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Abstract. Certain facts about frames and generalized frames are extended for the new 1-frames, referred
as ∗-1-frames, in a Hilbert C∗-modules. As a matter of fact, some relations are establish between ∗-frames
and ∗-1-frames in a Hilbert C∗-module. Furthermore, the paper studies the operators associated to a given
∗-1-frame, the construction of new ∗-1-frames. Moreover, the operator duals for a ∗-1-frame are introduced
and their properties are investigated. Finally, operator duals of a ∗-1-frame are characterized.

1. Introduction

Frame theory is a new and applicable part of harmonic analysis. This theory has been rapidly gen-
eralized and various generalizations consisting of vectors in Hilbert spaces or Hilbert C∗-modules have
been developed. In 2005, Sun [10] has introduced the notion of 1-frames as a generalization of frames
for bounded operators on Hilbert spaces. Frank-Larson [4] have extended the theory for the elements of
C∗-algebras and (finitely or countably generated) Hilbert C∗-modules. Afterwards, frames with C∗-valued
bounds in Hilbert C∗-modules have been considered in [2].

It is well known that Hilbert C∗-modules are generalizations of Hilbert spaces by allowing the inner
product to take values in a C∗-algebra rather than in the field of complex numbers. Also, the theory
of Hilbert C∗-modules has applications in the study of locally compact quantum groups, complete maps
between C∗-algebras, non-commutative geometry, and KK-theory. There are some differences between
Hilbert C∗-modules and Hilbert spaces. For instance, the Riesz representation theorem for continuous
linear functionals on Hilbert spaces can not be extended to Hilbert C∗-modules [9] and there exist closed
subspaces in Hilbert C∗-modules that have no orthogonal complement [7]. Moreover, as known, every
bounded operator on a Hilbert space has an adjoint whereas there are bounded operators on Hilbert C∗-
modules which do not drive this property [8]. So, it is expected that problems about frames and ∗-frames for
Hilbert C∗-modules are more complicated than those for Hilbert spaces. This makes the topic of the frames
for Hilbert C∗-modules important and absorbing. We would like to point out here that the properties of
1-frames for Hilbert C∗-modules have been widely investigated in the literature; for further details see [1],
[2], [4], [5], [11] and the references therein. The main purpose of the present paper is to study the subject of
1-frames with C∗-valued bounds and their operator duals in a Hilbert C∗-module.

The outline of paper is organized as follows. In the next section, we give a brief survey on some of
fundamental definitions and notations of Hilbert C∗-modules, 1-frames and ∗-frames in Hilbert C∗-modules.
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Email address: alijani@vru.ac.ir (A. Alijani)



A. Alijani / Filomat 29:7 (2015), 1469–1479 1470

Section 3 is devoted to investigating ∗-1-frames with A-valued bounds and analyzing the elementary
properties of them. In addition, some nontrivial examples of ∗-1-Bessel sequences and ∗-1-frames are
presented which that their A-valued bounds are better than their real valued bounds. That is, we give a
tight ∗-1-frame withA-valued bounds which can not be a tight 1-frame with real valued bounds. At the end
of this section, the relation between 1-frames and ∗-1-frames in a Hilbert C∗-module is presented. In Section
4, some the conditions for combination of two ∗-1-frames are obtained. More precisely, new ∗-1-frames and
∗-frames are constructed. The last section contains definition and characterization of the generalized duals
of a ∗-1-frame where they are called the operator duals.

2. Preliminaries

In this section, we present a brief account of basic definitions and some properties of Hilbert C∗-modules
and their frames. For more information, we refer readers to [6], [9].

Suppose A is a C∗-algebra. A linear space H which is also an algebraic (left) A-module together with
an A-inner product 〈·, ·〉 : H × H −→ A and possesses the following properties is called a pre-Hilbert
C∗-module:

(i) 〈 f , f 〉 ≥ 0, for any f ∈ H .
(ii) 〈 f , f 〉 = 0 if and only if f = 0.
(iii) 〈 f , 1〉 = 〈1, f 〉∗, for any f , 1 ∈ H .
(iv) 〈λ f , h〉 = λ〈 f , h〉, for any λ ∈ C and f , h ∈ H .
(v) 〈a f + b1, h〉 = a〈 f , h〉 + b〈1, h〉, for any a, b ∈ A and f , 1, h ∈ H .

If H is a Banach space with respect to the induced norm by the A-valued inner product, then (H , 〈·, ·〉) is
called a Hilbert C∗-module overA or, simply, a HilbertA-module.

The class of all adjointable maps from Hilbert C∗-module H into Hilbert C∗-module K is indicated by
B∗(H ,K ) and the class of all boundedA-module maps fromH intoK is signified by Bb(H ,K ). It is known
that B∗(H ,K ) ⊆ Bb(H ,K ). We denote B∗(H ,H) and Bb(H ,H) by B∗(H) and Bb(H), respectively.

Throughout the paper, we fix the notationsA and J for a given unital C∗-algebra and a finite or countably
infinite index set, respectively. Also, the sets H and K j, for all j ∈ J, are finitely or countably generated
HilbertA-modules. The jth projection operator from ⊕ j∈JK j ontoK j is represented by π j.

The notion of a 1-frame for a given separable Hilbert space has been introduced by Sun [10]. Then, the
authors [5] has defined a 1-frame for a Hilbert A-module H , as a family of ordered pairs {(Λ j,K j) : j ∈ J}
consisting of HilbertA-modulesK j and operators Λ j ∈ B∗(H ,K j) satisfying

A〈 f , f 〉 ≤
∑
j∈J

< Λ j f ,Λ j f >≤ B〈 f , f 〉,

for all f ∈ H and some positive constants A and B independent of f .
Afterwards, Dehghan-Alijani [2] have developed the following new version of frames for Hilbert A-

modules called ∗-frames as the family { f j} j∈J in a HilbertA-moduleH which satisfy

A〈 f , f 〉A∗ ≤
∑
j∈J

〈 f , f j〉〈 f , f j〉
∗
≤ B〈 f , f 〉B∗,

for all f ∈ H and some strictly nonzero elements A and B inA independent of f .

3. ∗-1-Frames for Hilbert C∗-Modules

In this section, we study the generalized Bessel sequences and the generalized frames with C∗-valued
bounds for a Hilbert C∗-module and compare them with the ordinary types.
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Definition 3.1. A ∗-1-frame forH is a collection of ordered pairs {(Λ j,K j) : j ∈ J} such that

A〈 f , f 〉A∗ ≤
∑
j∈J

〈Λ j f ,Λ j f 〉 ≤ B〈 f , f 〉B∗,

for all f ∈ H and strictly nonzero elements A and B inA.
The numbers A and B are called lower and upper ∗-1-frame bounds, respectively. If A = B, the ∗-1-frame is called

tight and it is normalized when A = B.
The sequence of ordered pairs {(Λ j,K j) : j ∈ J} is called to be a ∗-1-Bessel sequence forH if it has the upper bound

condition in the above inequality. In this case, the element B is called the upper ∗-1-Bessel bound.
Since the normalized ∗-1-frames and the normalized 1-frames are the same, the definition of a ∗-1-orthonormal

basis is the same as the definition of a 1-orthonormal basis. Then we can use them.
The sequence {(Λ j,K j) : j ∈ J} is said to be a 1-orthonormal basis if it is a 1-frame forH and satisfies
i. ΛiΛ

∗

j1 j = δi j1 j, for any i, j ∈ J; and
ii.
∑

j∈J Λ∗jΛ j f = f , for all j ∈ J.

(Throughout the paper, series are assumed to be convergent in the norm sense.)

Remark 3.2. If {(Λ j,K j) : j ∈ J} is a ∗-1-Bessel sequence for the Hilbert A-module H with a ∗-1-Bessel bound B,
then {Λ j} j∈J is uniformly bounded by ‖B‖.

We mentioned that the set of all of 1-frames in a Hilbert A-modules can be considered as a subset of the
family of ∗-1-frames. To illustrate this, let {(Λ j,K j) : j ∈ J} be a 1-frame for the Hilbert A-module H with
real 1-frame bounds A and B. Note that for f ∈ H ,

(
√

A)1A〈 f , f 〉(
√

A)1A ≤
∑
j∈J

〈Λ j f ,Λ j f 〉 ≤ (
√

B)1A〈 f , f 〉(
√

B)1A.

Therefore, every 1-frame for H with real bounds A and B is a ∗-1-frame for H with A-valued ∗-1-frame
bounds (

√
A)1A and (

√
B)1A.

To throw more light on the subject and understand the use of the concepts, we include some examples
of nontrivial ∗-1-Bessel sequences and ∗-1-frames and we show that A-valued bounds are preferred to
real-valued bounds in some cases.

Example 3.3. Let A be a commutative unital C∗-algebra, H be the Hilbert A2-module A2 and let J = N and
fix nonzero sequences (a j) j∈J and (b j) j∈J such that

∑
j∈J a ja∗j and

∑
j∈J b jb∗j are invertible elements in A. Define the

diagonal operators Λ j =diag{a, b} on A2 sending (w1,w2) to (a jw1, b jw2). The sequence {(Λ j,A2) : j ∈ J} is a
tight ∗-1-frame with bound (

∑
j∈J a ja∗j,

∑
j∈J b jb∗j)

1
2 . Note that, {(Λ j,A2)} j∈J is a 1-Bessel sequence with real bound

‖(
∑

j∈J a ja∗j,
∑

j∈J b jb∗j)‖ and therefore theA2-valued bound is optimal rather than the real valued bound.

Example 3.4. LetA = `∞ and letH = C0, the HilbertA-module of the set of all null sequences equipped with the
A-inner product

〈(xi)i∈N, (yi)i∈N〉 = (xiyi)i∈N.

The action of each sequence (ai)i∈N ∈ A on a sequence (xi)i∈N ∈ H is implemented as (ai)i∈N(xi)i∈N = (aixi)i∈N. Let
j ∈ J =N and (1 + 1

i )i∈N ∈ `∞. Define Λ j ∈ B∗(H) by

Λ j(xi)i∈N = (δi ja jx j)i∈N, ∀(xi)i∈N ∈ H .

We observe that∑
j∈N

〈Λ jx,Λ jx〉 = ((1 +
1
i

)2xixi)i∈N = (1 +
1
i

)i∈N〈x, x〉(1 +
1
i

)i∈N, ∀x = (xi)i∈N ∈ H .

Thus {(Λ j,H)} j∈J is a tight ∗-1-frame with bounds (1 + 1
i )i∈N, (The element (1 + 1

i )i∈N is strictly nonzero inA). But
it is not a tight 1-frame for Hilbert l∞-module C0. Note that, {(Λ j,H)} j∈J is a 1-frame with optimal lower and upper
real bounds 1 and 2, respectively.
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In the frame theory, operators play an important role. for example, by the pre-∗-frame operator, duals of
1-frames are characterized and the frame operator is used to give the reconstruction formula. The definitions
of pre-∗-frame operator and frame operator are similar to ordinary types in Hilbert C∗-modules.

Definition 3.5. Given a ∗-1-Bessel sequence {(Λ j,K j)} j∈J in a HilbertA-moduleH with bound B, its corresponding
pre-∗-1-frame operator is an operator Θ fromH into ⊕ j∈JK j by Θ f = (Λ j f ) j∈J.

It is easily to see that the pre-∗-frame operator is adjointable and then we can characterize ∗-1-Bessel
sequences with respect to the adjointableA-module maps.

Theorem 3.6. The set of all ∗-1-Bessel sequences forH with respect to {K j} j∈J is precisely

{(π jΘ) j∈J : Θ ∈ B∗(H ,⊕ j∈JK j)}.

Definition 3.7. Given a ∗-1-frame {(Λ j,K j)} j∈J inH with bounds A and B. The ∗-1-frame operator of {Λ j} j∈J is an
operator S by S f =

∑
j∈J Λ∗jΛ j f for all f ∈ H .

In this case, the ∗-1-frame operator has some properties similar to 1-frame operator and some others is not
similar.

Theorem 3.8. Let {(Λ j,K j)} j∈J be a ∗-1-frame forH with ∗-1-frame operator S and lower and upper ∗-1-frame bounds
A and B, respectively. Then S is positive, invertible and adjointable. Also,

‖A−1
‖
−2
≤ ‖S‖ ≤ ‖B‖2 , f =

∑
j∈J

Λ∗jΛ jS−1 f ,

are valid for f ∈ H .

Proof. Since 〈S f , f 〉 =
∑

j∈J〈Λ j f ,Λ j f 〉, for f ∈ H , and the set of positive elements ofA is closed, S is a positive
element in C∗-algebra B∗(H). We show that S is invertible . For see this, we use an other operator. By
positivity of S, there is a positive element G in B∗(H) such that S = G∗G. Let {G fn}n∈N be a sequence in RG
such that G fn −→ 1 as n→∞. For n,m ∈N,

‖A〈 fn − fm, fn − fm〉A∗‖ ≤ ‖〈S( fn − fm), fn − fm〉‖ = ‖G( fn − fm)‖2.

Since {G fn}n∈N is a Cauchy sequence inH ,

‖A〈 fn − fm, fn−m〉A∗‖ −→ 0 as n,m→∞.

Note that for n,m ∈N,

‖〈 fn − fm, fn − fm〉‖ = ‖A−1A〈 fn − fm, fn − fm〉A∗(A∗)−1
‖ ≤ ‖A−1

‖
2
‖A〈 fn − fm, fn − fm〉A∗‖.

Therefore the sequence { fn}n∈N is Cauchy and hence there exists f ∈ H such that fn −→ f as n→∞. Again
by the definition of ∗-1-frames, the following inequality holds,

‖G( fn − f )‖2 ≤ ‖B‖2‖〈 fn − f , fn − f 〉‖.

Thus ‖G fn − G f ‖ −→ 0 as n→∞ implies that G f = 1. It concludes that RG is closed.
By the like proof, G is injective. Therefore G is injective, closed range and self-adjoint and hence S

is invertible. For the rest of the proof, we show the inequality. The definition of ∗-1-frames implies that
〈 f , f 〉 ≤ A−1

〈S f , f 〉(A∗)−1 and 〈S f , f 〉 ≤ B〈 f , f 〉B∗, and then

‖A−1
‖
−2
‖〈 f , f 〉‖ ≤ ‖〈S f , f 〉‖ ≤ ‖B‖2‖〈 f , f 〉‖, ∀ f ∈ H .

If we take supremum on all f ∈ H , where ‖ f ‖ ≤ 1, then ‖A−1
‖
−2
≤ ‖S‖ ≤ ‖B‖2. In the end, for f ∈ H , we

obtain
f = SS−1 f =

∑
j∈J

Λ∗jΛ jS−1 f .
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Finding optimal bounds plays an important role to study of 1-frames and ∗-1-frames. As we saw in the
examples that their A-valued bounds may be more suitable than real valued bounds for a ∗-1-frame. In
addition, there were tight ∗-1-frames that they are not tight 1-frames. At the end of the section, we introduce
lower and upper real bounds for every ∗-1-frame and we see that ∗-1-frames can be studied as 1-frames
with different bounds.

Theorem 3.9. Let {(Λ j,K j)} j∈J be a ∗-1-frame forH with pre-∗-1-frame operator Θ and lower and upper ∗-1-frame
bounds A and B, respectively. Then {Λ j} j∈J is a 1-frame forH with lower and upper frame bounds ‖(Θ∗Θ)−1

‖
−1 and

‖Θ‖2, respectively.

Proof. By Theorem 3.8, Θ is injective and has closed range and obtain

‖(Θ∗Θ)−1
‖
−1
〈 f , f 〉 ≤

∑
j∈J

〈 f , f j〉〈 f j, f 〉 ≤ ‖Θ‖2〈 f , f 〉, ∀ f ∈ H ,

by Lemma 2.7 [1]. Then {Λ j} j∈J is a frame forH with lower and upper frame bounds ‖(Θ∗Θ)−1
‖
−1 and ‖Θ‖2,

respectively.

In the reminder of the paper, the given results are valid for 1-frames in Hilbert C∗-modules by Theorem 3.9.

Remark 3.10. SupposeA is the self-dual HilbertA-moduleA whenA is a commutative C∗-algebra. Then for every
∗-1-frame {(Λ j,K j)} j∈J, there exists the sequence { f j} j∈J inA such that∑

j∈J

〈Λ j f ,Λ j f 〉 =
∑
j∈J

〈 f , f j〉〈 f j, f 〉, ∀ f ∈ H .

In [2], we shown that
∑

j∈J | f j|
2 is invertible and then every ∗-frame in the HilbertA-moduleA is tight ∗-frame. By

the equality and the invertibility of
∑

j∈J | f j|
2, the every ∗-1-frame inA is tight.

4. The New ∗-1-Frames and Frames

In this section, we consider some conditions for the composition of two ∗-1-frames. Also, the new
∗-1-frames are given with the other ∗-1-frames, the ∗-frames, an element ofH , and theA-valued multiples
of a ∗-1-frame.

Theorem 4.1. Assume that Λ = {(Λ j,K j) : j ∈ J} and Γ = {(Γ j,K j) : j ∈ J} are ∗-1-Bessel sequences for Hilbert
C∗-modulesH1 andH2 with ∗-1-Bessel bounds BΛ and BΓ, respectively. Then Ω = {(Λ∗jΓ j,H1) : j ∈ J} is a ∗-1-Bessel
sequence for H2 with ∗-1-Bessel bound ‖BΛ‖BΓ and the pre-∗-1-frame operator of Ω is a bounded operator ΘΩ from
H2 into ⊕ j∈JH1 by ΘΩ f = (Λ∗jΓ j f ) j∈J.

Proof. By the properties of adjointable operators and the definition of ∗-1-Bessel sequence Γ, we obtain for
f ∈ H2, ∑

j∈J

〈Λ∗jΓ j f ,Λ∗jΓ j f 〉 ≤
∑
j∈J

‖Λ∗j‖
2
〈Γ j f ,Γ j f 〉 ≤ ‖BΛ‖

2
∑
j∈J

〈Γ j f ,Γ j f 〉 ≤ ‖BΛ‖BΓ〈 f , f 〉‖BΛ‖B∗Γ.

Then {Λ∗jΓ j} j∈J is a ∗-1-Bessel sequence with bound ‖BΛ‖BΓ. The pre-∗-1-frame operator of Ω is ΘΩ f =

(Λ∗jΓ j f ) j∈J for all f ∈ H2, clearly.

The following example illustrates this fact that Theorem 4.1 is not valid for the composition of two ∗-1-
frames.
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Example 4.2. Let T be the right shift operator in B∗(l2(A)) and let α be an element in the center of A. Assume
that Λ is defined by Λ := αT. Since 〈Λ(ai)i∈N,Λ(ai)i∈N〉 = α〈(ai)i∈N, (ai)i∈N〉α∗ on l2(A). The single set {Λ} is
an α-tight ∗-1-frame for l2(A), but the single set {Λ∗} is not a ∗-1-frame. To see this, we choose the subsequence
{(n, 1, 0, 0, ...) : n ∈N} in l2(A). There dose not exist A > 0 such that

A〈(n, 1, 0, 0, ...), (n, 1, 0, 0, ...)〉A∗ ≤ 〈Λ∗(n, 1, 0, 0, ...),Λ∗(n, 1, 0, 0, ...)〉,

‖A(n2 + 1)A∗‖2 ≤ ‖α‖2, ∀n ∈N.

Then {Λ∗} has not lower bound condition and is not a ∗-1-frame, whereas {Λ∗} = {Λ∗I} is the composition of two
∗-1-frames {Λ} and {I}.

Now, we characterize the class of all of ∗-1-frames by ∗-1-orthonormal bases and the composition of ∗-1-
frames. The following theorem illustrates that the lower bound condition is preserved in the composition
of some ∗-1-frames.

Theorem 4.3. Let H1, H2 and K j, for j ∈ J, be Hilbert C∗-modules. Let Λ = {(Λ j,K j) : j ∈ J} be a 1-orthonormal
basis for H1 and Γ = {(Γ j,K j) : j ∈ J}. Then Ω = {(Λ∗jΓ j,H1) : j ∈ J} is a ∗-1-frame for H2 if and only if Γ is a
∗-1-frame forH2. Moreover, SΩ = SΓ where SΩ and SΓ are ∗-1-frame operators for Ω and Γ, respectively.

Proof. By the definition of ∗-1-orthonormal basis Λ, we have∑
j∈J

〈Λ∗jΓ j f ,Λ∗jΓ j f 〉 =
∑
j∈J

〈Γ j f ,Γ j f 〉, ∀ f ∈ H2.

So {Λ∗jΓ j} j∈J is a ∗-1-frame if and only if the sequence {Γ j} j∈J is a ∗-1-frame. By the above equality, obtain

〈SΩ f , f 〉 = 〈
∑
j∈J

Γ∗jΛ jΛ
∗

jΓ j f , f 〉 =
∑
j∈J

〈Λ∗jΓ j f ,Λ∗jΓ j f 〉 =
∑
j∈J

〈Γ j f ,Γ j f 〉 = 〈
∑
j∈J

Γ∗jΓ j f , f 〉 = 〈SΓ f , f 〉,

for all f ∈ H2, then it concludes that SΩ = SΓ onH2.

The following proposition illustrates the properties ofA-valued multiples of a ∗-1-frame.

Proposition 4.4. If {(Λ j,K j)} j∈J is a ∗-1-frame for H with bounds A,B, and α is a strictly positive element in the
center ofA, then {αΛ j} j∈J is a ∗-1-frame forH with bounds αA, αB.

Proof. For f ∈ H , we have ∑
j∈J

〈αΛ j f , αΛ j f 〉 =
∑
j∈J

α〈Λ j f ,Λ j f 〉α∗.

By the definition of ∗-1-frame {Λ j} j∈J and the properties of the inequalities in C∗-algebras, for f ∈ H

αA〈 f , f 〉(αA)∗ ≤
∑
j∈J

〈αΛ j f , αΛ j f 〉 ≤ αB〈 f , f 〉(αB)∗.

It completes the proof.

Later, some relations between ∗-frames and ∗-1-frames are considered. First step studies the image of
elements of a ∗-1-frame on an element of H . And second step considers the image of elements of a
∗-1-frame on elements of a ∗-frame.

Theorem 4.5. Let {(Λ j,H)} j∈J be a ∗-1-frame forH and let 1 be an element ofH such that the series
∑

j∈J ‖Λ j1‖
2 is

convergent and
{αΛ j1 : α ∈ A} = H ,

for all j ∈ J. Then the sequence {Λ j1} j∈J is a frame forH .
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Proof. For j ∈ J, suppose that the operator θ j from H into A is defined by θ j( f ) = 〈 f ,Λ j1〉. It is bounded
A-module map, ‖θ j‖ = ‖Λ j1‖, and adjointable with the adjoint θ∗j(α) = αΛ j1, for all α ∈ A. For j ∈ J and
f ∈ H , we have ∑

j∈J

〈 f ,Λ j1〉〈Λ j1, f 〉 =
∑
j∈J

〈θ j f , θ j f 〉 ≤
∑
j∈J

‖θ j‖
2
〈 f , f 〉 =

∑
j∈J

‖Λ j1‖
2
〈 f , f 〉.

Then {Λ j1} j∈J has an upper bound condition with the upper bound
∑

j∈J ‖Λ j1‖
2. For the lower bound

condition, we must use the equality {αΛ j1 : α ∈ A} = H , for all j ∈ J. It concludes that every θ∗j is surjective
and by Lemma 2.7 [1], the operator θ∗jθ j is invertible and∑

j∈J

〈 f ,Λ j1〉〈Λ j1, f 〉 =
∑
j∈J

〈θ j f , θ j f 〉 =
∑
j∈J

〈θ∗jθ j f , f 〉 ≥
∑
j∈J

‖(θ∗jθ j)−1
‖
−1
〈 f , f 〉, ∀ f ∈ H .

These show that {Λ j1} j∈J is a frame forH .

Theorem 4.6. Let {(Λ j,H)} j∈J be a ∗-1-frame forH with bounds AΛ and BΛ, and let { fi}i∈I be a ∗-frame forH with
bounds A and B. Then the sequence {Λ∗j fi}i∈I, j∈J is a ∗-frame forH with bounds AAΛ and BBΛ.

Proof. Assume that f ∈ H . Then∑
j∈J

∑
i∈I

〈 f ,Λ∗j fi〉〈Λ∗j fi, f 〉 =
∑
j∈J

∑
i∈I

〈Λ j f , fi〉〈 fi,Λ j f 〉 ≤ B
∑
j∈J

〈Λ j f ,Λ j f 〉B∗ ≤ BBΛ〈 f , f 〉(BBΛ)∗.

It shows that the sequence {Λ∗j fi}i∈I, j∈J has the upper bound condition. The proof of the lower bound
condition is similar.

Theorem 4.7. Let {1i j}i∈I j be a ∗-frame for K j with bounds A j and B j, for all j ∈ J, and let {Λ j ∈ B∗(H ,K j)} j∈J be a
sequence such that {〈Λ j f ,Λ j f 〉; j ∈ J, f ∈ H} is a subset of the center ofA. If there exist two strictly positive elements
C and D inA by the properties C ≤ A jA∗j and B jB∗j ≤ D, then {Λ∗j1i j}i∈I j, j∈J is a ∗-frame forH if and only if {Λ j} j∈J is
a ∗-1-frame forH .

Proof. Since C and D are strictly positive, there exist A and B strictly nonzero elements in A such that
C = AA∗ and BB∗. Now, assume that {Λ∗j1i j}i∈I j, j∈J is a ∗-frame with bounds α and β. For f ∈ H , obtain

α〈 f , f 〉α∗ ≤
∑
j∈J

∑
i∈I j

〈 f ,Λ∗j1i j〉〈Λ
∗

j1i j, f 〉 =
∑
j∈J

∑
i∈I j

〈Λ j f , 1i j〉〈1i j,Λ j f 〉

≤

∑
j∈J

B j〈Λ j f ,Λ j f 〉B∗j ≤ D
∑
j∈J

〈Λ j f ,Λ j f 〉 = B
∑
j∈J

〈Λ j f ,Λ j f 〉B∗,

then
B−1α〈 f , f 〉(B−1α)∗ ≤

∑
j∈J

〈Λ j f ,Λ j f 〉.

So, {Λ j} j∈J has a lower bound B−1α in A. Similarly, A−1β is an upper bound for {Λ j} j∈J. Conversely, let
{Λ j} j∈J be a ∗-1-frame with bounds AΛ and BΛ. Suppose f ∈ H ,∑

j∈J

∑
i∈I j

〈 f ,Λ∗j1i j〉〈Λ
∗

j1i j, f 〉 =
∑
j∈J

∑
i∈I j

〈Λ j f , 1i j〉〈1i j,Λ j f 〉

≤

∑
j∈J

B j〈Λ j f ,Λ j f 〉B∗j

=
∑
j∈J

B jB∗j〈Λ j f ,Λ j f 〉 ≤
∑
j∈J

D〈Λ j f ,Λ j f 〉 ≤ BBΛ〈 f , f 〉(BBΛ)∗.
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Similarly, for f ∈ H

AAΛ〈 f , f 〉(AAΛ)∗ ≤
∑
j∈J

∑
i∈I j

〈 f ,Λ∗j1i j〉〈Λ
∗

j1i j, f 〉.

Then {Λ∗j1i j}i∈I j, j∈J is a ∗-frame and the proof is complete.

5. The Operator Duals of ∗-1-Frames

In the frame theory, a collection of frames corresponding to a given frame that have a special relation
with respect to first frame is defined. They are called dual frames. Afterwards, generalized duals have
been introduced [3]. Here, the ordinary duals of a given ∗-1-frame are defined and these concepts are
generalized. Then we consider their properties and characterize all of dual ∗-1-frames associated to a given
∗-1-frame in a Hilbert C∗-module. These facts are valid for 1-frames in Hilbert spaces because of Hilbert
C∗-modules are extended of Hilbert spaces.

Definition 5.1. A ∗-1-frame {(Γ j,K j)} j∈J is a dual ∗-1-frame for a given ∗-1-frame {(Λ j,K j)} j∈J if
∑

j∈J Λ∗jΓ j = I.

In particular, the ∗-1-frame {(Λ̃ j,K j)} j∈J := {(Λ jS−1,K j)} j∈J is called the canonical dual ∗-1-frame.

Here, we extend this type of duals to larger than the family which are called operator duals.

Definition 5.2. Let {(Λ j,K j)} j∈J and {(Γ j,K j)} j∈J be two the ∗-1-frames forH . If there exists an invertible adjointable
A-module map Υ onH such that

f =
∑
j∈J

Λ∗jΓ jΥ( f ), ∀ f ∈ H ,

then {Γ j} j∈J is called to be an operator dual of {Λ j} j∈J.

Remark 5.3. Every ∗-1-frame {Λ j} j∈J with the frame operator S is an operator dual for itself. For see this, set Υ := S−1

and use Theorem 3.8.

Remark 5.4. Let Γ = {(Γ j,K j)} j∈J be an operator dual of the ∗-1-frame Λ = {(Λ j,K j)} j∈J in H . Then for some
invertible adjointable map Υ ∈ B∗(H),

f =
∑
j∈J

Λ∗jΓ jΥ( f ), ∀ f ∈ H .

The equality shows that I = (Θ∗
Λ
ΘΓ)Υ where I is the identity map on H , and ΘΓ and ΘΛ are the pre-∗-1-frame

operators of Γ and Λ, respectively. Therefore, the operator Υ is unique and Υ−1 = Θ∗
Λ
ΘΓ.

By Remark 5.4, we say that {(Γ j,K j)} j∈J is an operator dual of {(Λ j,K j)} j∈J with the corresponding
invertible operator Υ.

Proposition 5.5. Let Γ = {(Γ j,K j)} j∈J and Λ = {(Λ j,K j)} j∈J be ∗-g-Bessel sequences for H with pre-∗-1-frame
operators ΘΓ and ΘΛ, respectively. If there exists an adjointable and invertible operator Υ onH such that

f =
∑
j∈J

Λ∗jΓ jΥ( f ), ∀ f ∈ H ,

then Γ and Λ are the operator duals to each other.
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Proof. By the invertibility of Υ, for f ∈ H , there is a 1 ∈ H such that Υ1 = f . So

〈1, 1〉 = 〈Θ∗ΛΘΓΥ1,Θ∗ΛΘΓΥ1〉 ≤ ‖ΘΛ‖
2
〈ΘΓ f ,ΘΓ f 〉.

On the other hand,
〈1, 1〉 = 〈Υ−1 f ,Υ−1 f 〉 ≥ ‖Υ‖−2

〈 f , f 〉.

Therefore, for f ∈ H
(‖ΘΛ‖‖Υ‖)−2

〈 f , f 〉 ≤ 〈ΘΓ f ,ΘΓ f 〉,

and Γ has the lower bound condition. Then it is a ∗-1-frame. Similarly, Λ is a ∗-1-frame and then are the
operator duals to each other by Remark 5.7.

Now, we can obtain a collection of operator duals with respect to a given operator dual for a ∗-1-frame. The
following proposition illustrates this subject.

Proposition 5.6. Let {(Γ j,K j)} j∈J be an operator dual of the ∗-1-frame {(Λ j,K j)} j∈J in H with the corresponding
invertible operator Υ, and let {Λ̃ j} be the canonical dual ∗-1-frame of {Λ j} j∈J. If u is a strictly nonzero element in
the center ofA and Ω j = uΓ j + uΛ̃ jΥ

−1 for j ∈ J, then {Ω j} j∈J is an operator dual of {Λ j} j∈J with the corresponding
invertible operator 1

2 u−1Υ. Also, The sequence {uΓ j} is an operator dual of {Λ j} j∈J with the corresponding invertible
operator u−1Υ.

Proof. By the properties of operator duality of {Γ j} j∈J and the canonical dual ∗-1-frame, we have for f ∈ H∑
j∈J

Λ∗jΩ j(
1
2

u−1Υ) f =
∑
j∈J

[Λ∗juΓ j(
1
2

u−1Υ) + Λ∗juΛ̃ jΥ
−1(

1
2

u−1Υ)] f =
1
2

f +
1
2

f = f .

The equality shows that {Ω j} j∈J is an operator dual with the corresponding invertible operator 1
2 u−1Υ. The

proof of the last part is similarly.

In more, we mention that the operator duality relation of ∗-1-frames is symmetric. It is considered in the
next remark.

Remark 5.7. If {(Γ j,K j)} j∈J is an operator dual for {(Λ j,K j)} j∈J with the corresponding invertible operator Υ, then
{(Λ j,K j)} j∈J is an operator dual for {(Γ j,K j)} j∈J with the corresponding invertible operator Υ∗. For see this, assume
that ΘΛ and ΘΓ are the pre-∗-1-frame operators of {(Λ j,K j)} j∈J and {(Γ j,K j)} j∈J, respectively, and I is identity operator
onH . By the definition of operator dual,

f =
∑
j∈J

Λ∗jΓ jΥ f , ∀ f ∈ H ,=⇒ I = (Θ∗ΛΘΓ)Υ

Since Υ is invertible, Υ−1 = Θ∗
Λ
ΘΓ and

I = Υ(Θ∗ΛΘΓ) = (Θ∗ΓΘΛ)Υ =⇒ f =
∑
j∈J

Γ∗jΛ jΥ
∗ f ∀ f ∈ H .

The last remark concludes f =
∑

j∈J Γ∗jΛ jΥ f =
∑

j∈J Λ∗jΓ jΥ f , for f ∈ H . Now, if {Γ j} j∈J is a ∗-1-frame with
bounds A and B and Υ is an invertible and adjointable operator onH , then {Γ jΥ} j∈J is a ∗-1-frame because∑

j∈J

〈Γ jΥ f ,Γ jΥ f 〉 ≤ B‖Υ‖〈 f , f 〉B∗‖Υ‖,

and ∑
j∈J

〈Γ jΥ f ,Γ jΥ f 〉 ≥ A〈Υ∗Υ f , f 〉A∗ ≥ A‖(Υ∗Υ)−1
‖
−1/2
〈 f , f 〉A∗‖(Υ∗Υ)−1

‖
−1/2.
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Therefore, {Γ jΥ} j∈J is an ordinary dual for {(Λ j,K j)} j∈J, and it seems that generalized duals of {(Λ j,K j)} j∈J
are not different with ordinary duals. But since the form of them are different, we characterize the all of
generalized duals of a given ∗-1-frame. For ordinary case, it is enough that Υ = I in the following results.
Later, the operator duals of a given ∗-1-frame are studied. By Remark 5.7, we have I = Θ∗

Λ
ΘΓΥ = Θ∗ΓΘΛΥ∗.

Then {(Γ j,K j)} j∈J is an operator dual of {(Λ j,K j)} j∈J if and only if ΘΓ is a right inverse of ΥΘ∗
Λ

. Therefore,
to characterize all of the operator duals of {(Λ j,K j)} j∈J, we must study all of the right inverses of ΥΘ∗

Λ
. The

following proposition considers this subject.

Proposition 5.8. Let Λ = {(Λ j,K j)} j∈J be a ∗-1-frame for H with the pre-∗-frame operator ΘΛ and the ∗-1-frame
operator S. If Υ is an invertible element in B∗(H), the set of all of right inverses of ΥΘ∗

Λ
is

{ΘΛS−1Υ−1 + (I −ΘΛS−1Θ∗Λ)ξ ; ξ ∈ B∗(H ,⊕ j∈JK j)}.

Proof. Assume that ξ is an arbitrary element in B∗(H ,⊕ j∈JK j). We have

ΥΘ∗Λ[ΘΛS−1Υ−1 + (I −ΘΛS−1Θ∗Λ)ξ] = ΥΘ∗ΛΘΛS−1Υ−1 + ΥΘ∗Λξ − ΥΘ∗ΛΘΛS−1Θ∗Λξ

= ΥSS−1Υ−1 + ΥΘ∗Λξ − ΥSS−1Θ∗Λξ = I + ΥΘ∗Λξ − ΥΘ∗Λξ = I.

Now, if Φ is an arbitrary right inverse of ΥΘ∗
Λ

, then it is enough that set ξ = Φ and the proof of the
proposition is complete.

Considering an arbitrary right inverse of the operator ΥΘ∗
Λ

, we obtain an operator dual corresponding it.
The following proposition illustrates this fact.

Proposition 5.9. Let Λ = {(Λ j,K j)} j∈J be a ∗-1-frame inH with the pre-∗-1-frame operator ΘΛ. If Φ : H → ⊕ j∈JK j
is any adjointable right inverse of ΥΘ∗

Λ
, then {(π jΦ,K j)} j∈J is an operator dual of {(Λ j,K j)} j∈J with the corresponding

invertible operator Υ.

Proof. By Proposition 3.6, the sequence {(π jΦ)} j∈J is a ∗-1-Bessel sequence in H . Also, since Φ∗(ΥΘ∗
Λ

)∗ = I,
Φ∗ is surjective and for f ∈ H ,

‖(Φ∗Φ)−1
‖
−1
〈 f , f 〉 ≤ 〈Φ f ,Φ f 〉 =

∑
j∈J

〈(π jΦ) f , (π jΦ) f 〉,

and we have {(π jΦ,K j)} j∈J is a ∗-1-frame forH with pre-∗-1-frame operator Φ. Moreover, from I = Φ∗(ΘΛΥ∗)
obtain f =

∑
j∈J(π jΦ)Λ jΥ

∗( f ), for f ∈ H . It means that {(π jΦ,K j)} j∈J is an operator dual for {(Λ j,K j)} j∈J with
the corresponding invertible operator Υ∗.

We can summarize the results in this section in the following theorem about to characterize of the all of
operator duals for a given ∗-1-frame.

Theorem 5.10. Let {(Λ j,K j)} j∈J be a ∗-1-frame in H with the pre-∗-1-frame operator Θ, the ∗-1-frame operator S
and the canonical dual ∗-1-frame {(Λ̃ j,K j)} j∈J. Then the set of all of operator duals for {(Λ j,K j)} j∈J is of the form

Λ̃ jΥ + ∆ j −
∑
k∈J

Λ̃ jΛ
∗

k∆k,

such that the sequence {(∆ j,K j)} j∈J is a ∗-1-Bessel sequence and Υ is an invertible operator in B∗(H).

Proof. Let {(∆ j,K j)} j∈J be a ∗-1-Bessel sequence in H with the pre-∗-1-frame operator Φ and let Υ is an
invertible operator in B∗(H). Set

ξ j = Λ̃ jΥ + ∆ j −
∑
k∈J

Λ̃ jΛ
∗

k∆k,
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for j ∈ J, and define the linear operator

Ξ : H → ⊕ j∈JK j, by Ξ f = (ξ j f ) j∈J.

Clearly, Ξ is adjointable. For every j ∈ J, we have

π jΞ = Λ jS−1Υ + ∆ j −Λ jS−1
∑
k∈J

Λ∗k∆k = π j(ΘS−1Υ + Φ −ΘS−1Θ∗Φ).

Then Ξ = ΘS−1Υ + (I −ΘS−1Θ∗)Φ. By Proposition 5.8 and Proposition 5.9, {(ξ j,K j)} j∈J becomes an operator
dual ∗-1-frame of {(Λ j,K j)} j∈J with the corresponding invertible operator Υ−1.
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