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Abstract: Orthopairs (pairs of disjoint sets) have points in common with many approaches to
managing vaguness/uncertainty such as fuzzy sets, rough sets, soft sets, etc. Indeed, they are
successfully employed to address partial knowledge, consensus, and borderline cases. One of the
generalized versions of orthopairs is intuitionistic fuzzy sets which is a well-known theory for
researchers interested in fuzzy set theory. To extend the area of application of fuzzy set theory and
address more empirical situations, the limitation that the grades of membership and non-membership
must be calibrated with the same power should be canceled. To this end, we dedicate this manuscript
to introducing a generalized frame for orthopair fuzzy sets called “(m, n)-Fuzzy sets”, which will be
an efficient tool to deal with issues that require different importances for the degrees of membership
and non-membership and cannot be addressed by the fuzzification tools existing in the published
literature. We first establish its fundamental set of operations and investigate its abstract properties
that can then be transmitted to the various models they are in connection with. Then, to rank (m, n)-
Fuzzy sets, we define the functions of score and accuracy, and formulate aggregation operators to be
used with (m, n)-Fuzzy sets. Ultimately, we develop the successful technique “aggregation operators”
to handle multi-criteria decision-making problems in the environment of (m, n)-Fuzzy sets. The
proposed technique has been illustrated and analyzed via a numerical example.

Keywords: (m, n)-Fuzzy set; score and accuracy functions; (m, n)-aggregation operators;
multi-criteria decision-making

1. Introduction

The problems in the real world are too complicated since it includes ambiguity, un-
certainty, or insufficient knowledge. So, decision-makers treat these problems using the
methodology of fuzzification which is a vital method to address humanistic systems existing
in real-world problems. The very important theory of fuzzy sets (FSs) was first presented
by Zadeh [1].Then, it was applied by many researchers and scholars to handle many types
of real phenomena in different areas and propose the best solution(s). However, the FS
theory suffered from disability to cover human judgments of the nature of dissatisfaction.
This motivated Atanassov [2] to generalize the concept of the FS and present the idea of
intuitionistic fuzzy sets (IFSs) to overcome the aforesaid limitation. Atanassov [2] explored
two new operators for IFSs and investigated their main characterizations and properties.

However, the sum of membership and non-membership grades in the existing IFS
cannot exceed one, which consider a limitation in some situations. To overcome this
obstacle, Yager [3], in 2013, developed a new class of FSs called Pythagorean fuzzy sets
(PFSs), with the relaxing condition that the sum of the squares of membership and non-
membership grades should be less than or equal to one. Afterward, Senapati and Yager [4]
introduced a more generic model than PFSs called Fermatean fuzzy sets (FFSs) with the
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condition that the sum of the cubes of membership and non-membership grades should
not exceed one. These generalizations of IFSs have been exploited to solve and cope with
different applications as observed in [5]. For sake of enlarging the domain of membership
and non-membership degrees, Yager [6] proposed the concept of q-rung orthopair fuzzy
sets (q-ROFSs), where q is greater than or equal to one.

Since uncertainty is a significant issue in various disciplines and its complexity in-
creases day by day, it becomes necessary for some improvements for IFSs to keep up with
these developments. Recently, some authors have suggested coping with the input data by
using different significances for membership and non-membership degrees. This approach
will be useable to describe some real-life issues and enlarge the spaces of data under study.
In this regard, Ibrahim et al. [7] established the idea of (3,2)-Fuzzy sets which lie between
Pythagorean and Fermatean fuzzy sets. Then, Al-shami [8] displayed the idea of (2,1)-Fuzzy
sets and furnished its basic set of operations. Moreover, Al-shami et al. [9] displayed the
idea of SR-fuzzy sets and provided some weighted aggregated operators induced from
SR-fuzzy sets. Another technique to expand the space of uncertainty was introduced by
Gao and Zhang [10] under the name of linear orthopair fuzzy sets.

The aforementioned types of IFSs have been applied to handle decision-making
problems that appeared in human daily life activities. Decision-makers made use of different
types of aggregation operators inspired by IFSs and their extensions to obtain a unique
result from the collective information given by different sources. Many contributions have
been provided in this important branch such as the studies of Xu [11] and Xu and Yager [12]
to furnish weighted averaging aggregation and weighted geometric aggregation operators
under the environment of IFSs. It also introduced several kinds of aggregation operators in
the frame of IFSs such as given in [13,14]. These aggregation operators were familiarized
and discussed with their applications in the environments of PFSs and FFSs by a lot number
of researchers and scholars such as Jana et al. [15], Khan et al. [13], Peng and Yuan [16],
Rahman et al. [17], Senapati and Yager [4] Shahzadi et al. [18] and Yager and Abbasov [19].
Moreover, it was introduced some complex aggregation functions in CQROF setting by
Jana et al. [20].

It remains to draw the attention of the readers that the hybridization of fuzzy sets
and their generalizations with the other uncertainty instruments such as rough sets and
soft sets can work in tandem to overcome complicated issues. This hybridization forms
a fruitful area of research since it proved its validity to model and address many real-life
problems. The combination of the theories of fuzzy and soft sets was first investigated
by Maji et al. [21]. Further investigation and application for this class were provided
in [22–24]. They showed that fuzzification of soft sets helped to describe a larger family of
issues more accurately. Then, with reasonable motivations researchers popularized this
hybridization further for IFSs [25], PFSs [16], FFSs [26], q-ROFSs [27] and (a, b)-FSs [28].
Moreover, the mathematical analysis of uncertainty from the standpoint of rough and
fuzzy sets was discussed, for more details see the recent manuscripts and the references
mentioned therein [29–33]. Studying fuzzification via abstract structures (e.g., topology
and algebra) was the goal of some articles [34–36].

The motivations of writing this research are, first, to initiate a new class of IFSs called
(m, n)-Fuzzy sets, which helps to expand the degrees of membership and non-membership
more than all types of q-ROFSs classes. Second, the proposed class enables us to evaluate
the input data with different significance for grades of membership and non-membership,
which is appropriate for some real-life issues. This matter is not applicable to the other
generalizations of IFSs because they give an equal significance to grades of membership
and non-membership: 2 in PFSs, 3 in FFSs, and q in q-ROFSs. Third, to establish new
kind of weighted aggregation operators and scrutinize their characterizations. Finally, we
exhibit a MCDM method based on the operators proposed herein.

The remainder of the manuscript is organised as follows:

(1) In Section 2, we survey orthopairs in the light of fuzzy computing with an illustra-
tive example.
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(2) Section 3 introduces a novel class of generalized IFSs called (m, n)-Fuzzy sets and
displays a set of operations between (m, n)-Fuzzy sets.

(3) Section 4 initiates the weighted aggregated operators via (m, n)-Fuzzy sets and scruti-
nizes their master features.

(4) Section 5 is dedicated to investigate an MCDM method with respect to these oper-
ators. The followed technique to implement this method is demonstrated through
an example.

(5) Finally, we point out novel facets of the current paradigm and summarize some
possible future contributions in Section 6.

2. Preliminaries

We dedicated this section to briefly displaying the main generalizations of intu-
itionistic fuzzy sets with elucidative examples as well as showing the main motivations to
study them.

Definition 1 ([2]). The IFS defined over the universal set U is represented as follows.

E = {〈a, βE(a), λE(a)〉 : a ∈ U}, where βE, λE : U → [0, 1] are functions that respectively
determine the degrees of membership and non-membership for every a ∈ U under the constraint

0 ≤ βE(a) + λE(a) ≤ 1.

The degree indeterminacy for each a ∈ U with respect to an IFS is calculated by

αE(a) = 1− (βE(a) + λE(a)).

It is well known that an IFS E becomes a FS if βE(a) = 1− λE(a) for all a ∈ U.

Definition 2 ([3]). The PFS defined over the universal set U is represented as follows.

E = {〈a, βE(a), λE(a)〉 : a ∈ U}, where βE, λE : U → [0, 1] are functions that respectively
determine the degrees of membership and non-membership for every a ∈ U under the constraint

0 ≤ (βE(a))2 + (λE(a))2 ≤ 1.

The degree of indeterminacy for each a ∈ U with respect to a PFS is calculated by

αE(a) =
√

1− ((βE(a))2 + (λE(a))2).

The space of membership and non-membership of an element was enlarged via the
class of FFSs which introduced by Senapati and Yager [37].

Definition 3. The FFS defined over the universal set U is represented as follows.

E = {〈a, βE(a), λE(a)〉 : a ∈ U}, where βE, λE : U → [0, 1] are functions that respectively
determine the degrees of membership and non-membership for every a ∈ U under the constraint

0 ≤ (βE(a))3 + (λE(a))3 ≤ 1.

The indeterminacy degree of each a ∈ U with respect to a FFS is given by

αE(a) = 3
√

1− ((βE(a))3 + (λE(a))3).

To cover more cases of vaguness/uncertainity, Yager [6] familiarized the concept of
q-rung orthopair fuzzy sets as follows.

Definition 4. The q-ROFS defined over the universal set U is represented for each q ≥ 1 as follows.

E = {〈a, βE(a), λE(a)〉 : a ∈ U}, where βE, λE : U → [0, 1] are functions that respectively
determine the degrees of membership and non-membership for every a ∈ U under the constraint

0 ≤ (βE(a))p + (λE(a))p ≤ 1.

The indeterminacy degree of each a ∈ U with respect to a q-ROFS is given by

αE(a) = p
√

1− ((βE(a))p + (λE(a))p).
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3. (m, n)-Fuzzy Sets

The main aim of this section is to formulate the concept of (m, n)-Fuzzy sets and
provide their basic set of operations. The previous types of orthopair fuzzy sets are special
cases of (m, n)-Fuzzy sets because they are obtained by taking m = n. The environment
of (m, n)-Fuzzy sets offers a variety of grade spaces larger than those obtained from the
different types of q-ROFSs, which makes it a successful tool to model many real-life
problems, also, it allows us to apply different preferences for the opposite views (which
are known by membership and nonmembership) by controlling the values of variables m
and n.

Definition 5. Let m, n be positive real numbers. The (m, n)-Fuzzy set (briefly, (m, n)-FS) E over
the universal set U is given for each m, n ≥ 1 as follows.

E = {〈a, βE(a), λE(a)〉 : a ∈ U}, where βE, λE : U → [0, 1] are functions that respectively
determine the degrees of membership and non-membership for every a ∈ U under the constraint

0 ≤ (βE(a))m + (λE(a))n ≤ 1.

The degree of indeterminacy with respect to an (m, n)-FS E is a function αE : U → [0, 1] given by

αE(a) = (1− ((βE(a))m + (λE(a)n))
1

mn for each a ∈ U.

It is obvious that (βE(a))m +(λE(a))n +(αE(a))mn = 1. Note that αE(a) = 0 whenever
(βE(a))m + (λE(a))n = 1.

For the sake of simplicity, an (m, n)-FS E = {〈a, βE(a), λE(a)〉 : a ∈ U} is denoted by
the symbol E = (βE, λE). The family of all (m, n)-FSs defined over U is symbolized by
I(m,n)−FS.

In Figure 1, we display some grade spaces of (m, n)-Fuzzy membership and (m, n)-
Fuzzy non-membership.

1

1

x
3
+y

2
=1

x+y=1

x
3
+y

3
=1

x
2
+y=1

Figure 1. Some grade spaces of (m, n)-FSs

Remark 1. (m, n)-FS coincides with

1. IFS if m = n = 1.
2. PFS if m = n = 2.
3. FFS if m = n = 3.
4. q-ROFS if m = n = q.
5. (2, 3)-FS if m = 2 and n = 3.

In what follows, we compare (m, n)-FS with the previous generalizations of IFSs.

Proposition 1.

1. Every IFS is an (m, n)-FS.
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2. If m ≥ 2 and n ≥ 2, then a PFS is an (m, n)-FS.
3. If m ≥ 3 and n ≥ 3, then a FFS is an (m, n)-FS.
4. If m ≥ q and n ≥ q, then a q-ROFS is an (m, n)-FS.
5. If m ≥ 2 and n ≥ 3, then a (2, 3)-FS is an (m, n)-FS.

Proof. Straightforward.

As we show in examples given in Section 2 that the converses of the relationships
given in Proposition 1 are false, in general.

Definition 6. Let E1 = (βE1 , λE1) and E2 = (βE2 , λE2) be (m, n)-Fuzzy sets on U. Then

1. E1 ∪ E2 = (max{βE1 , βE2}, min{λE1 , λE2}).
2. E1 ∩ E2 = (min{βE1 , βE2}, max{λE1 , λE2}).
3. Ec

1 = (λ
n
m
E1

, β
m
n
E1
).

Note that (λ
n
m
E1
)m + (β

m
n
E1
)n = λn

E1
+ βm

E1
≤ 1, so Ec

1 is an (m, n)-Fuzzy set. It is obvious
that (Ec)c = (βE, λE).

For more illustration we provide the following example.

Example 1. Assume that E1 = (0.9, 0.3) and E2 = (0.7, 0.8) are both (4, 2)-FSs on U. Then

1. E1 ∪ E2 = (max{βE1 , βE2}, min{λE1 , λE2})

= (max{0.9, 0.7}, min{0.3, 0.8}) = (0.9, 0.3).

2. E1 ∩ E2 = (min{βE1 , βE2}, max{λE1 , λE2})

= (min{0.9, 0.7}, max{0.3, 0.8}) = (0.7, 0.8).

3. Ec
1 = (0.3, 0.9) and Ec

2 = (0.8, 0.7).

Proposition 2. Let E1 = (βE1 , λE1) and E2 = (βE2 , λE2) be (m, n)-FSs on U. Then

1. E1 ∪ E2 = E2 ∪ E1.
2. E1 ∩ E2 = E2 ∩ E1.

Proof. Straightforward.

Proposition 3. Let E1 = (βE1 , λE1), E2 = (βE2 , λE2) and E3 = (βE3 , λE3) be (m, n)-FSs on
U. Then

1. E1 ∪ (E2 ∪ E3) = (E1 ∪ E2) ∪ E3.
2. E1 ∩ (E2 ∩ E3) = (E1 ∩ E2) ∩ E3.

Proof. For the three (m, n)-FSs E1, E2 and E3 on U, according to Definition 6, we obtain:

1. E1 ∪ (E2 ∪ E3) = (βE1 , λE1) ∪ (max{βE2 , βE3}, min{λE2 , λE3})
= (max{βE1 , max{βE2 , βE3}}, min{λE1 , min{λE2 , λE3}})
= (max{max{βE1 , βE2}, βE3}, min{min{λE1 , λE2}, λE3})
= (max{βE1 , βE2}, min{λE1 , λE2}) ∪ (βE3 , λE3)
= (E1 ∩ E2) ∪ E3.

2. Similar to 1 above.

Theorem 1. Let E1 = (βE1 , λE1), E2 = (βE2 , λE2) and E3 = (βE3 , λE3) be (m, n)-FSs. Then

1. (E1 ∪ E2) ∩ E3 = (E1 ∩ E3) ∪ (E2 ∩ E3).
2. (E1 ∩ E2) ∪ E3 = (E1 ∪ E3) ∩ (E2 ∪ E3).

Proof. For the three (m, n)-FSs E1, E2 and E3, according to Definition 6, we obtain:
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1. (E1 ∪ E2) ∩ E3 = (max{βE1 , βE2}, min{λE1 , λE2}) ∩ (βE3 , λE3)
= (min{max{βE1 , βE2}, βE3}, max{min{λE1 , λE2}, λE3}). And,
(E1 ∩ E3) ∪ (E2 ∩ E3) = (min{βE1 , βE3}, max{λE1 , λE3}) ∪ (min{βE2 , βE3}, max{λE2 , λE3})
= (max{min{βE1 , βE3}, min{βE2 , βE3}}, min{max{λE1 , λE3}, max{λE2 , λE3}}). Then,

min{max{βE1 , βE2}, βE3} =



βE2 if βE1 ≤ βE2 ≤ βE3 ,
βE1 if βE2 ≤ βE1 ≤ βE3 ,
βE3 if βE1 ≤ βE3 ≤ βE2 ,
βE3 if βE3 ≤ βE1 ≤ βE2 ,
βE3 if βE2 ≤ βE3 ≤ βE1 ,
βE3 if βE3 ≤ βE2 ≤ βE1 ,

max{min{λE1 , λE2}, λE3} =



λE3 if λE1 ≤ λE2 ≤ λE3 ,
λE3 if λE2 ≤ λE1 ≤ λE3 ,
λE3 if λE1 ≤ λE3 ≤ λE2 ,
λE1 if λE3 ≤ λE1 ≤ λE2 ,
λE3 if λE2 ≤ λE3 ≤ λE1 ,
λE2 if λE3 ≤ λE2 ≤ λE1 ,

max{min{βE1 , βE3}, min{βE2 , βE3}} =



βE2 if βE1 ≤ βE2 ≤ βE3 ,
βE1 if βE2 ≤ βE1 ≤ βE3 ,
βE3 if βE1 ≤ βE3 ≤ βE2 ,
βE3 if βE3 ≤ βE1 ≤ βE2 ,
βE3 if βE2 ≤ βE3 ≤ βE1 ,
βE3 if βE3 ≤ βE2 ≤ βE1 ,

min{max{λE1 , λE3}, max{λE2 , λE3}} =



λE3 if λE1 ≤ λE2 ≤ λE3 ,
λE3 if λE2 ≤ λE1 ≤ λE3 ,
λE3 if λE1 ≤ λE3 ≤ λE2 ,
λE1 if λE3 ≤ λE1 ≤ λE2 ,
λE3 if λE2 ≤ λE3 ≤ λE1 ,
λE2 if λE3 ≤ λE2 ≤ λE1 .

Thus, min{max{βE1 , βE2}, βE3} = max{min{βE1 , βE3}, min{βE2 , βE3}} and max{min
{λE1 , λE2}, λE3} = min{max{λE1 , λE3}, max{λE2 , λE3}}. Hence, (E1 ∪ E2) ∩ E3 =
(E1 ∩ E3) ∪ (E2 ∩ E3).

2. (E1 ∩ E2) ∪ E3 = (min{βE1 , βE2}, max{λE1 , λE2}) ∪ (βE3 , λE3)
= (max{min{βE1 , βE2}, βE3}, min{max{λE1 , λE2}, λE3}). And,
(E1 ∪ E3) ∩ (E2 ∪ E3) = (max{βE1 , βE3}, min{λE1 , λE3}) ∩ (max{βE2 , βE3}, min{λE2 , λE3})
= (min{max{βE1 , βE3}, max{βE2 , βE3}}, max{min{λE1 , λE3}, min{λE2 , λE3}}). Then,

max{min{βE1 , βE2}, βE3} =



βE3 if βE1 ≤ βE2 ≤ βE3 ,
βE3 if βE2 ≤ βE1 ≤ βE3 ,
βE3 if βE1 ≤ βE3 ≤ βE2 ,
βE1 if βE3 ≤ βE1 ≤ βE2 ,
βE3 if βE2 ≤ βE3 ≤ βE1 ,
βE2 if βE3 ≤ βE2 ≤ βE1 ,

min{max{λE1 , λE2}, λE3} =



λE2 if λE1 ≤ λE2 ≤ λE3 ,
λE1 if λE2 ≤ λE1 ≤ λE3 ,
λE3 if λE1 ≤ λE3 ≤ λE2 ,
λE3 if λE3 ≤ λE1 ≤ λE2 ,
λE3 if λE2 ≤ λE3 ≤ λE1 ,
λE3 if λE3 ≤ λE2 ≤ λE1 ,
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min{max{βE1 , βE3}, max{βE2 , βE3}} =



βE3 if βE1 ≤ βE2 ≤ βE3 ,
βE3 if βE2 ≤ βE1 ≤ βE3 ,
βE3 if βE1 ≤ βE3 ≤ βE2 ,
βE1 if βE3 ≤ βE1 ≤ βE2 ,
βE3 if βE2 ≤ βE3 ≤ βE1 ,
βE2 if βE3 ≤ βE2 ≤ βE1 ,

max{min{λE1 , λE3}, min{λE2 , λE3}} =



λE2 if λE1 ≤ λE2 ≤ λE3 ,
λE1 if λE2 ≤ λE1 ≤ λE3 ,
λE3 if λE1 ≤ λE3 ≤ λE2 ,
λE3 if λE3 ≤ λE1 ≤ λE2 ,
λE3 if λE2 ≤ λE3 ≤ λE1 ,
λE3 if λE3 ≤ λE2 ≤ λE1 .

Thus, max{min{βE1 , βE2}, βE3} = min{max{βE1 , βE3}, max{βE2 , βE3}} and min{max
{λE1 , λE2}, λE3} = max{min{λE1 , λE3}, min{λE2 , λE3}}. Hence, (E1 ∩ E2) ∪ E3 =
(E1 ∪ E3) ∩ (E2 ∪ E3).

Theorem 2. Let E1 = (βE1 , λE1) and E2 = (βE2 , λE2) be (m, n)-FSs on U. Then

1. (E1 ∪ E2)
c = Ec

1 ∩ Ec
2.

2. (E1 ∩ E2)
c = Ec

1 ∪ Ec
2.

Proof.

1. For the (m, n)-FSs E1 and E2, according to Definition 6, we obtain
(E1 ∪ E2)

c = (max{βE1 , βE2}, min{λE1 , λE2})c

= (min{(λE1)
n
m , (λE2)

n
m }, max{(βE1)

m
n , (βE2)

m
n })

= ((λE1)
n
m , (βE1)

m
n ) ∩ (λE2)

n
m , (βE2)

m
n )

= Ec
1 ∩ Ec

2.
2. Similar to 1.

Definition 7. Let {Ei = (βEi , λEi ) : i ∈ I} be a family of (m, n)-FSs on U. Then

1. ∪
i∈I

Ei = (sup{βEi : i ∈ I}, in f {λEi : i ∈ I}).

2. ∩
i∈I

Ei = (in f {βEi : i ∈ I}, sup{λEi : i ∈ I}).

In what follows we define the functions of score and accuracy with respect to (m, n)-
FSs which we apply to rank (m, n)-FSs.

Proposition 4. For any (m, n)-FS E = (βE, λE) on U, the value of βm
E − λn

E lies in the closed
interval [−1, 1].

Proof. For any (m, n)-FS E, we have βm
E + λn

E ≤ 1. This implies that βm
E − λn

E ≤ βm
E ≤ 1

and βm
E − λn

E ≥ −λn
E ≥ −1 . Hence, −1 ≤ βm

E − λn
E ≤ 1, as required.

Definition 8. The score function score : I(m,n)−FS → [−1, 1] is given by the formula score(E) =
βm

E − λn
E for every (m, n)-FS E = (βE, λE).

Definition 9. Let E1 = (βE1 , λE1) and E2 = (βE2 , λE2) be (m, n)-FSs. We say that

(i) If score(E1) > score(E2), then E1 � E2.
(ii) If score(E1) < score(E2), then E1 ≺ E2.
(iii) If score(E1) = score(E2), then E1 ' E2.
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Example 2. Let E1 = (0.65, 0.75) and E2 = (0.82, 0.55) be (6, 4)-FSs. We obtain score(E1) =
−0.240987359 and acc(E2) = 0.212500421. Hence,

Definition 10. The accuracy function acc : I(m,n)−FS → [0, 1] is given by the formula acc(E) =
βm

E + λn
E for every (m, n)-FS E = (βE, λE).

Definition 11. Let E1 = (βE1 , λE1) and E2 = (βE2 , λE2) be (m, n)-FSs. We say that

(i) If score(E1) > score(E2), then E1 � E2.
(ii) If score(E1) < score(E2), then E1 ≺ E2.
(iii) If score(E1) = score(E2), then

1. If acc(E1) > acc(E2), then E1 � E2.
2. If acc(E1) < acc(E2), then E1 ≺ E2.
3. If acc(E1) = acc(E2), then E1 = E2.

Example 3. Consider E1 = (0.4, 0.064) and E2 = (0.7, 0.343) (3, 1)-FSs, and E3 = (0.6, 0.8)
and E4 = (0.9, 0.4) are (2, 5)-FSs on U = {a}. Obviously, score(E1) = score(E2) = 0, whereas
acc(E2) = β3

E2
+ λE2 = 0.686 > acc(E1) = β3

E1
+ λE1 = 0.128. Therefore, E2 � E1. Also,

score(E3) = 0.03232 and score(E4) = 0.79976, which means that E4 � E3.

Definition 12. Let E1 = (βE1 , λE1) and E2 = (βE2 , λE2) be (m, n)-FSs on U. A natural quasi-
ordering on the (m, n)-FSs is defined as follows.

E1 ≥ E2 iff βE1 ≥ βE2 and λE1 ≤ λE2 .

4. Aggregation of (m, n)-Fuzzy Sets with Applications

We dedicate this section to present some novel types of operations on (m, n)-Fuzzy
sets and explore their master features. Then, we define new kinds of aggregation operators
with respect to (m, n)-Fuzzy sets and illustrate the relationships between them. Some
illustrative examples are provided.

4.1. Some Operations On (m, n)-FSs

In this part, we introduce some operations over the class of (m, n)-Fuzzy sets, and show
the relationships between them.

Definition 13. For two (m, n)-FSs on U E1 = (βE1 , λE1) and E2 = (βE2 , λE2) and a positive
real number (ν > 0) ν, the following operations are defined.

1. E1 ⊕ E2 =
(

m
√

βm
E1

+ βm
E2
− βm

E1
βm

E2
, λE1 λE2

)
.

2. E1 ⊗ E2 =
(

βE1 βE2 , n
√

λn
E1

+ λn
E2
− λn

E1
λn

E2

)
.

3. νE1 =
(

m
√

1− (1− βm
E1
)ν, λν

E1

)
.

4. Eν
1 =

(
βν

E1
, n
√

1− (1− λn
E1
)ν
)

.

Example 4. Suppose that E1 = (0.2, 0.9) and E2 = (0.65, 0.45) are (3, 4)-FSs on U = {a},
and ν = 2. Then

1. E1 ⊕ E2 =
(

3
√

β3
E1

+ β3
E2
− β3

E1
β3

E2
, λE1 λE2

)
=
(

3
√

0.23 + 0.653 − (0.2)3(0.65)3, (0.9)(0.45)
)
≈ (0.654546, 0.405).

2. E1 ⊗ E2 =
(

βE1 βE2 , 4
√

λ4
E1

+ λ4
E2
− λ4

E1
λ4

E2

)
=
(
(0.2)(0.65), 4

√
(0.9)4 + (0.45)4 − (0.9)4(0.45)4

)
≈ (0.13, 0.904798).

3. 2E1 =
(

3
√

1− (1− β3
E1
)2, λ2

E1

)
=
(

3
√

1− (1− 0.23)2, 0.92
)
≈ (0.251648, 0.81).
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4. E2
1 =

(
β2

E1
, 4
√

1− (1− λ4
E1
)2
)
=
(

0.22, 4
√

1− (1− 0.94)2
)
≈ (0.04, 0.969023).

Theorem 3. If E1 = (βE1 , λE1) and E2 = (βE2 , λE2) are (m, n)-FSs on U, then E1 ⊕ E2 and
E1 ⊗ E2 are (m, n)-FSs.

Proof. For (m, n)-FSs E1 = (βE1 , λE1) and E2 = (βE2 , λE2), we obtain

0 ≤ βm
E1

+ λn
E1
≤ 1 and 0 ≤ βm

E2
+ λn

E2
≤ 1.

Then, we have

βm
E1
≥ βm

E1
βm

E2
, βm

E2
≥ βm

E1
βm

E2
, 0 ≤ βm

E1
βm

E2
≤ 1 and

and

λn
E1
≥ λn

E1
λn

E2
, λn

E2
≥ λn

E1
λn

E2
, 0 ≤ λn

E1
λn

E2
≤ 1.

This implies that m
√

βm
E1

+ βm
E2
− βm

E1
βm

E2
≥ 0.

Since βm
E2
≤ 1 and 0 ≤ 1− βm

E1
, βm

E2
(1− βm

E1
) ≤ (1− βm

E1
), we get that βm

E1
+ βm

E2
−

βm
E1

βm
E2
≤ 1. Thus, m

√
βm

E1
+ βm

E2
− βm

E1
βm

E2
≤ 1. It is clear that 0 ≤ λn

E1
≤ 1 − βm

E1
and

0 ≤ λn
E2
≤ 1− βm

E2
.

Now, ( m
√

βm
E1

+ βm
E2
− βm

E1
βm

E2
)m + λn

E1
λn

E2
≤ βm

E1
+ βm

E2
− βm

E1
βm

E2
+ (1− βm

E1
)(1− βm

E2
) = 1.

Hence, 0 ≤ ( m
√

βm
E1

+ βm
E2
− βm

E1
β2

E2
)m + λn

E1
λn

E2
≤ 1 which means that E1 ⊕ E2 is an

(m, n)-FS.
Following similar arguments, we prove that E1 ⊗ E2 is an (m, n)-FS.

Theorem 4. Let E = (βE, λE) be an (m, n)-FS on U and ν be a positive real number. Then, νE
and Eν are (m, n)-FSs.

Proof. Since 0 ≤ βm
E ≤ 1, 0 ≤ λn

E ≤ 1 and 0 ≤ (βE)
m + λn

E ≤ 1, we find

0 ≤ λn
E ≤ 1− βm

E

⇒ 0 ≤ (1− βm
E )

ν

⇒ 1− (1− βm
E )

ν ≤ 1

⇒ 0 ≤ m
√

1− (1− βm
E )

ν ≤ m
√

1 = 1.

It is clear that 0 ≤ λν
E ≤ 1, then we get

0 ≤ ( m
√

1− (1− βm
E )

ν)m + (λν
E)

n ≤ 1− (1− βm
E )

ν + (1− βm
E )

ν = 1.

In a similar way, we get

0 ≤ (βν
E)

m + 1− (1− λE)
ν ≤ 1.

Hence, νE and Eν are (m, n)-FSs.

Theorem 5. Let E1 = (βE1 , λE1) and E2 = (βE2 , λE2) be (m, n)-FSs on U. Then

1. E1 ⊕ E2 = E2 ⊕ E1.
2. E1 ⊗ E2 = E2 ⊗ E1.

Proof. From Definition 13, we obtain:

1. E1 ⊕ E2 =
(

m
√

βm
E1

+ βm
E2
− βm

E1
βm

E2
, λE1 λE2

)
(

m
√

βm
E2

+ βm
E1
− βm

E2
βm

E1
, λE2 λE1

)
= E2 ⊕ E1.
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2. E1 ⊗ E2 =
(

βE1 βE2 , n
√

λn
E1

+ λn
E2
− λn

E1
λn

E2

)
=
(

βE2 βE1 , n
√

λn
E2

+ λn
E1
− λn

E2
λn

E1

)
= E2 ⊗ E1.

Theorem 6. Let E = (βE, λE), E1 = (βE1 , λE1) and E2 = (βE2 , λE2) be (m, n)-FSs on U. Then

1. ν(E1 ⊕ E2) = νE1 ⊕ νE2 for ν > 0.
2. (ν1 + ν2)E = ν1E⊕ ν2E for ν1, ν2 > 0.
3. (E1 ⊗ E2)

ν = Eν
1 ⊗ Eν

2 for ν > 0.
4. E(ν1+ν2) = Eν1 ⊗ Eν2 for ν1, ν2 > 0.

Proof.

1. ν(E1 ⊕ E2) = ν
(

m
√

βm
E1

+ βm
E2
− βm

E1
βm

E2
, λE1 λE2

)
=
(

m
√

1− (1− βm
E1
− βm

E2
+ βm

E1
βm

E2
)ν, (λE1 λE2)

ν
)

=
(

m
√

1− (1− βm
E1
)ν(1− βm

E2
)ν, λν

E1
λν

E2

)
.

And νE1 ⊕ νE2 =
(

m
√

1− (1− βm
E1
)ν, λν

E1

)
⊕
(√

1− (1− βm
E2
)ν, λν

E2

)
=
(

m
√

1− (1− βm
E1
)ν + 1− (1− βm

E2
)ν − (1− (1− βm

E1
)ν)(1− (1− βm

E2
)ν), λν

E1
λν

E2

)
=
(

m
√

1− (1− βm
E1
)ν(1− βm

E2
)ν, λν

E1
λν

E2

)
= ν(E1 ⊕ E2).

2. (ν1 + ν2)E = (ν1 + ν2)(βE, λE) =
(

m
√

1− (1− βm
E )

ν1+ν2 , λν1+ν2
E

)
=
(

m
√

1− (1− βm
E )

ν1(1− βm
E )

ν2 , λν1+ν2
E

)
=
(

m
√

1− (1− βm
E )

ν1 + 1− (1− βm
E )

ν2 − (1− (1− βm
E )

ν1)(1− (1− βm
E )

ν2), λν1
E λν2

E

)
=
(

m
√

1− (1− βm
E )

ν1 , λν1
E

)
⊕
(

m
√

1− (1− βm
E )

ν2 , λν2
E

)
= ν1E⊕ ν2E.

3. (E1 ⊗ E2)
ν =

(
βE1 βE2 , n

√
λn

E1
+ λn

E2
− λn

E1
λn

E2

)ν

=
(
(βE1 βE2)

ν, n
√

1− (1− λn
E1
− λn

E2
+ λn

E1
λn

E2
)ν
)

=
(

βν
E1

βν
E2

, n
√

1− (1− λn
E1
)ν(1− λn

E2
)ν
)

=
(

βν
E1

, n
√

1− (1− λn
E1
)ν
)
⊗
(

βν
E2

, n
√

1− (1− λn
E2
)ν
)

= Eν
1 ⊗ Eν

2 .

4. Eν1 ⊗ Eν2 =
(

βν1
E , n
√

1− (1− λn
E)

ν1

)
⊗
(

βν2
E , n
√

1− (1− λn
E)

ν2

)
=
(

βν1+ν2
E , n

√
1− (1− λn

E)
ν1 + 1− (1− λn

E)
ν2 − (1− (1− λn

E)
ν1)(1− (1− λn

E)
ν2)
)

=
(

βν1+ν2
E , n

√
1− (1− λn

E)
ν1+ν2

)
= E(ν1+ν2).

Theorem 7. Let E1 = (βE1 , λE1) and E2 = (βE2 , λE2) be (m, n)-FSs on U, and ν > 0. Then

1. ν(E1 ∪ E2) = νE1 ∪ νE2.
2. (E1 ∪ E2)

ν = Eν
1 ∪ Eν

2 .

Proof. For the two (m, n)-FSs E1 and E2, and ν > 0, according to definitions 6 and 13,
we obtain

1. ν(E1 ∪ E2) = ν(max{βE1 , βE2}, min{λE1 , λE2})
=
(

m
√

1− (1−max{βm
E1

, βm
E2
})ν, min{λν

E1
, λν

E2
}
)

.

And νE1 ∪ νE2 =
(

m
√

1− (1− βm
E1
)ν, λν

E1

)
∪
(

m
√

1− (1− βm
E2
)ν, λν

E2

)
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=
(

max{ m
√

1− (1− βm
E1
)ν,
√

1− (1− βm
E2
)ν}, min{λν

E1
, λν

E2
}
)

=
(√

1− (1−max{βm
E1

, βm
E2
})ν, min{λν

E1
, λν

E2
}
)
= ν(E1 ∪ E2).

2. Similar to 1.

Theorem 8. Let E = (βE, λE), E1 = (βE1 , λE1) and E2 = (βE2 , λE2) be (m, n)-FSs on U,
and ν > 0. Then

1. (E1 ⊕ E2)
c = Ec

1 ⊗ Ec
2.

2. (E1 ⊗ E2)
c = Ec

1 ⊕ Ec
2.

3. (Ec)ν = (νE)c.
4. ν(E)c = (Eν)c.

Proof.

1. (E1 ⊕ E2)
c =

(
m
√

βm
E1

+ βm
E2
− βm

E1
βm

E2
, λE1 λE2

)c

=
(

m
√

λn
E1

λn
E2

, n
√

βm
E1

+ βm
E2
− βm

E1
βm

E2

)
=
(

m
√

λn
E1

m
√

λn
E2

, n
√

βm
E1

+ βm
E2
− βm

E1
βm

E2

)
= ( m

√
λn

E1
, βm

E1
)⊗ ( n

√
λn

E2
, βm

E2
)

= Ec
1 ⊗ Ec

2.

2. (E1 ⊗ E2)
c =

(
βE1 βE2 , n

√
λn

E1
+ λn

E2
− λn

E1
λn

E2

)c

=
(

m
√

λn
E1

+ λn
E2
− λn

E1
λn

E2
, n
√

βm
E1

βm
E2

)
=
(

m
√

λn
E1

+ λn
E2
− λn

E1
λn

E2
, n
√

βm
E1

n
√

βm
E2

)
= ( m

√
λn

E1
, n
√

βm
E1
)⊕ ( m

√
λn

E2
, n
√

βm
E2
)

= Ec
1 ⊕ Ec

2.
3. (Ec)ν = ( m

√
λn

E, n
√

βm
E )

ν

=
(
( m
√

λn
E)

ν, n
√

1− (1− βm
E )

ν
)

=
(

m
√

1− (1− βm
E )

ν, λν
E

)c

= (νE)c.

4. ν(E)c = ν( m
√

λn
E, n
√

βm
E ) =

(
m
√

1− (1− λn
E)

ν, ( n
√

βm
E )

ν
)
=
(

βν
E, n
√

1− (1− λn
E)

ν
)c

= (Eν)c.

Theorem 9. Let E1 = (βE1 , λE1), E2 = (βE2 , λE2) and E3 = (βE3 , λE3) be (m, n)-FSs on
U. Then

1. (E1 ∩ E2)⊕ E3 = (E1 ⊕ E3) ∩ (E2 ⊕ E3).
2. (E1 ∪ E2)⊕ E3 = (E1 ⊕ E3) ∪ (E2 ⊕ E3).
3. (E1 ∩ E2)⊗ E3 = (E1 ⊗ E3) ∩ (E2 ⊗ E3).
4. (E1 ∪ E2)⊗ E3 = (E1 ⊗ E3) ∪ (E2 ⊗ E3).

Proof.

1. (E1 ∩ E2)⊕ E3 = (min{βE1 , βE2}, max{λE1 , λE2})⊕ (βE3 , λE3)

=
(

m
√

min{βm
E1

, βm
E2
}+ βm

E3
− βm

E3
min{βm

E1
, βm

E2
}, max{λE1 , λE2}λE3

)
=
(

m
√
(1− βm

E3
)min{βm

E1
, βm

E2
}+ βm

E3
, max{λE1 λE3 , λE2 λE3}

)
.

And (E1 ⊕ E3) ∩ (E2 ⊕ E3)

=
(

m
√

βm
E1

+ βm
E3
− βm

E1
βm

E3
, λE1 λE3

)
∩
(√

βm
E2

+ βm
E3
− βm

E2
βm

E3
, λE2 λE3

)
=
(

min{ m
√

βm
E1

+ βm
E3
− βm

E1
βm

E3
,
√

βm
E2

+ βm
E3
− βm

E2
βm

E3
}, max{λE1 λE3 , λE2 λE3}

)
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=
(

min{ m
√
(1− βm

E3
)βm

E1
+ βm

E3
, m
√
(1− βm

E3
)βm

E2
+ βm

E3
}, max{λE1 λE3 , λE2 λE3}

)
=
(

m
√
(1− βm

E3
)min{βm

E1
, βm

E2
}+ βm

E3
, max{λE1 λE3 , λE2 λE3}

)
.

Hence, (E1 ∩ E2)⊕ E3 = (E1 ⊕ E3) ∩ (E2 ⊕ E3).
2. Similar to 1.
3. (E1 ∩ E2)⊗ E3 = (min{βE1 , βE2}, max{λE1 , λE2})⊗ E3

=
(

min{βE1 , βE2}βE3 , n
√

max{λn
E1

, λn
E2
}+ λn

E3
− λn

E3
max{λn

E1
, λn

E2
}
)

=
(

min{βE1 βE3 , βE2 βE3}, n
√
(1− λn

E3
)max{λn

E1
, λn

E2
}+ λn

E3

)
.

And (E1 ⊗ E3) ∩ (E2 ⊗ E3) =
(

βE1 βE3 , n
√

λn
E1

+ λn
E3
− λn

E1
λn

E3

)
∩
(

βE2 βE3 , n
√

λn
E2

+ λn
E3
− λn

E2
λn

E3

)
=
(

βE1 βE3 , n
√
(1− λn

E3
)λn

E1
+ λn

E3

)
∩
(

βE2 βE3 , n
√
(1− λn

E3
)λn

E2
+ λn

E3

)
=
(

min{βE1 βE3 , βE2 βE3}, max
{

n
√
(1− λn

E3
)λn

E1
+ λn

E3
, n
√
(1− λn

E3
)λn

E2
+ λn

E3

})
=
(

min{βE1 βE3 , βE2 βE3}, n
√
(1− λn

E3
)max{λn

E1
, λn

E2
}+ λn

E3

)
.

Hence, (E1 ∩ E2)⊗ E3 = (E1 ⊗ E3) ∩ (E2 ⊗ E3).
4. Similar to 3.

Theorem 10. Let E1 = (βE1 , λE1), E2 = (βE2 , λE2) and E3 = (βE3 , λE3) be (m, n)-FSs on
U. Then

1. E1 ⊕ E2 ⊕ E3 = E1 ⊕ E3 ⊕ E2.
2. E1 ⊗ E2 ⊗ E3 = E1 ⊗ E3 ⊗ E2.

Proof.

1. E1 ⊕ E2 ⊕ E3
= (βE1 , λE1)⊕ (βE2 , λE2)⊕ (βE3 , λE3)

=
(

m
√

βm
E1

+ βm
E2
− βm

E1
βm

E2
, λE1 λE2

)
⊕ (βE3 , λE3)

=
(

m
√

βm
E1

+ βm
E2
− βm

E1
βm

E2
+ βm

E3
− βm

E3
(βm

E1
+ βm

E2
− βm

E1
βm

E2
), λE1 λE2 λE3

)
=
(

m
√

βm
E1

+ βm
E2

+ βm
E3
− βm

E1
βm

E2
− βm

E1
βm

E3
− βm

E2
βm

E3
+ βm

E1
βm

E2
βm

E3
, λE1 λE2 λE3

)
=
(

m
√

βm
E1

+ βm
E3
− βm

E1
βm

E3
+ βm

E2
− βm

E2
(βm

E1
+ βm

E3
− βm

E1
βm

E3
), λE1 λE2 λE3

)
=
(

m
√

βm
E1

+ βm
E3
− βm

E1
βm

E3
, λE1 λE3

)
⊕ (βE2 , λE2)

= E1 ⊕ E3 ⊕ E2.
2. Similar to 1.

4.2. Aggregation of (m, n)-Fuzzy Sets

In this subsection, we discuss some well-known aggregation operators with respect to
the environment of (m, n)-Fuzzy sets. We investigate their main properties and reveal the
relationships between them.

Definition 14. Let Ej = (βEj , λEj) (j = 1, 2, ..., s) be a family of (m, n)-FNs on U, and w =

(w1, w2, ..., ws)T be a weight vector of Ej with wj > 0 and ∑s
j=1 wj = 1. Then

1. an (m, n)-Fuzzy weighted average ((m, n)-FWA) operator is given by

(m, n)-FWA(E1, E2, ..., Es) = (∑s
j=1 wjβEj , ∑s

j=1 wjλEj).

2. an (m, n)-Fuzzy weighted geometric ((m, n)-FWG) operator is given by

(m, n)-FWG(E1, E2, ..., Es) = (∏s
j=1 β

wj
Ej

, ∏s
j=1 λ

wj
Ej
).

3. an (m, n)-Fuzzy weighted power average ((m, n)-FWPA) operator is given by
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(m, n)-FWPA(E1, E2, ..., Em) = ((∑s
j=1 wjβ

m
Ej
)

1
m , (∑s

j=1 wjλ
n
Ej
)

1
n ).

4. an (m, n)-Fuzzy weighted power geometric ((m, n)-FWPG) operator is given by

(m, n)-FWPG(E1, E2, ..., Es) = ((1−∏s
j=1(1− βm

Ej
)wj)

1
m , (1−∏s

j=1(1− λn
Ej
)wj)

1
n ).

Remark 2. In general, the values obtained from the operators presented in the above definition need
not be an (m, n)-FS.

Example below illustrates how these aggregations operators are calculated.

Example 5. Let E1 = (0.4, 0.9), E2 = (0.6, 0.6), E3 = (0.3, 0.8), and E4 = (0.8, 0.5) be (1, 5)-
FNs on U = {a}, and let w = (0.1, 0.2, 0.4, 0.3)T be a weight vector of Ej (j = 1, 2, 3, 4). Then

1. (1, 5)-FWA(E1, E2, E3, E4) = (0.1× 0.4 + 0.2× 0.6 + 0.4× 0.3 + 0.3× 0.8, 0.1× 0.9 +
0.2× 0.6 + 0.4× 0.8 + 0.3× 0.5) = (0.52, 0.68).

2. (1, 5)-FWG(E1, E2, E3, E4) = (0.40.1 × 0.60.2 × 0.30.4 × 0.80.3, 0.90.1 × 0.60.2 × 0.80.4 ×
0.50.3) ≈ (0.476005, 0.663715).

3. (1, 5)-FWPA(E1, E2, E3, E4) = (0.1 × 0.4 + 0.2 × 0.6 + 0.4 × 0.3 + 0.3 × 0.8, (0.1 ×
0.95 + 0.2× 0.65 + 0.4× 0.85 + 0.3× 0.55)

1
5 ) ≈ (0.52, 0.735372).

4. (1, 5)-FWPG(E1, E2, E3, E4) = (1− [(1− 0.4)0.1 × (1− 0.6)0.2 × (1− 0.3)0.4 × (1− 0.8)0.3]),

[1− [(1− 0.95)0.1 × (1− 0.65)0.2 × (1− 0.85)0.4 × (1− 0.55)0.3)]]
1
5 ≈ (0.423229, 0.751394).

Theorem 11. Let Ej = (βEj , λEj)(i = 1, 2, ..., s) be a family of (m, n)-FNs on U, E = (βE, λE) be an
(m, n)-FN and w = (w1, w2, ..., ws)T be a weight vector of Ej with ∑s

j=1 wj = 1. Then

1. (m, n)-FWA(E1 ⊕ E, E2 ⊕ E, ..., Es ⊕ E) ≥ (m, n)-FWA(E1 ⊗ E, E2 ⊗ E, ..., Es ⊗ E).
2. (m, n)-FWG(E1 ⊕ E, E2 ⊕ E, ..., Es ⊕ E) ≥ (m, n)-FWG(E1 ⊗ E, E2 ⊗ E, ..., Es ⊗ E).
3. (m, n)-FWPA(E1 ⊕ E, E2 ⊕ E, ..., Es ⊕ E) ≥ (m, n)-FWPA(E1 ⊗ E, E2 ⊗ E, ..., Es ⊗ E).
4. (m, n)-FWPG(E1 ⊕ E, E2 ⊕ E, ..., Es ⊕ E) ≥ (m, n)-FWPG(E1 ⊗ E, E2 ⊗ E, ..., Es ⊗ E).

Proof. We suffice by proving 1 and 4.

(1) For any Ej = (βEj , λEj) (j = 1, 2, ..., s) and E = (βE, λE), we obtain

m
√

βm
Ej
+ βm

E − βm
Ej

βm
E ≥ m

√
2βm

Ej
βm

E − βm
Ej

βm
E = βEj βE, and

n
√

λn
Ej
+ λn

E − λn
Ej

λn
E ≥ n

√
2λn

Ej
λn

E − λn
Ej

λn
E = λEj λE.

That is,
s

∑
j=1

wj m
√

βm
Ej
+ βm

E − βm
Ej

βm
E ≥

s

∑
j=1

wjβEj βE (1)

and
s

∑
j=1

wj n
√

λn
Ej
+ λn

E − λn
Ej

λn
E ≥

s

∑
j=1

wjλEj λE. (2)

It follows from Definitions 13 and 14 that

(m, n)-FWA(E1 ⊕ E, E2 ⊕ E, ..., Es ⊕ E) = (∑s
j=1 wj m

√
βm

Ej
+ βm

E − βm
Ej

βm
E , ∑s

j=1 wjλEj λE)

and

(m, n)-FWA(E1 ⊗ E, E2 ⊗ E, ..., Es ⊗ E) = (∑s
j=1 wjβEj βE, ∑s

j=1 wj n
√

λn
Ej
+ λn

E − λn
Ej

λn
E).

Hence, from (1) and (2), we complete the proof.

(4) For any Ej = (βEj , λEj)(j = 1, 2, ..., s) and E = (βE, λE), we obtain
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βm
Ej
+ βm

E − βm
Ej

βm
E ≥ 2βm

Ej
βm

E − βm
Ej

βm
E = βm

Ej
βm

E

⇒ 1− (βm
Ej
+ βm

E − βm
Ej

βm
E ) ≤ 1− βm

Ej
βm

E

⇒ (1− (βm
Ej
+ βm

E − βm
Ej

βm
E ))

wj ≤ (1− βm
Ej

βm
E )

wj

⇒ ∏s
j=1(1− (βm

Ej
+ βm

E − βm
Ej

βm
E ))

wj ≤ ∏s
j=1(1− βm

Ej
βm

E )
wj

⇒ 1−∏s
j=1(1− (βm

Ej
+ βm

E − βm
Ej

βm
E ))

wj ≥ 1−∏s
j=1(1− βm

Ej
βm

E )
wj .

Similarly,

⇒ 1−∏s
j=1(1− (λn

Ej
+ λn

E − λn
Ej

λn
E))

wj ≥ 1−∏s
j=1(1− λn

Ej
λn

E)
wj .

According to items 1 and 2 of Definition 13, we have

(m, n)-FWPG(E1 ⊕ E, E2 ⊕ E, ..., Es ⊕ E) =
((1−∏s

j=1(1− (βm
Ej
+ βm

E − βm
Ej

βm
E ))

wj)
1
m , (1−∏s

j=1(1− λn
Ej

λn
E)

wj)
1
n ), and

(m, n)-FWPG(E1 ⊗ E, E2 ⊗ E, ..., Es ⊗ E) =
((1−∏s

j=1(1− βm
Ej

βm
E )

wj)
1
m , (1−∏s

j=1(1− (λn
Ej
+ λn

E − λn
Ej

λn
E))

wj)
1
n ).

Hence, (m, n)-FWPG(E1 ⊕ E, E2 ⊕ E, ..., Es ⊕ E) ≥ (m, n)-FWPG(E1 ⊗ E, E2 ⊗ E, ...,
Es ⊗ E), as required.

Theorem 12. Let Ej = (βEj , λEj) and Γj = (βΓj , λΓj)(j = 1, 2, ..., s) be two families of (m, n)-
FSs on U, and w = (w1, w2, ..., ws)T be a weight vector of them with ∑s

j=1 wj = 1. Then

1. (m, n)-FWA(E1 ⊕ Γ1, E2 ⊕ Γ2, ..., Es ⊕ Γs) ≥ (m, n)-FWA(E1 ⊗ Γ1, E2 ⊗ Γ2, ..., Es ⊗ Γs).
2. (m, n)-FWG(E1⊕ Γ1, E2⊕ Γ2, ..., Es ⊕ Γs) ≥ (m, n)-FWG(E1⊗ Γ1, E2⊗ Γ2, ..., Es ⊗ Γs).
3. (m, n)-FWPA(E1 ⊕ Γ1, E2 ⊕ Γ2, ..., Es ⊕ Γs) ≥ (m, n)-FWPA(E1 ⊗ Γ1, E2 ⊗ Γ2, ..., Es ⊗ Γs).
4. (m, n)-FWPG(E1 ⊕ Γ1, E2 ⊕ Γ2, ..., Es ⊕ Γs) ≥ (m, n)-FWPG(E1 ⊗ Γ1, E2 ⊗ Γ2, ..., Es ⊗ Γs).

Proof. We suffice by proving 1.
(1) For any Ej = (βEj , λEj) and Γj = (βΓj , λΓj) (j = 1, 2, ..., s) , we can get

m
√

βm
Ej
+ βm

Γj
− βm

Ej
βm

Γj
≥ m
√

2βm
Ej

βm
Γj
− βm

Ej
βm

Γj
= βEj βΓj .

That is,

∑s
j=1 wj m

√
βm

Ej
+ βm

Γj
− βm

Ej
βm

Γj
≥ ∑s

j=1 wjβEj βΓj .

Similarly,

∑s
j=1 wj n

√
λn

Ej
+ λn

Γj
− λn

Ej
λn

Γj
≥ ∑s

j=1 wjλEj λΓj .

By items 1 and 2 of Definition 13, we have

(m, n)− FWA(E1 ⊕ Γ1, E2 ⊕ Γ2, ..., Es ⊕ Γs) =

(∑s
j=1 wj m

√
βm

Ej
+ βm

Γj
− βm

Ej
βm

Γj
, ∑s

j=1 wjλEj λΓj)

and

(m, n)− FWA(E1 ⊗ Γ1, E2 ⊗ Γ2, ..., Es ⊗ Γs) =

(∑s
j=1 wjβEj βΓj , ∑s

j=1 wj n
√

λn
Ej
+ λn

Γj
− λn

Ej
λn

Γj
).

Hence, (m, n)-FWA(E1⊕Γ1, E2⊕Γ2, ..., Es⊕Γs) ≥ (m, n)-FWA(E1⊗Γ1, E2⊗Γ2, ..., Es⊗
Γs), as required.
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Theorem 13. Let Ej = (βEj , λEj)(j = 1, 2, ..., s) be a family of (m, n)-FNs on U, and w =

(w1, w2, ..., ws)T be a weight vector of Ej with ∑s
j=1 wj = 1 and ν ≥ 1. Then

1. (m, n)-FWA(νE1, νE2, ..., νEs) ≥ (m, n)-FWA(Eν
1 , Eν

2 , ..., Eν
s ).

2. (m, n)-FWG(νE1, νE2, ..., νEs) ≥ (m, n)-FWG(Eν
1 , Eν

2 , ..., Eν
s ).

3. (m, n)-FWPA(νE1, νE2, ..., νEs) ≥ (m, n)-FWPA(Eν
1 , Eν

2 , ..., Eν
s ).

4. (m, n)-FWPG(νE1, νE2, ..., νEs) ≥ (m, n)-FWPG(Eν
1 , Eν

2 , ..., Eν
s ).

Proof. We suffice by proving 1.
(1) For any Ej = (βEj , λEj) (j = 1, 2, ..., s), we have

(m, n)-FWA(νE1, νE2, ..., νEs) = (∑s
j=1 wj m

√
1− (1− βm

Ej
)ν, ∑s

j=1 wjλ
ν
Ej
), and

(m, n)-FWA(Eν
1 , Eν

2 , ..., Eν
s ) = (∑s

j=1 wjβ
ν
Ej

, ∑s
j=1 wj n

√
1− (1− λn

Ej
)ν).

Let f (βEj) = 1− (1− βm
Ej
)ν − (βm

Ej
)ν. We demonstrate that f (βEj) ≥ 0. It follows from

the Newton generalized binomial theorem that

(1− βm
Ej
)ν + (βm

Ej
)ν ≤ (1− βm

Ej
+ βm

Ej
)ν = 1.

This means that f (βEj) ≥ 0. Now,

1− (1− βm
Ej
)ν − (βm

Ej
)ν ≥ 0

⇒ 1− (1− βm
Ej
)ν ≥ (βm

Ej
)ν

⇒ m
√

1− (1− βm
Ej
)ν ≥ βν

Ej

⇒ ∑s
j=1 wj m

√
1− (1− βm

Ej
)ν ≥ ∑s

j=1 wjβ
ν
Ej

.

Similarly,

∑s
j=1 wj n

√
1− (1− λn

Ej
)ν ≥ ∑s

j=1 wjλ
ν
Ej

.

Hence, (m, n)-FWA(νE1, νE2, ..., νEs) ≥ (m, n)-FWA(Eν
1 , Eν

2 , ..., Eν
s ), as required.

Theorem 14. Let Ej = (βEj , λEj) (j = 1, 2, ..., s) be a family of (m, n)-FNs on U, E = (βE, λE)

be an (m, n)-FN on U and w = (w1, w2, ..., ws)T be a weight vector of Ej with ∑s
j=1 wj = 1 and

ν ≥ 1. Then

1. (m, n)-FWA(νE1 ⊕ E, νE2 ⊕ E, ..., νEs ⊕ E) ≥ (m, n)-FWA(Eν
1 ⊗ E, Eν

2 ⊗ E, ..., Eν
s ⊗ E).

2. (m, n)-FWG(νE1 ⊕ E, νE2 ⊕ E, ..., νEs ⊕ E) ≥ (m, n)-FWG(Eν
1 ⊗ E, Eν

2 ⊗ E, ..., Eν
s ⊗ E).

3. (m, n)-FWPA(νE1 ⊕ E, νE2 ⊕ E, ..., νEs ⊕ E) ≥ (m, n)-FWPA(Eν
1 ⊗ E, Eν

2 ⊗ E, ..., Eν
s ⊗ E).

4. (m, n)-FWPG(νE1 ⊕ E, νE2 ⊕ E, ..., νEs ⊕ E) ≥ (m, n)-FWPG(Eν
1 ⊗ E, Eν

2 ⊗ E, ..., Eν
s ⊗ E).

Proof. We suffice by proving 1.
(1) For any Ej = (βEj , λEj) (j = 1, 2, ..., s) and E = (βE, λE), we have

(m, n)-FWA(νE1 ⊕ E, νE2 ⊕ E, ..., νEs ⊕ E) = (∑s
j=1 wj m

√
1− (1− βm

Ej
)ν(1− βm

E ), ∑s
j=1 wjλ

ν
Ej

λE),

and

(m, n)-FWA(Eν
1 ⊗ E, Eν

2 ⊗ E, ..., Eν
s ⊗ E) = (∑s

j=1 wjβ
ν
Ej

βE, ∑s
j=1 wj n

√
1− (1− λn

Ej
)ν(1− λn

E)).

Let f (βEj) = 1− (1− βm
Ej
)ν(1− βm

E ) − (βm
Ej
)νβm

E . We demonstrate that f (βEj) ≥ 0.

To do this, let g(βEj) = (1− βm
Ej
)ν + (βm

Ej
)ν. Then

g
′
(βEj) = −2νβEj(1− βm

Ej
)ν−1 + 2νβEj(βm

Ej
)ν−1 = 2νβEj((βm

Ej
)ν−1 − (1− βm

Ej
)ν−1).
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Now, if βEj >
1

m√2
, then g(βEj) is monotonic increasing and if βEj <

1
m√2

, then g(βEj)

is monotonic decreasing. Therefore, g(βEj) ≤ g(βEj)max = max{g(0), g(1)} = 1. Remark
that (1− βm

Ej
)ν(1− βm

E ) + (βm
Ej
)νβm

E ≤ 1. This directly leads to that

f (βEj) = 1− (1− βm
Ej
)ν(1− βm

E )− (βm
Ej
)νβm

E ≥ 0

⇒ ∑s
j=1 wj m

√
1− (1− βm

Ej
)ν(1− βm

E ) ≥ ∑s
j=1 wjβ

ν
Ej

βE.

Similarly,

∑s
j=1 wj n

√
1− (1− λn

Ej
)ν(1− λn

E) ≥ ∑s
j=1 wjλ

ν
Ej

λE.

Hence, (m, n)-FWA(νE1 ⊕ E, νE2 ⊕ E, ..., νEs ⊕ E) ≥ (m, n)-FWA(Eν
1 ⊗ E, Eν

2 ⊗ E, ...,
Eν

s ⊗ E).

5. Decision-Making Approach Using (m, n)-FSs and Their Aggregations

In this section, the aggregations operators, presented in the previous section, are
applied to an MCDM problem. The algorithms of the proposed approach are given and an
example is provided to illustrate how this approach is carried out.

5.1. Representation and Model of MCDM Problems via the Frame of (m, n)-FSs

MCDM problems are a fast approach to determine the best alternative(s) among the
set of possible ones according to multiple criteria. To explain the followed technique, we
consider the alternatives under study is the set U = {bi : i = 1, 2, ..., s}, and the decision
maker evaluate them with respect to some criteria, say, C = {cj : j = 1, 2, ..., r}. Since the
merits of environment of (m, n)-FSs to cover a huge space of grades, we consider that the
estimation process of the preferences by decision maker is achieved in the environment of
(m, n)-FNs: ϑij =

〈
βij, λij

〉
i×j, where 0 ≤ βm

ij + λn
ij ≤ 1 and βij, λij ∈ [0, 1] for all i = 1, 2, ..., s

and j = 1, 2, ..., r such that βij and λij, respectively, represent the degree that the alternative
bi satisfies and does not satisfy the attribute cj. Thus, MCDM problems can be concisely
expressed in an (m, n)-Fuzzy decision matrix A = (ϑij)s×r =

〈
βij, λij

〉
s×r.

The next steps illustrate how the current technique handles an MCDM:

Step 1: Determine the convenient values of m and n applied to handle this MCDM.
Step 2: Initiate the (m, n)-Fuzzy decision matrix ↓ = (ϑij)s×r for an MCDM problem

under study.
Step 3: Convert (m, n)-Fuzzy decision matrix ↓ = (ϑij)s×r into the normalized (m, n)-Fuzzy

decision matrix� = (τij)s×r. In this step, if there are different kinds of criteria,
namely benefit X and cost Y then the rating values of X and Y can be transformed

using the below normalization formula: τij =

{
ϑij : j ∈ X

(ϑij)
c : j ∈ Y

Step 4: Evaluate the alternatives’ aggregations based on the normalized (m, n)-Fuzzy deci-
sion matrix. In other words, compute all types of (m, n)-Fuzzy weighted operators
given in Definition 14 (i.e., (m, n)-FWA, (m, n)-FWG, (m, n)-FWPA and (m, n)-
FWPG operators) for each alternative bi (i = 1, 2, ..., s).

Step 5: Calculate the functions of score and accuracy for each (m, n)-FNs provided in Step
3. According Remark 2, the ordered values obtained from these operators need not
be an (m, n)-FS; however, we extend the formulas of scores and accuracy functions
given in Definition 11 for those ordered values.

Step 6: Compare the given alternatives based on the scores and accuracy.
Step 7: If there are some alternatives that have the same scores, then compare them with

respect to their accuracy.
Step 8: By Definition 11, rank the alternatives and determine the favorable one(s).
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Herein, we give an Algorithm 1 to choose the best alternate using the operator of
(m, n)-FWA. The algorithms for the other cases of operators are built in a similar way.

The flow chart displayed in Figure 2 shows the way of choosing the optimal alterna-
tive(s) via the environment of (m, n)-FWA operator. It easy to construct the flow charts of
the other operators following a similar way.

Algorithm 1: The optimal alternative(s) induced from the operator of (m, n)-FWA.

Input : The values of (m, n), the set of alternatives U and the set of standards C.
Output : select the most desirable alternative(s).

Initiate (m, n)-Fuzzy decision matrix ↓ = (ϑij)s×r for an MCDM problem
under study;

Convert (m, n)-Fuzzy decision matrix ↓ = (ϑij)s×r into the normalized
(m, n)-Fuzzy decision matrix� = (τij)s×r;

Compute (m, n)-FWA operator (given in Definition 14) for all alternatives
bi (i = 1, 2, ..., s);

foreach i ≤ n do
Calculate the score function given by the operator of (m, n)-FWA for bi.

end
Let D = {bi : score(bi) = max{score(bi) : i = 1, 2, ..., s}};
if | D |= 1, then

return D is the favorable alternate.
else

Calculate the accuracy function given by the operator of (m, n)-FWA for
bi ∈ D;

Putting E = {bi : acc(bi) = max{acc(bi) : bi ∈ D}};
return each element of E is a favorable selection;

end

5.2. Illustrative Examples

We devoted this part to explaining the above-mentioned approaches by the next example.

Example 6. A certain company wants to invest a sum of money somewhere. The company
management chooses some experts to determine convenient investments out of four potential
companies V = {food company, clothes company, computer company, car company}. For this,
the experts specify four attributes to evaluate the convenient company as A = {a1 =growth
analysis, a2 =risk analysis, a3 =social-political impact analysis, a4 =annual performance}.

The experts proposed a weight vector corresponding to every criteria W = (0.2, 0.4, 0.3, 0.1)T .
The experts assess the performance of these companies under the (m, n)-FSs environment. Assume
that the proposed approach for accessing the best company with appreciation to every attribute given
by using the experts group is furnished according to the proposed operators for m = 1 and n = 3,
as follows.

The ordered pairs furnished in Table 1 describe the degrees given to a company to fulfill
(membership) and dissatisfy (non-membership) the corresponding attribute (or criteria).

Table 1. (m, n)-Fuzzy numbers.

Companies a1 a2 a3 a4

food company (0.8, 0.3) (0.4, 0.4) (0.5, 0.7) (0.2, 0.6)

clothes company (0.9, 0.4) (0.4, 0.8) (0.6, 0.7) (0.4, 0.7)

computer company (0.6, 0.5) (0.5, 0.7) (0.5, 0.7) (0.50193, 0.6)

car company (0.7, 0.6) (0.2, 0.9) (0.4, 0.6) (0.9, 0.1)
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Input the sets of
alternatives U and multi
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(m, n)

Initiate (m, n)-Fuzzy
decision matrix ↓ =
(ϑij)s×r for an MCDM
problem under study

Convert (m, n)-Fuzzy de-
cision matrix ↓ = (ϑij)s×r

into the normalized
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matrix � = (τij)s×r

For each alternative
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culate the operator of
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induced from the op-
erator of (m, n)-FWA.

Let D = {bi : score(bi) =
max{score(bi) :
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No

Yes

Figure 2. Flow chart of selection the optimal alternative(s) with respect to (m, n)-FWA operator.
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Now, we apply the proposed operators of aggregation introduced in Definition 14. Then, for each
company it computes the score function. If some companies own the same score function, we then
must calculate the accuracy functions of them to decide who is the optimal company( or companies);
this case is illustrated in the first row of Table 2.

Table 2. Evaluation of scores with (1, 3)-Fuzzy aggregation operators.

Food Company Clothes Company Computer Company Car Company

(1, 3)-FWA (0.49, 0.49) (0.56, 0.68) (0.520193, 0.65) (0.43, 0.67)
Score 0.372351 0.245568 0.245568 0.129237

Accuracy 0.607649 0.874432 0.794818 0.730763

(1, 3)-FWG (0.458391, 0.465150) (0.531280, 0.660218) (0.518768, 0.644433) (0.367683, 0.589892)
Score 0.357749 0.243499 0.251139 0.162417

(1, 3)-FWPA (0.49, 0.1555) (0.56, 0.3548) (0.520193, 0.2867) (0.43, 0.3997)
Score 0.48624 0.515337 0.496627 0.366144

(1, 3)-FWPG (0.591436, 0.550289) (0.628727, 0.720414) (0.478361, 0.663311) (0.489898, 0.780151)
Score 0.424799 0.254834 0.186516 −0.015070

According to the computations induced from the four operators of aggregation, we find
that the optimal ranking order of the four companies induced from a (1, 3)-FWA operator
is a food company. It should be noted that the companies of clothes and computer are equal
with respect to the score function; so that we complete comparatione by computing their
accuracy functions which show that clothes company is better than computer company to
investment. The rank of the candidates induced from a (1, 3)-FWA operator is

food company � clothes company � computer company � car company

On the other hand, note that the values of score functions induced from the other
aggregation operators are distinct for all companies, so there is no need to compute the
accuracy function. Thus, the rank of the four companies, respectively, induced from
(1, 3)-FWG, (1, 3)-FWPA and (1, 3)-FWPG operators are

food company � computer company � clothes company � car company

computer company � clothes company �food company � car company

food company � clothes company � computer company � car company

From the above, it can be noted that the selection of the optimal company is based on
two factors, first one is the type of (m, n)-FSs, which are estimated by the system experts.
The second one is the aggregation operator applied to evaluate the companies.

Remark 3. According to the given illustrative example, one can note the following:

(i) It cannot be handled the ordered pairs of data given in the illustrative example using IFSs
because the sum of the degrees of non-membership and membership is greater than one.

(ii) The company management proposed different importances for the degrees of membership and
non-membership, which cannot be treated using the extensions of IFSs known in the published
manuscripts.

6. Conclusions and Future Works

The vagueness of information is one of the inevitable characteristics of coping
with decision-making issues. This vagueness usually originates from the expressions and
opinions of decision-makers. It can be defined and captured the uncertainty of information
in different approaches; one of them is the fuzzy set theory. In fact, it is a prevailing
instrument to deal with uncertainty in decision-making problems. After presenting the
fuzzy set theory, it has been developed to different types of orthopairs fuzzy sets such as
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intuitionistic fuzzy set, Pythagorean fuzzy set, and Fermatean fuzzy sets. It is well known
that the orthopairs fuzzy sets represent a simple description of bipolar data, which are the
basis of many representation knowledge and reasoning tools.

Herein, we have here presented a new type of orthopair fuzzy sets called (m, n)-Fuzzy
sets and revealed its connections with other kinds of orthopair fuzzy sets. Two of the merits
of (m, n)-Fuzzy sets are to, first, expand the grades of membership and non-membership
more than IFSs in a way that enables us to cover more situations than IFSs. That is, make
us in a position to cope with the information data in which the sum of their grades of
membership and nonmembership grades is greater than one. Second, to create appropriate
environments to address numerous kinds of real-life problems that cannot be evaluated
under the same ranks of importance for the membership and non-membership grades.

On the other hand, the different importance given for the grades of membership and
non-membership is a new task for the evaluation process induced from the proposed
approach which does not exist in the foregoing generalizations of IFSs. In fact, it needs
a comprehensive realization of the situation under study by the experts authorized to
evaluate the system inputs.

Through this paper, we have familiarized some operations for (m, n)-Fuzzy sets and
characterized them. Then, aggregation operators method, as a widely used and popular
method in soft computing, have been extended to be used with (m, n)-FSs. In the end, these
aggregation operators have been employed to diagnosis and analysis decision-making
issues. An interpretative example has been provided to illustrate how the proposed
approach assisted us with being effective in decision problems than cannot be coped with
by the previous classes of IFSs.

Our roadmap for future works is to discuss some applications of (m, n)-FSs environ-
ment to different fields using (1) the technique for order preference by the similarity to
ideal solution, and (2) the weighted aggregated sum product assessment. Additionally,
the interaction of (m, n)-FSs and rough approximations will be another goal for our future
studies. Moreover, we will produce new structures of fuzzy topologies with respect to
(m, n)-FSs.
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24. Cağman, N.; Enginoxgxlu, S.; Çitak, F. Fuzzy soft set theory and its application. Iran. J. Fuzzy Syst. 2011, 8, 137–147.
25. Xu, Y.-J.; Sun, Y.-K.; Li, D.-F. Intuitionistic Fuzzy Soft Set. In Proceedings of the 2010 2nd International Workshop on Intelligent

Systems and Applications, Wuhan, China, 22–23 May 2010; pp. 1–4. [CrossRef]
26. Sivadas, A.; John, S.J. Fermatean Fuzzy Soft Sets and Its Applications. In Computational Sciences—Modelling, Computing and Soft

Computing; CSMCS 2020. Communications in Computer and Information Science; Awasthi, A., John, S.J., Panda, S., Eds.; Springer:
Singapore, 2021; Volume 1345.

27. Hamida, M.T.; Riaz, M.; Afzal, D. Novel MCGDM with q-rung orthopair fuzzy soft sets and TOPSIS approach under q-Rung
orthopair fuzzy soft topology. J. Intell. Fuzzy Syst. 2020, 39, 3853–3871. [CrossRef]

28. Al-shami, T.M.; Alcantud, J.C.R.; Mhemdi, A. New generalization of fuzzy soft sets: (a, b)-Fuzzy soft sets. AIMS Math. 2023,
8, 2995–3025. [CrossRef]

29. Atef, M.; Ali, M.I.; Al-shami, T.M. Fuzzy soft covering-based multi-granulation fuzzy rough sets and their applications. Comput.
Appl. Math. 2021, 40, 115. [CrossRef]

30. Jan, N.; Mahmood, T.; Zedam, L.; Ali, Z. Multi-valued picture fuzzy soft sets and their applications in group decision-making
problems. Soft Comput. 2020, 24, 18857–18879. [CrossRef]
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