selection stage is really necessary, the

capacity of the collector NC has to be much higher than NF.

Users can easily implement their own selection rule to match

their objectives.

Quota mechanism
The quota system is a way to increase fragment diversity by

defining a range of different fragment picking rule sets, then

selecting the final fragments by taking a fixed number of fragments

according to each set. This mechanism is used primarily for ab-

initio protein structure prediction in order to diversify the

fragments in two ways. First, by picking fragments according to

three different secondary structure prediction ‘‘experts’’, with each

prediction being used to select its own independent set of

fragments, and second, by selecting the final fragments such that

the secondary structure frequency in the fragment population is

approximately the same as the predicted propensity.

Although the quota mechanism has only been applied for

diversifying secondary structure, its design is intended to be as

general as possible. One can diversify fragments based on any

property or observable providing that it can be computed both for

the query sequence and for each protein stored in the vall. The

concepts and components of the quota system are:

– QuotaPool is a container that collects fragments for only one

specific feature, e.g. only these fragments where the middle

residue is helical.

– quota allowance says what fraction of the total number of

candidates NC will be collected by a given quota pool; a

QuotaPool class implementation is based on a BoundedCol-

lector.

– QuotaCollector- a specialized implementation of a Candida-

tesCollector type where fragment candidates are stored in

quota pools separately for each category of the diversified

observable.

– QuotaSelector - is aware of the internal structure of a

QuotaCollector and selects the final fragments matching the

predefined quota allowance fractions.

The manner a given QuotaPool operates is defined by its two

distinct and, in principle, independent features: (1) a ‘‘hard’’ rule

that decides whether a given fragment candidate is accepted or

denied by a pool, and (2) scoring scheme that is used to score

fragments within the pool. These two will be described here on the

example of secondary structure quota implementation. The strict

acceptance rule in this case is based on a middle residue of a

candidate. Each SecondaryStructurePool object is constructed to

accept only one secondary structure type: either H, E or L. The

‘‘true’’ secondary structure classification for the candidates has

been defined with DSSP program and is stored in the vall
database.

In the simplest case, secondary structure based quota consist of

three pools; each of them collects one of the three secondary

structure types (by the means of the acceptance rule, as mentioned

above). User may arbitrarily decide quota allowance shares for the

pools, effectively changing the relative abundance of each

secondary structure type in the final set of fragments. Following

the algorithm implemented in the nnmake program, the quota

protocol assigns the quota allowance values based on the predicted

probability for each secondary structure type at a given position.

In the case when the quota is based on a single secondary

prediction, the three pools share the same scoring system. In a

more advanced protocol (which is actually used for ab-initio

structure prediction), described in the ‘‘Quota protocol’’ section,

three secondary structure predictors are used and the pools differ

in their scoring scheme.

Protocols
This section provides a detailed description of two protocols that

can be accessed by calling picker application with proper flags. All

these protocols rely on query sequence profile, on the Rosetta

database directory and the vall file. The program also reads a

flag-file and a score configuration file, although the content of the

two is protocol-dependent.

Best fragments protocol. This very basic example illustrates

how to pick the best fragments according to a sequence profile and

a secondary structure. The example is not intended to be a

working protocol. It is rather an illustration of how to declare the

basic elements of the fragment picking system. The example shows

also several useful features that have been introduced with the new

picker. The whole protocol is in fact a single command:

picker.linuxgccrelease @best-fragments-protocol.flags

The flags that control the fragment picking process are:

Input databases

-database ../database

-in:file:vall ../vall.apr24.2008.extended.gz

Query-related input files

-in::file::checkpoint input_files/2jsvX.checkpoint

-in::file::s input_files/2jsvX.pdb

-frags::ss_pred input_files/2jsvX.psipred.ss2

predA

Weights file

-frags::scoring::config input_files/simple.wghts

What should we do?

-frags::bounded_protocol

three-mers only, please

-frags::frag_sizes 3

-frags::n_candidates 200

-frags::n_frags 200

Output

-out::file::frag_prefix output_files/frags

-frags::describe_fragments output_files/frags.fsc

The flags provide the necessary input databases, and input files:

score weights, sequence profile (2jsvX.checkpoint), reference

structure and secondary structure prediction. The secondary

structure prediction flag is given a tag-name by an arbitrary string

identifier, in this case predA. The -frags::bounded_protocol flag

sets up a BoundedCollector and a BestTotalScoreSelector.

Further options define the desired fragment set, which in this

case should contain two hundred 3-mers for each residue. The

fragments will be selected from the collector with 200 candidates,

which means that the final selection step doesn’t do anything here,

just returns all the collected candidates as fragments. Finally, the

two last flags define the name of the output fragment file and

fragment score file (described below).

Fragment Picking in Rosetta

PLoS ONE | www.plosone.org 5 August 2011 | Volume 6 | Issue 8 | e23294

The score weight file:

score name priority wght max extras

RamaScore 400 2.0 - predA

SecondarySimilarity 350 1.0 - predA

ProfileScoreL1 200 0.5 -

FragmentCrmsd 0 0.0 -

defines three score components. One can find the ‘‘predA’’ tag

here, which connects the secondary structure prediction file

(2jsvX.psipred.ss2 in above example) with its SecondarySimilarity

score. In general, users can apply several SecondarySimilarity

scores at a time, each of them based on its own secondary structure

prediction and with a different weight, e.g. reflecting a priori

knowledge about the accuracy of these predictors. The tag system

is the only way to connect a secondary structure prediction file

with the proper score component. The secondary structure

prediction is also necessary for RamaScore score, which forces

the candidates to lay in the allowed region of the relevant

Ramachandran map. FragmentCrmsd score has weight 0.0 and

thus it does not affect the total score and has no influence on

fragment picking. Scores with zero-weights will have their values

printed into a fragment score file and thus are useful as metrics. In

this case FragmentCrmsd is used to provide the Ca-RMSD of

each fragment when superimposed onto the appropriate window

of the user defined target pdb (-in:file:s), allowing for measurement

of the fragments’ quality given the structure of a known target.

Such zero-weighted scores are termed as late scoring in the

source code; the program evaluates them only for the final

fragments and they have practically no impact on the execution

time.

The fragment score file is produced only when -frags::descri-

be_fragments flag is given. There will be a separate file for each

fragment size. Each line of the file describe a single fragment,

providing:

– starting position in a query sequence

– starting position in a source protein, as recorded in the vall

database

– PDB id of the source protein

– chain id of the source protein

– secondary structure for the middle residue in the fragment

– values of all the score components, ordered according to the

descending score priority

– total weighted score

– fragment id, which is the line number in the vall file where the

fragment starts (provided for debugging purposes)

#query_pos vall_pos pdbid c ss RamaScore

1 147 2h2z A E 0.00

1 2 2qg8 A E 0.00

1 154 1zbp A E 0.00

1 128 2r0x A E 0.00

1 101 2v1l A E 0.00

SecondarySimilarity FragmentCrmsd TOTAL FRAG_ID

0.16 0.34 0.496 1789106

0.16 0.44 0.496 2169849

0.16 0.28 0.496 1327285

0.16 0.31 0.496 2204322

0.16 0.31 0.496 2243744

Quota protocol. The second example demonstrates how to

pick fragments for an ab-initio structure prediction task, where

fragments are diversified to preserve the secondary structure type

which, according to predictions, is less probable. Because individual

secondary structure predictions can often mispredict, the protocol

takes into account the predictions made by three independent

‘‘expert’’ programs: PsiPred [5], Jufo and SAM [6], which results in a

total of 9 quota pools (three secondary structure propensity pools (H,

E and L) for each of the three predictors). Quota allowance for each

pool is computed as the product of the predictor allowance and the

secondary structure type propensity as predicted by this predictor.

Predictor allowance fractions are defined in quota.def file:

#pool_id pool_name fraction

1 psipred 0.6

2 jufo 0.2

3 sam 0.2

The score weight file looks in this case as follows:

score name priority wght max extras

SecondarySimilarity 350 0.5 - psipred

SecondarySimilarity 300 0.5 - sam

SecondarySimilarity 250 0.5 - jufo

RamaScore 150 1.0 - psipred

RamaScore 150 1.0 - jufo

RamaScore 150 1.0 - sam

ProfileScoreL1 200 1.0 -

FragmentCrmsd 30 0.0 -

and provides three SecondarySimilarity score components based

on three different predictors. Note, that the tags assigned to score

components match tags in the quota.def file. Finally, the following

flag file is used:

Input databases

-database ../database

-in:file:vall ../vall. apr24.2008.extended.gz

Weights file

-frags::scoring::config input_files/quota_protocol.wghts

Query-related input files

-in::file::checkpoint input_files/2jsvX.checkpoint

-in::file::s input_files/2jsvX.pdb

-frags::ss_pred input_files/2jsvX.psipred.ss2

psipred input_files/2jsvX.sam.ss2 sam input_files/

2jsvX.jufo.ss2 jufo

Get rid of homologues fragments

-frags::denied_pdb input_files/2jsvX.homolog_vall

Quota.def file defines the shares between different quota

pools.

The total should be 1.0

-frags::picking::quota_config_file input_files/quota.def

we need nine-mers and three-mers

-frags::frag_sizes 9 3

Select 200 fragments from 700 candidates. We need more

candidates

than fragments for the selector to work properly

-frags::n_candidates 700

-frags::n_frags 200

Output

-out::file::frag_prefix output_files/frags

-frags::describe_fragments output_files/frags.fsc

In addition to the flags known from the previous example, the

flag file provides also a quota definition file (quota.def) and asks

both for 3-mers and 9-mers. The three secondary structure

Fragment Picking in Rosetta

PLoS ONE | www.plosone.org 6 August 2011 | Volume 6 | Issue 8 | e23294

prediction files are given one by one with their string identifiers in

a single line. The -frags::denied_pdb flag initiates DenyPdbId-

Filter object which filters out unwanted chunks based on their

PDB id and in fact is not the part of the protocol in its real-life

application. The flag has been specified here to avoid contami-

nating the resulting fragment set by fragments coming from

homologous structures, as in practice the ab-initio protocol is

typically only used when no homologous structures are available.

Figure 5 gives a real-life illustration of the quota system, depicting

the nine quota pools in three groups (PsiPred, SAM and Jufo),

each with three pools. The three groups are based on which

secondary structure prediction will be used to score the fragments

that group selects, and each groups associated pools differ based

on the secondary structure allowed at the middle residue, either E,

H, or L. In other words, the pools within a group share the same

secondary structure similarity score function but are targeted for

different secondary structure type. The three score functions

contain the same scoring terms: ProfileScoreL1, SecondarySimi-

larity and RamaScore. The latter two however depend on

predicted secondary structure probabilities, which results in

different score values for the same candidate.

Note also, that in this case NC is much higher than NF. This is

necessary to provide enough candidates for the selection step in

order to get assumed number of fragments. To explain this

detail let us assume that all the three predictors gave 10%

chance to a helix at a certain position. Taking into account the

shares of the three predictors defined as in quota.def file listed

above, one would expect 200 * 0.1 = 20 helical fragments: 12

from PsiPred, 4 from SAM and 4 from Jufo. During the

collecting process each candidate is offered to every pool; a

helical candidate may be accepted by any of the three helix-

oriented quota pools. If the scoring functions assigned to pools

are very similar to each other (i.e. when the three secondary

structure predictions are very similar), the three collectors may

contain the same candidates, which in the worst-case yields only

12 distinct fragments.

Flexible loop design protocol. A critical improvement

provided by the new fragment picker is the ability to update the

selected fragments when the protein sequence is perturbed, as is

the case for an iterative protein design process. A Rosetta protein

design process that allows a flexible backbone will typically

alternate between structure prediction and sequence perturbation

for many cycles. Accurate predictions of designed structures

elevates confidence in the resulting models. This continuously

focusing design cycle method has enabled the creation of a novel

protein topology [7]. Conventionally, fragment libraries are static

during this optimization because they are generated beforehand by

NNMAKE. Since the design sequence is not known beforehand,

these static libraries are based either on the starting sequence or

using a generic poly-Ala/poly-Val sequence. The new fragment

picker allows the fragment library to update on-the-fly as the

sequence changes. A simplified ad hoc version of this concept had

been previously implemented in a branch of Rosetta; this new

version however couples the full power and configurability of the

fragment picker into Rosetta.

In theory, having fragments that correspond directly to the

current sequence in a simulation should result in superior

performance. As evidence that specific sequences select fragments

more structurally similar to the input, we constructed a simple

fragment selection test. We selected fragments from three loop

structures with different input sequences (poly-alanine, poly-valine

or a sequence taken from the structure). Two of the loop structures

were artificially fabricated by setting each W, Y to Ramachandran

pairs that were rare but plausible, then repacked with Rosetta to

determine the optimal sequence. By construction, these ‘‘toy’’

loops anticipate structures where poly-alanine and poly-valine

input sequences will under-sample the proper fragments. A third

test case used a natural loop from an antibody (1MEL) where we

can expect that subtle details in the structure could matter to

function. The fragments selected using the structure-specific

sequence have distinctly focused W, Y distributions that are better

reflective of the prepared structure (Figure 6).

Figure 5. Quota example: the number of fragments assigned to each quota pool based on actual prediction for the sequence of
Ubiquitin, residue 39. There are nine pools, based on three secondary structure predictors (PsiPred, Jufo and SAM) predicting the three secondary
structure types: helical (H, purple), coil (C, gray) and extended (E, blue). The order of columns with predicted probabilities is: C, E, H. Notice, that SAM
predicted coil while PsiPred and Jufo a helix. While PsiPred’s prediction however says ‘‘C with E possible’’, Jufo gives a slight chance to H. The ninth
pool (E for SAM) has size 0 in this case.
doi:10.1371/journal.pone.0023294.g005

Fragment Picking in Rosetta

PLoS ONE | www.plosone.org 7 August 2011 | Volume 6 | Issue 8 | e23294

To demonstrate how the fragment picker components can be

modified to achieve a project-specific goal, here we present a simple

protocol for designing loops. The protocol updates the set of

fragments throughout the simulation. This design-mode fragment

picking requires two features: 1) there must be no dependence on

pre-computed data, because we must compute on-the-fly and 2) a

direct API must exist between the fragment picker objects (e.g.

FragmentPicker) and the fragment mover objects (e.g. Classic-

FragmentMover). The two most common sequence-dependent

input data for fragment picking protocols are a secondary structure

objective and a sequence profile. In our loop design application the

secondary structure prediction is simple: everything is in a loop

conformation. For a sequence profile we have a choice of supplying

the exact sequence of the current design iteration step, or somehow

generating a broader sequence profile. In this example, we generate

a profile by convolving the current sequence with a BLOSUM62

sequence substitution matrix. A more complex protocol might use

convolution conditioned on a preferred secondary structure or

might up-weight the exact sequence more as the design process

converged. We created a fragment score type (ProfileScoreSubMa-

trix), which generates a sequence profile using just the sequence in

the current pose. Finally, the new fragment picker to fragment

mover API utilizes the ConstantLengthFragSet object and converts

the fragment residues (VallResidue) into fragment frames (Frame

and AnnotatedFragData objects).

The protocol can be run with:

flexibleLoopDesign.linuxgccrelease @flex-loop-protocol.flags

and the flex-loop-protocol.flags flag file looks as follows:

Input structure to design

-in:file:pdb input_files/flexloop_pdb.pdb

Input databases

-database ../database

-in:file:vall ../vall.apr24.2008.extended.gz

Weights file

-frags::scoring::config input_files/flexloop_protocol.wghts

Residue file for which residue will be designed

-resfile input_files/flexloop_resfile.txt

Loop defintion file

-loops:loop_file input_files/flexloop_loopdef.txt

Run Structure prediction/Structure design cycle 10 times

-dwkulp::nSteps 10

Constant seed for protocol demo

-run::constant_seed

The protocol flags are similar to previous protocols, except here

we add standard Rosetta res and loop files and a starting protein

structure as design parameters.

The scoring scheme is as follows:

#_score_name priority wght max extras

SecondarySimilarity 350 2.0 - loop

ProfileScoreSubMatrix 200 1.0 - BLOSUM62.txt

The scoring configuration file has the same format as previous

examples. The flexibleLoopDesign program requires that the

SecondarySimilarity scorer be passed the extra flag ‘‘loop’’. The

flag for the ProfileScoreSubMatrix scorer is the full path and

filename of an amino acid substitution matrix file, where each

natural amino acid gets a score if it were to change into each of the

19 other natural amino acids. Here, we used a BLOSUM62

matrix for this purpose.

Figure 6. Phi/Psi distributions of picked fragments using different query sequences and structures. Each row represents a different
target loop structure. Each column is a different method for deriving the fragment sets: poly alanine, poly valine, and a structure-specific sequence.
Encircled crosses in each figure show the phi-psi of the prepared fragment (input structure). Each square represents a phi/psi bin, where the color
reflects the number of phi/psi values for the middle residue of the selected fragments. The fragment distribution picked using a specific sequence is
variable and has density most consistent with the input backbone structure (encircled crosses).
doi:10.1371/journal.pone.0023294.g006

Fragment Picking in Rosetta

PLoS ONE | www.plosone.org 8 August 2011 | Volume 6 | Issue 8 | e23294

Modifying Protocols
The main advantage of the new system is that a user can easily

alter the fragment picking process by simple adjustments to its

configuration files. Here we provide two illustrative examples.

Using restraints. It is possible to use restrains during

fragment picking in a similar way as they are used in Rosetta

runs. Currently two kinds of Rosetta restraints (for legacy reasons

they are referred in Rosetta as ‘‘constraints’’) are accessible from

the picker:

AtomPairConstraintsScore and DihedralConstraintsScore.

The former type of a restraint is used to favor a certain distance

value between two desired atoms within a fragment. The latter

score is based on four arbitrary atoms and it restraints a dihedral

angle. During fragment picking restraints may be applied only to

Cb and backbone atoms as all other atoms are not available from

the vall database. Moreover, to be used the restraints must be

contained within the fragment size, e. g. when nine-mers are to be

selected based on AtomPairConstraint score between atoms from

i-th and j-th residue, the condition |i2j|,9 must be satisfied.

Inappropriate restraints are ignored by the program, with a

warning message printed while reading the data file.

To pick restrained fragments one has to use the -con-

straints::cst_file flag to provide a file with restraints data and add

the AtomPairConstraintsScore term to the score weight file. The

standard Rosetta file format is used for restraints data, an example

is provided along with the protocol capture. As with any fragment

scoring term, restraints are protocol independent and can be

combined with any of the examples shown. Here we illustrate this

feature using TEDOR data (Solid-State NMR measurement)

collected for GB1 protein [8]. Distance restraints in XPlor format

have been downloaded from a BMRB database [9], filtered and

converted to Rosetta *.cst file format. All the input files, command

line and the output may be found in the protocol capture data.

Using torsion class score. The second modification

example shows the use of TorsionBinSimilarity score, which is

based on 5-state torsion angle class definition [2]. The five states,

denoted by five ABEGO letters represent different regions in

Ramachandran space and a cis-omega conformation (bin O). User

should use -in::file::torsion_bin_probs flag to introduce an input

file that provides probability of finding each of the states at a given

position in an amino acid sequence. The score term assesses the

match between the provided probabilities and the actual

conformation observed for a vall residue. The input

probabilities, for instance, may be obtained by a machine

learning method or extracted from template structures that are

used for modeling.

In this example we tweak the input file to selectively introduce a

bulge at a single position in a b-strand while leaving all the other

positions unaffected. For the sake of simplicity, we demonstrate

this feature along with the ‘‘BestCandidates’’ protocol. The

necessary input file (input_files/2jsvX.abego in this case - it may

be found in the protocol capture data) consists of seven columns:

residue number, torsion class ID and the five probabilities given in

the ABEGO order. In this example all the probabilities are equal

to 1.0 except the position 16, which we decided to alter. The bulge

is enforced by favoring bin ‘A’ in the middle of a strand. Torsion

bin probability 1.0 results in the lowest possible score 0.0,

probability 0.0 on the contrary gives (the highest) score 1.0. Thus

for the rows when all the probabilities are set to 1.0 the score is

always 0.0 and in these cases TorsionBinSimilarity does not affect

the selection process. At the position 16 only the conformations

with a bin get score 0 and all the other are penalized with the

highest possible value.

Besides the change in a command line, a TorsionBinSimilarity

score term must be added to a score weight file along with

appropriate parameters. Here we used:

TorsionBinSimilarity 500 1.0 -

The resulting fragments are basically the same as for the

‘‘BestCandidates’’ case. The only difference is that all fragments

(both 3-mers and 9-mers) that cover the residue 16 include a bulge.

Obviously this bulge will also be present in structures calculated in

a Rosetta run that is based on these fragments. One can introduce

a kink into a helix in the same way, by forcing a residue to be of

‘‘E’’ class.

Results

The design on the new fragment picker is a tradeoff between

efficiency and flexibility. Modular, object oriented design leads to

unavoidable overheads. Nevertheless run time of the new

application is comparable to nnmake, and the order of the new

algorithm is linear as a function of the query protein size. Although

we put a lot of effort into recapturing the original behavior of

nnmake, subtle differences between the algorithms and in

secondary structure handling result in different fragment sets. To

provide an ultimate comparison between the two fragment picking

applications, we ran an ab-initio prediction on a benchmark set of

62 proteins (for the list of targets see Table S1). The two groups of

folding simulations were based on two fragment sets: the reference

one, obtained by nnmake with standard settings and the new one,

derived as described in ‘‘Quota protocol’’ section above. The

benchmark has been performed by the means of Rosetta@home

distributed computing project. We spent 500 work units for each

target, which resulted in around two CPU-months (roughly 1400

CPU-hours) of calculations per target, both for the control run as

well as for the folding simulations with the new fragments. Because

the target sequences vary in the number of amino acids, different

targets yielded different number of models, ranging from 4065 for

1cg5B (141 residues) to 19183 for 1pgxA (55 residues). Figure 7

shows 0.1-percentile crmsd obtained from simulations with the

new fragments (Y axis) as a function of the same quantity based on

Figure 7. Ab-initio benchmark: each symbol corresponds to a
single protein target, for which an ab-initio structure prediction
has been run with the reference and the new fragments (X an Y
axis, respectively). Red (green) points denote targets for the new
algorithm yields worse (better) results. For targets marked by blue
symbols no significant difference has been observed.
doi:10.1371/journal.pone.0023294.g007

Fragment Picking in Rosetta

PLoS ONE | www.plosone.org 9 August 2011 | Volume 6 | Issue 8 | e23294

the reference fragments (X-axis). Each symbol in the figure

represents a single target protein. The crmsd 0.1-percentiles (the

point location) and their standard deviation (marked as error bars)

were computed by 50-fold bootstrap procedure. The plot shows

that the two fragment sets are equivalent in quality, as they result

in very similar protein predictions, both for successful targets and

for failures.

Discussion

We have developed a new algorithm for selecting protein

fragments used by Rosetta for protein structure modeling. The

new fragment picking system is quite comparable to the old one in

terms of the results of ab-initio structure prediction benchmark.

The big advantage of the new method is that it is object oriented

and additional scoring terms, representing for example new

experimental data sources, can readily be incorporated. The user

can fine-tune the picking process through the FragmentScore-

Manager and the BoundedCollector. The new picker has been

specifically designed to incorporate new kinds of data as easily as

possible. The program as well as all the files necessary to run the

example calculations described in this contribution has been made

publicly available with Rosetta 3.3 version, released on July 26,

2011.

Supporting Information

Table S1 Comparison between nnmake program and
the new fragment picker. The ab-initio benchmark set

comprises 62 small globular proteins. For each target, coordinate

root-mean square deviation (crmsd) of the top 0.1% model is

reported based on extensive Rosetta computations. Columns 7, 8:

the reference (nnmake) fragments, columns 9, 10: fragments

selected by the new algorithm; avg and sdev are mean and

standard deviation from 50-fold 0.1 percentile bootstrap estima-

tion (see also Figure 6).

(DOC)

Author Contributions

Conceived and designed the experiments: DG RMV DWK DB CEMS.

Performed the experiments: DG RMV DWK. Analyzed the data: DG

RMV DWK. Wrote the paper: DG. The original nnmake program:

CEMS. Helped with writing the manuscript: DWK RMV CEMS DB.

References

1. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, et al. (2011)
ROSETTA3: an object-oriented software suite for the simulation and design of

macromolecules. Methods Enzymol 487: 545–574.
2. Kim DE, Blum B, Bradley P, Baker D (2009) Sampling bottlenecks in de novo

protein structure prediction. J Mol Biol 393: 249–260.

3. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped
BLAST and PSI-BLAST: a new generation of protein database search

programs. Nucleic Acids Res 25: 3389–3402.
4. Gamma E, Helm R, Johnson RE, Vlissides J (2005) Design patterns: elements of

reusable object-oriented software. Boston etc.: Addison-Wesley. XV, 395 str. p.

5. Ward JJ, McGuffin LJ, Buxton BF, Jones DT (2003) Secondary structure
prediction with support vector machines. Bioinformatics 19: 1650–1655.

6. Karplus K (2009) SAM-T08, HMM-based protein structure prediction. Nucleic
Acids Res 37: W492–497.

7. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, et al. (2003) Design
of a novel globular protein fold with atomic-level accuracy. Science 302:

1364–1368.
8. Nieuwkoop AJ, Wylie BJ, Franks WT, Shah GJ, Rienstra CM (2009) Atomic

resolution protein structure determination by three-dimensional transferred echo

double resonance solid-state nuclear magnetic resonance spectroscopy. J Chem
Phys 131: 095101.

9. Doreleijers JF, Vranken WF, Schulte C, Lin J, Wedell JR, et al. (2009) The
NMR restraints grid at BMRB for 5,266 protein and nucleic acid PDB entries.

J Biomol NMR 45: 389–396.

10. Gront D, Kolinski A (2008) Utility library for structural bioinformatics.
Bioinformatics 24: 584–585.

11. Gront D, Kolinski A (2006) BioShell–a package of tools for structural biology
computations. Bioinformatics 22: 621–622.

Fragment Picking in Rosetta

PLoS ONE | www.plosone.org 10 August 2011 | Volume 6 | Issue 8 | e23294

