
Generalized framework for non-sinusoidal fringe
analysis using deep learning

SHIJIE FENG,1,2,3 CHAO ZUO,1,2,4 LIANG ZHANG,1,2 WEI YIN,1,2 AND QIAN CHEN
2,5

1Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing 210094, China
2Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing University of Science and Technology, Nanjing 210094, China
3e-mail: shijiefeng@njust.edu.cn
4e-mail: zuochao@njust.edu.cn
5e-mail: chenqian@njust.edu.cn

Received 2 February 2021; revised 26 March 2021; accepted 13 April 2021; posted 13 April 2021 (Doc. ID 420944); published 27 May 2021

Phase retrieval from fringe images is essential to many optical metrology applications. In the field of fringe pro-
jection profilometry, the phase is often obtained with systematic errors if the fringe pattern is not a perfect sinus-
oid. Several factors can account for non-sinusoidal fringe patterns, such as the non-linear input–output response
(e.g., the gamma effect) of digital projectors, the residual harmonics in binary defocusing projection, and the
image saturation due to intense reflection. Traditionally, these problems are handled separately with different
well-designed methods, which can be seen as “one-to-one” strategies. Inspired by recent successful artificial in-
telligence-based optical imaging applications, we propose a “one-to-many” deep learning technique that can an-
alyze non-sinusoidal fringe images resulting from different non-sinusoidal factors and even the coupling of these
factors. We show for the first time, to the best of our knowledge, a trained deep neural network can effectively
suppress the phase errors due to various kinds of non-sinusoidal patterns. Our work paves the way to robust and
powerful learning-based fringe analysis approaches. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.420944

1. INTRODUCTION

Three-dimensional (3D) measurement plays an essential role in
many fields, e.g., industrial manufacturing [1], medical treat-
ment [2], entertainment [3], and identity recognition [4]. In
convention, coordinate measuring machines provide users with
accurate 3D data by way of point-by-point measurements [5].
However, its measuring speed is limited due to the point-wise
and contact inspection. By contrast, optical 3D measurement
techniques can obtain full-field geometric measurements within
a single or several shots [6,7]. Among current optical 3D
measurement techniques, structured light illumination profil-
ometry has received extensive attention and is becoming one
of the most promising 3D shape measurement techniques [8,9].

In structured light illumination profilometry, one illumi-
nates test objects with patterns of various structures, such as
sinusoidal fringes [10], de Bruijn patterns [11], speckle patterns
[12], and aperiodic fringes [13]. For high-accuracy 3D mea-
surements, sinusoidal fringe patterns are often preferred. Many
fringe analysis methods have been proposed for extracting the
object’s phase from sinusoidal fringes. They can be broadly clas-
sified into two categories: spatial-demodulation methods
[14–18] and temporal-demodulation methods [19–24]. For
spatial-demodulation approaches, one can compute the phase

by using a single fringe image, demonstrating the advantage of
high efficiency. Nevertheless, they tend to compromise for
complex surfaces since high-frequency details are difficult to
retrieve with only a single image. For temporal-demodulation
methods, pixel-wise measurements with higher resolution and
accuracy can be achieved. By representative phase-shifting (PS)
algorithms [10], one captures several sinusoidal fringe images
with a given phase shift and calculates the phase using a least-
square method. As multiple images can provide more informa-
tion about the same measured point, the phase of complex
structures can be recovered with high accuracy. However,
the main limitation of temporal-demodulation approaches is
the reduced efficiency as several images have to be recorded.
It is noteworthy that we need to ensure that the sinusoidal
fringe patterns are captured with high quality for either spa-
tial-demodulation or temporal-demodulation techniques.

Several inherent factors in structured light illumination can
account for the collection of non-sinusoidal patterns. The first
one is the gamma distortion of digital projectors. For visual
quality, digital projectors or displays are often manufactured
with specific gamma distortion, leading to a non-linear relation-
ship between the output intensity and the input intensity that is
I out � I γin. Researchers have proposed many approaches that
can be roughly classified into system-based methods [8,25–27]
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and algorithm-based methods [28–36] to relieve the gamma
distortion. The system-based approaches suggest replacing
commercial projectors with illumination units free from
gamma effect, e.g., coherent light illumination setups [25]
and programmable digital light processing (DLP) modules [8].
Although effective, they may increase the cost or the complexity
of the whole system. To eliminate the gamma distortion with-
out changing the system hardware, one can record the input
and the output light intensity and predict the gamma value us-
ing the non-linear model [28–30]. Then, to counteract the
gamma effect, one can pre-distort the input intensity using
�I in�

1

γ , which can recover the true output intensity I out �
��I in�

1

γ �
γ
� I in. Also, gamma-induced phase errors can be com-

pensated by lookup tables that depict the relationship between
the phase difference and the actual phase [31,32]. In addition,
the weights of harmonic errors duo to the gamma effect can be
predicted through some iteration algorithms, which can then
be used for error compensation [33].

The second cause for captured non-sinusoidal fringes is the
residual high-order harmonics in binary defocusing projection.
In high-speed fringe projection, binary defocusing techniques
have the advantages of fast image projection [37]. For projec-
tors using digital micromirror devices, 8-bit fringe images are
usually projected at the speed limit of 120 Hz as a relatively
long integration time is required. For 1-bit binary fringes, how-
ever, the integration time of projection can be reduced to the
minimum, allowing the projector to operate at kilohertz to tens
of kilohertz. By defocusing the projector, we can have the
binary stripe patterns transformed into gray-scale sinusoidal
patterns. In practice, users should carefully adjust the defocus-
ing degree of the projector. When the projector is defocused
excessively, the fringe images are captured with a low contrast.
On the opposite, if the defocusing degree is not enough sys-
tematic errors would occur, since harmonics in the binary
fringes have not been filtered completely by the defocusing pro-
cess. In practice, people prefer to defocus the projector slightly
and then try to remove the systematic errors with well-designed
algorithms, such as pulse width modulation [38,39], sinusoidal
pulse width modulation (SPWM) [40], tripolar SPWM [41],
optimal pulse width modulation [42], and dithering methods
[43,44]. The main idea of these methods is to shift harmonics
in the binary fringe from low-frequency areas to high-frequency
sections of its spectrum, facilitating the low-pass filtering effect
induced by the defocusing projection.

The third cause of non-sinusoidal fringes is the image sat-
uration in high dynamic range (HDR) 3D shape measure-
ments. For fringe projection profilometry, it is challenging
to measure objects with a considerable variation in surface re-
flectivity, e.g., a scenario contains both dark and bright objects.
The fringe patterns reflected from the dark regions are often
captured with a low signal-to-noise ratio, whereas the pixels
are usually saturated for the reflective surfaces. When dark ob-
jects are captured with proper fringe patterns, bright areas in
the same scene are often measured with saturated (pure white)
fringes. As object details have been covered up with the satu-
rated fringes, it is hard to retrieve the phase. Various approaches
to HDR fringe projection techniques have been proposed [45].
In general, these techniques can be classified into two groups:

equipment-based techniques [46–56] and algorithm-based
techniques [57–62]. In the group of equipment-based meth-
ods, researchers try to acquire ideal fringe images by adjusting
the imaging system, such as the exposure time [47], the inten-
sity of projected light [50], the polarization states of illumina-
tion [46], and the number of camera views [46]. As to the
algorithm-based methods, researchers concentrate on the de-
sign of phase retrieval algorithms instead of changing the im-
aging system’s hardware, allowing the phase to be measured
directly from saturated fringe images.

Further, the case will be more complicated if some of the
non-sinusoidal factors are coupled together, which is seldom
discussed in the current literature. For example, fringe images
are captured with both the gamma effect and the image satu-
ration, or with both the insufficient defocusing projection and
the image saturation. This paper shows that the causes of these
kinds of individual/coupling non-sinusoidal problems are sim-
ilar, which can boil down to a superposition of the original sine
wave of the fundamental frequency with several unknown sine
waves at high frequencies (high-order harmonics). In practice,
stochastic factors, e.g., the random noise, may also affect the
captured fringe pattern but they are not discussed here as they
will not change the main profile of a sinusoid.

Deep learning is a powerful machine learning technique that
uses artificial neural networks with deep layers to fit complex
mathematical functions. Compared with traditional algorithms
that rely on physical models completely, deep learning ap-
proaches handle problems by searching and establishing sophis-
ticated mapping between the input and the target data owing to
the powerful computation capability. In many applications,
learning-based methods have shown superiority to classic
physical-model-based methods. In the field of image denoising,
denoising autoencoders have been trained to obtain high level
features for robust reconstruction of clean images [63,64]. In
the field of nanophotonics, artificial intelligence has been ap-
plied to knowledge discovery, which shows great potential in
understanding of the physics of electromagnetic nanostructures
[65]. In the field of optical imaging, recent years have witnessed
great successes of deep learning assisted applications. First, the
deep neural network can significantly improve optical micros-
copy and increase its spatial resolution over a large field of view
and depth of field [66]. Then, the deep learning techniques
can be used for phase recovery and holographic image
reconstruction in digital holography [67]. With only one holo-
gram image, the twin-image and self-interference-related
artifacts can be removed. Also, deep-learning-based ghost im-
aging techniques have shown much better performance than
conventional ghost imaging in terms of different noise and
measurement ratio conditions [68]. Furthermore, researchers
have utilized deep learning strategies to build powerful models
that can fit all scattering media within the same class, which
improves the scalability of imaging through scattering [69].
Lastly, in optical coherence tomography (OCT), deep neural
networks can be used to identify clinical features similar to how
clinicians interpret an OCT image, allowing successful auto-
mated segmentations of clinically relevant image features [70].

In recent years, researchers have demonstrated that deep
neural networks can be used to improve the performance of

Research Article Vol. 9, No. 6 / June 2021 / Photonics Research 1085



fringe projection profilometry effectively. In fringe analysis,
deep convolutional neural networks can be trained to retrieve
the phase information from a single fringe image with favorable
accuracy [71–74]. In phase unwrapping, learning-based tempo-
ral phase unwrapping [75] and stereo phase unwrapping meth-
ods [76] were developed to suppress noise effects and unwrap
dense fringe patterns robustly. To handle complex surfaces, our
previous work has shown that the deep learning technique can
recover the phase from saturated fringe images [57]. Here, we
show that more non-sinusoidal issues can benefit from deep
learning. We demonstrate for the first time, to our knowledge,
a generalized neural network can cope with various kinds of
non-sinusoidal fringes that are caused by either single or multi-
ple non-sinusoidal factors. Experimental results show that com-
pared with traditional three-step phase-shifting algorithms, the
proposed method can substantially improve the reconstruction
accuracy by more than 50% without reducing the measure-
ment efficiency.

2. PRINCIPLE

A. Phase-Shifting Algorithm

In fringe projection profilometry, a projector illuminates test
objects with pre-designed fringe images and a camera captures
the images simultaneously from a different angle. The fringe
patterns are distorted due to the varying height of measured
areas. The phase retrieved from captured patterns serves as tem-
porary textures of test objects and can be converted into the
object’s height. The N -step PS algorithm is widely applied
to phase retrieval as it has the advantages of high accuracy, in-
sensitivity to ambient light, and pixel-wise phase measurement.
The captured N -step PS fringe image can be expressed as

In�x, y� � A�x, y� � B�x, y� cos�ϕ�x, y� − δn�, (1)

where ϕ�x, y� is the phase, A�x, y� is the background intensity,
B�x, y� is the modulation, and δn is the phase shift that is equal
to 2πn∕N , where n � 0, 1, 2, ...,N − 1. When there are at
least three images (N ≥ 3), the phase can be solved by

ϕ�x, y� � arctan

P

N−1
n�0 I n�x, y� sin

�

2πn
N

�

P

N−1
n�0 I n�x, y� cos

�

2πn
N

� : (2)

B. Phase-Shifting Algorithm with Non-Sinusoidal

Fringe Images

Non-sinusoidal PS images are often captured as a result of the
projectors’ gamma effect, the binary defocusing illumination,
or the image saturation. A generalized model can be used to
represent the captured images as

IHn �x, y� � AH �x, y� �
X

p

j�1

BH
j �x, y� cosfj�ϕ�x, y� − δn�g,

(3)

where AH �x, y� is the background intensity, BH
j �x, y� is the

modulation of the jth harmonic, and p is the number of harmon-
ics. When p � 1, IHn �x, y� is equal to In�x, y�, which is the case
of perfect sinusoidal patterns. When p > 1, however, the fringe
images become non-sinusoidal. This model has been
proposed to characterize the fringe pattern affected by the
gamma distortion [30].We find that it is also applicable formore
cases including the binary defocusing projection, fringe image
saturation, and the coupling of these non-sinusoidal factors.

We illustrate different kinds of non-sinusoidal fringe im-
ages, as shown in Fig. 1. They are fringe patterns simulated
under the gamma distortion, binary square wave with slight
defocusing, image saturation, and two coupling cases, respec-
tively. In the case of γ � 2.2, the sinusoidal wave’s peaks

Fig. 1. Simulated sinusoidal fringe images and their cross sections. (a) An ideal sinusoidal pattern. (b) A gamma-distorted sinusoidal pattern. (c) A
defocused binary stripe image. (d) A saturated sinusoidal fringe image. (e) A fringe image affected by both the gamma distortion and the image
saturation. (f ) A fringe image affected by both the defocusing and the image saturation.
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become narrow while the valleys wide, giving rise to narrowed
bright stripes compared with the ideal sinusoidal wave. For the
defocused pattern as shown in Fig. 1(c), the intensity distribu-
tion looks like a triangular wave due to the presence of residual
harmonics. For the case of image saturation, the intensity that
exceeds the maximum dynamic range (i.e., 255 in this simu-
lation) is truncated, while the rest keeps unchanged. Last, in
the coupling cases as shown in Figs. 1(e) and 1(f ), the image
saturation further modifies the shape of the original non-
sinusoidal waves by cutting off the intensity that exceeds the
dynamic range, which further increases the non-sinusoidal
characteristic of the wave.

Fourier analysis is then implemented to investigate the har-
monics of these patterns. The results are shown in Figs. 2 and 3.
The fundamental frequency f 0 is three in our simulation. For
the ideal sine wave, only the fundamental frequency f 0 exists.
For the case of γ � 2.2, the frequency components 2f 0 and
3f 0 begin to appear. For the case of the defocused binary pat-
tern, as shown in Fig. 2(f ), we can observe harmonics of 3f 0

and 5f 0 that survive the defocusing. Although their amplitudes
are small, they can still destroy the phase retrieval. In Figs. 3(a)
and 3(d), we can see that there are four additional frequency
components that are from 2f 0 to 5f 0 in the saturated sine
wave except for the fundamental frequency. Last, two coupling
cases are discussed, which are the gamma effect coupled with
the image saturation and the defocused pattern coupled with
the image saturation, respectively. In Figs. 3(e) and 3(f ), we
can find that more harmonics have been introduced into the
coupled gamma distorted pattern and the coupled defocused
pattern due to the influence of image saturation, which has fur-
ther destroyed the shape of the sinusoidal wave.

Next, we analyze the phase errors owing to the non-sinus-
oidal issues. Assume that the intensity difference for each PS
image is

ΔI n�x, y� � In�x, y� − I
H
n �x, y�: (4)

The phase error caused by additional harmonics can be
written as

Δϕ�x, y� �
X

N−1

n�0

∂ϕ�x, y�

∂In�x, y�
ΔI n�x, y�: (5)

By substituting Eqs. (2) and (4) into Eq. (5), we have

Δϕ � −

4

B2N 2

X

N−1

n�0

��

X

N−1

m�0

Im sin
2π�n −m�

N

�

×

�

X

p

j�0

Bj cos j

�

ϕ −

2πn

N

��	

: (6)

Equation (6) shows the non-sinusoidal phase error of N -step
PS algorithms. It can be found that the phase error Δϕ can be
reduced by increasing the modulation of fundamental fre-
quency and the number of phase shift N . As it is not easy
to manipulate the former in practice, we study the influence
of changing the number of phase shift.

Figure 4 illustrates the performance of PS algorithms in an-
alyzing different non-sinusoidal fringes. Here, the ground-truth
phase is calculated with ideal sinusoidal fringes. The phase error
is obtained by computing the standard deviation of the phase
difference. In the simulation of gamma distortion, we set
γ � 2.2. As can be seen, the phase error induced by the gamma
effect decreases rapidly with the increase of the number of phase
shift. For the case of defocused binary square pattern, the phase
error reduces but with small fluctuations. The reason is that for
an N -step PS algorithm, it is sensitive to �s � 1�N � 1th har-
monics (where s is an integer) [41]. For example, the four-step
PS algorithm is sensitive to all of the odd harmonics present in
the defocused pattern, showing the largest phase error among
all of the PS algorithms. However, from the whole trend, the
phase error still decreases with a large N . For the case of sat-
uration, we truncated 20% of the maximum light intensity.
Like the defocusing technique, its phase error also shows a
trend that the error decreases with an increasing N . For the
coupling case of image saturation and γ � 2.2, the phase error
is larger than that of the case of pure gamma. For the coupling
of defocusing projection and the image saturation, a more seri-
ous error is also observed than the one of the pure defocusing

(a) (b) (c)

(d) (e) (f)

Fig. 2. Intensity and spectrum of different sinusoidal patterns. (a)–(c) The intensity profile of the ideal sinusoidal fringe, the gamma-distorted
fringe, and the defocused fringe, respectively. (d)–(f ) The corresponding spectra of (a)–(c).
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case. From the results, although different non-sinusoidal
factors are superimposed in the coupling cases, the phase
can still be robustly computed with a large step PS algorithm.
In practice, however, the phase-shifting algorithm with a large
number of steps requires many fringe images to be captured

for a single phase measurement, which limits the efficiency
significantly.

3. ARCHITECTURE OF THE DEEP NEURAL

NETWORK

From the previous section, the phase error due to the non-
sinusoidal patterns can be reduced by increasing the number
of phase steps. However, the efficiency of the 3D imaging will
decrease obviously. To handle this issue, we resort to deep
learning techniques to retrieve the phase accurately from the
non-sinusoidal patterns without increasing PS images. In this
work, our deep neural network is constructed following the ar-
chitecture of U-net [77].

U-net is a fully convolutional network with an encoder–
decoder architecture, which is widely used in image segmenta-
tion. As shown in Fig. 5, the input images are captured
non-sinusoidal PS fringe images. We take the three-step PS al-
gorithm as an example as it requires the minimum images.
With the non-sinusoidal PS fringe images, the network learns
to predict ideal numerator M �x, y� and denominator D�x, y�,
which can be represented as

(a) (b) (c)

(d) (e) (f)

Fig. 3. Intensity and spectrum of different sinusoidal patterns. (a)–(c) The intensity profile of the saturated sinusoidal fringe, the saturated
gamma-distorted fringe, and the saturated defocused fringe, respectively. (d)–(f ) The corresponding spectra of (a)–(c).

Fig. 4. Performance of N -step phase-shifting algorithms for various
kinds of non-sinusoidal fringes.

Numerator ( , )

Denominator ( , )

Non-sinusoidal PS images

50

100

400
800

200

50

100

400
200

×0.5

×0.5
×0.5 ×2

×2
×2

×2

Skip connection

Encoder Decoder

Down-sampling layer Up-sampling layerConvolutional layer Convolutional layer(linear)

Fig. 5. Proposed deep neural network to process non-sinusoidal fringe images.
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M �x, y� �
X

N−1

n�0

In�x, y� sin

�

2πn

N

�

, (7)

D�x, y� �
X

N−1

n�0

I n�x, y� cos

�

2πn

N

�

: (8)

According to Eq. (2), M�x, y� and D�x, y� can be fed into
the arctan function to calculate the final wrapped phase. At the
beginning, the input fringe images are processed by the encoder
to obtain 50-channel feature tensors with 1/2 resolution reduc-
tion along both the x and y directions. Then, these feature ten-
sors successively go through three convolutional blocks to
capture the multi-level feature information.

Contrary to the encoder subnetwork, the decoder subnet-
work then performs up-sampling operations to restore results
of the input image’s original size. It is implemented by bilinear
interpolation and is followed by two convolution layers. In the
U-net, at every step of the decoder, a skip connection is used to
concatenate the convolution layers’ output with feature maps
from the encoder at the same level. This structure helps obtain
low-level and high-level information at the same time and
weakens the typical gradient vanishing in deep convolutional
networks, which is beneficial to achieve accurate results. The
last layer of the network is a convolutional layer activated by
a linear activation function and outputs two-channel data con-
sisting of the numerator and the denominator. The objective of
the neural network is to minimize the following loss function:

Loss�θ� �
1

HW
�kY M �θ� − GMk2 � kY D�θ� − GDk2�, (9)

where θ represents the set of parameters in the neural network
that is adjusted automatically during the training.H andW are
the image height and width, respectively. Y M and Y D are the
predicted numerator and denominator. GM and GD are
the ground-truth numerator and denominator. To obtain
the ground-truth data, the PS algorithm with a large number
ofN is exploited as it is not sensitive to non-sinusoidal patterns.
From Eq. (9), the deep neural network gradually learns to map
non-sinusoidal fringe images to the numerator and the denom-
inator that are close to the ideal ones during the training.

4. EXPERIMENTS

To validate the proposed method, we built a structured light
illumination system that consisted of a projector (DLP 4500,
Texas Instruments) and an industrial camera (acA640-750 μm,
Basler). The camera was equipped with a lens of 8 mm focal
length. The distance between the test object and the imaging
system is about 1 m.

Non-sinusoidal fringe images due to five different causes
were captured, respectively: (1) the pure gamma distortion
(where γ was set as 2.2 during the pattern projection),
(2) the pure binary defocusing projection, (3) the pure image
saturation, (4) the coupling of gamma effect γ � 2.2 with im-
age saturation, and (5) the coupling of binary defocusing pro-
jection with image saturation. To collect the training data, we
captured 750 sets of non-sinusoidal three-step PS fringe images
from different objects. To obtain the ground-truth data,
Eqs. (7) and (8) were applied, where N was selected as 12

to remove the influence of the harmonics as much as possible.
The pixel depth of captured three-step fringe images is 8-bit in
our experiments. Before being fed into the neural network, they
were divided by 255 for normalization, which can make the
learning easier for the network. The neural network was imple-
mented using the TensorFlow framework (Google) and was
computed on a GTX Titan graphics card (NVIDIA). For each
non-sinusoidal scenario, we trained and tested the neural net-
work using only the data belonging to the same scenario. All of
the objects used in the testing process were not present in the
training stage.

First, we investigated the neural network’s efficacy in the
correction of gamma distortion. Figure 6(a) shows one of
the captured three-step PS images. Figure 6(b) is the 3D
reconstruction (depth map) obtained by the traditional
three-step PS algorithm, in which obvious periodic ripple errors
can be observed on the face of the retrieved model. Figures 6(c)
and 6(d) demonstrate the 3D reconstructions by the proposed
method and the 12-step PS algorithm, respectively. By com-
parison, these ripple errors have been suppressed effectively
by the neural network. For quantitative evaluation, first we
measured a pair of ceramic spheres. One of the captured
gamma-distorted fringe images is as shown in Fig. 7(a).
Figures 7(b)–7(d) demonstrate the 3D models obtained by
the three-step PS method, the proposed method, and the
12-step method, respectively. The measurement error maps
of the three-step PS method and the proposed method are
shown in Figs. 7(e) and 7(f ). The errors were calculated by re-
ferring to the high-accuracy profile obtained by the 12-step PS
algorithm. With the trained neural network, the mean absolute
error (MAE) and standard deviation error (STD) can be

Fig. 6. 3D reconstructions from fringe images that were distorted
by the projector’s gamma of 2.2. (a) One of the captured three-step PS
images. (b) The 3D result obtained by the traditional three-step PS
algorithm. (c) The 3D result obtained by the proposed method.
(d) The 3D result obtained by the 12-step PS algorithm.
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significantly reduced to 0.056 mm and 0.054 mm. Then, we
measured a ceramic plate. Figures 8(a) and 8(b) show the 3D
reconstruction of the traditional three-step PS algorithm and
our method, respectively. The cross-section error of the plate
is shown in Fig. 8(d). For the three-step PS algorithm, the
MAE is 0.11 mm, and the STD is 0.075 mm. For our method,
the MAE and the STD have been reduced to 0.045 mm and
0.034 mm, respectively, indicating the reduction of 59% for
the MAE and 55% for the STD.

Then, the neural network was tested to obtain the phase
from binary defocused fringe images. Here, we used the dith-

ering technique to generate the binary fringes projected with a
slightly defocused projector [78]. Figure 9(a) shows one of the
three-step PS patterns. The 3D reconstruction of the three-step
PS method is shown in Fig. 9(b), where the surfaces have been
measured with obvious stripe noise. Figures 9(c) and 9(d) dem-
onstrate the 3D results of our method and the 12-step PS al-
gorithm, respectively. We can see that these errors have been
removed and smooth 3D reconstructions have been acquired.
For the quantitative analysis, Fig. 10 shows the measurement
results of a pair of ceramic spheres. The 3D result shown in
Fig. 10(c) and the reconstruction error maps shown in

Fig. 7. 3D reconstructions of a pair of ceramic spheres when the projector’s gamma was 2.2. (a) One of the captured three-step PS images. (b) The
3D result obtained by the traditional three-step PS algorithm. (c) The 3D result obtained by the proposed method. (d) The 3D result obtained by
the 12-step PS algorithm. (e) The absolute error map of the three-step PS algorithm. (f ) The absolute error map of the proposed method.

Fig. 8. 3D reconstructions of a ceramic plate when the gamma was 2.2. (a) The 3D result obtained by the traditional three-step PS algorithm
(3PS). (b) The 3D result obtained by the deep-learning-based method (DL). (c) The 3D result obtained by the 12-step PS algorithm.
(d) Comparison of the measurement errors of the three-step PS method and the proposed method.
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Fig. 10(f ) demonstrate that the proposed method has effec-
tively removed the periodic errors induced by non-sinusoidal
components. Then, a ceramic plate was tested. Figures 11(a)–
11(c) show the 3D images of the tested object. High-
frequency ripple errors can be seen on the surface recovered
by the three-step PS algorithm, indicating some harmonics
of the projected pattern survived the defocused projection.
The measurement errors are shown in Fig. 11(d). For the tradi-
tional three-step PS algorithm, the MAE and the STD are
0.12 mm and 0.096 mm, respectively. The MAE and the
STD decreased to 0.046 mm and 0.034 mm, respectively,

when our method was applied, demonstrating the proposed
method reduced the MAE and the STD by 62% and by
65%, respectively.

In the third experiment, the proposed neural network was
used to analyze saturated fringe images. One of captured PS
images is shown in Fig. 12(a), where some fringes have been
captured with pure white on the two models’ faces.
Figure 12(b) demonstrates the 3D reconstruction by the tradi-
tional three-step PS method. Many ripple artifacts can be ob-
served at the recovered faces of the two objects. In Fig. 12(c),
with the assistance of deep learning, these errors were

Fig. 9. 3D reconstructions with slightly defocused binary fringe images. (a) One of the three-step PS images. (b) The 3D result obtained by the
traditional three-step PS algorithm. (c) The 3D result obtained by the proposed method. (d) The 3D result obtained by the 12-step PS algorithm.

Fig. 10. 3D reconstructions of a pair of ceramic spheres with slightly defocused binary fringe images. (a) One of the captured three-step PS
images. (b) The 3D result obtained by the traditional three-step PS algorithm. (c) The 3D result obtained by the proposed method. (d) The 3D
result obtained by the 12-step PS algorithm. (e) The absolute error map of the three-step PS algorithm. (f ) The absolute error map of the proposed
method.
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eliminated effectively by the proposed method. This
reconstruction is very close to the one obtained by the 12-step
PS method, as shown in Fig. 12(d). Figure 13 shows the mea-
surement results of a pair of ceramic spheres. From the error
maps demonstrated by Figs. 13(e) and 13(f ), we can see that
the MAE and STD have been reduced to 0.043 mm and
0.039 mm, respectively. In addition, Figs. 14(a)–14(c) show

the 3D reconstructions of a ceramic plate by the three-step
PS method, the proposed method, and the 12-step PS
algorithm, respectively. The measurement errors are demon-
strated in Fig. 14(d). Due to the image saturation, the 3D
reconstruction was distorted severely for the traditional
method. Its MAE and STD are 0.34 mm and 0.19 mm, re-
spectively. For our method, by contrast, these errors have been

Fig. 11. 3D reconstructions of a ceramic plate with slightly defocused binary fringe images. (a) The 3D result obtained by the traditional three-
step PS algorithm (3PS). (b) The 3D result obtained by the proposed method (DL). (c) The 3D result obtained by the 12-step PS algorithm.
(d) Comparison of the measurement errors of the three-step PS method and the proposed method.

Fig. 12. 3D reconstructions with saturated PS images. (a) One of the captured three-step PS images. (b) The 3D result obtained by the traditional
three-step PS algorithm. (c) The 3D result obtained by the proposed method. (d) The 3D result obtained by the 12-step PS algorithm.
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reduced to 0.052 mm and 0.039 mm, respectively, indicating
the error reduction by 84.7% for MAE and by 79.5% for STD.

Next, we tested the performance of our method for a more
complicated situation where the gamma distortion (γ � 2.2)
was coupled with the image saturation. Figure 15(a) shows
one of the captured three-step PS patterns where the head
of the left model was captured under effects of both the gamma
distortion and the pixel saturation issues. As two non-sinusoidal
factors work together, many wave artifacts can be seen in the
3D model reconstructed with the traditional three-step PS
method [Fig. 15(b)]. In contrast, Figs. 15(c) and 15(d) display

the 3D results of our method and the 12-step PS method, re-
spectively. We can see that the deep learning framework has
successfully removed the influence of the gamma effect and
the image saturation at the same time. In quantitative evalu-
ation, Fig. 16 demonstrates the measurement results of a pair
of ceramic spheres. Benefited from the deep learning, the cou-
pling non-sinusoidal errors can be removed effectively. With
the proposed strategy, the MAE and STD of the measured
sphere can be decreased to 0.047 mm. Then, a ceramic plate
was also measured. The results are shown in Figs. 17(a)–17(c).
From the error distribution shown in Figs. 17(d), we can see

Fig. 13. 3D reconstructions of a pair of ceramic spheres with saturated fringe images. (a) One of the captured three-step PS images. (b) The 3D
result obtained by the traditional three-step PS algorithm. (c) The 3D result obtained by the proposed method. (d) The 3D result obtained by the
12-step PS algorithm. (e) The absolute error map of the three-step PS algorithm. (f ) The absolute error map of the proposed method.

Fig. 14. 3D reconstructions of a ceramic plate with saturated fringe images. (a) The 3D result obtained by the traditional three-step PS algorithm
(3PS). (b) The 3D result obtained by the proposed method (DL). (c) The 3D result obtained by the 12-step PS algorithm. (d) Comparison of the
measurement errors of the three-step PS method and the proposed method.
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that the proposed approach can eliminate the periodic artifacts
and recover the shape of the plate correctly. Numerically, the
MAE and the STD of the three-step PS method are 0.28 mm
and 0.16 mm, respectively. When the proposed method was
applied, the MAE and the STD were reduced by 84% and
79% to 0.044 mm and 0.033 mm, respectively.

Last, we tested the second coupling non-sinusoidal case
where the fringe images were captured under the slightly

defocusing projection and the image saturation. Figure 18(a)
shows one of the captured three-step PS patterns in which
the face was captured with defocused and saturated fringes.
Figure 18(b) shows the 3D result obtained by the traditional
three-step PS method; wrinkle errors due to both non-sinusoi-
dal factors can be observed clearly. Figures 18(c) and 18(d)
show the 3D reconstructions of the proposed deep neural net-
work and the 12-step PS algorithm, respectively. As shown in

Fig. 15. 3D reconstructions under the coupling non-sinusoidal case where the gamma effect of 2.2 was coupled with the image saturation.
(a) One of the captured three-step phase-shifting images. (b) The 3D result obtained by the traditional three-step PS algorithm. (c) The 3D result
obtained by the proposed method. (d) The 3D result obtained by the 12-step PS algorithm.

Fig. 16. 3D reconstructions of a pair of ceramic spheres in the coupling non-sinusoidal case where the gamma effect of 2.2 was coupled with the
image saturation. (a) One of the captured three-step PS images. (b) The 3D result obtained by the traditional three-step PS algorithm. (c) The 3D
result obtained by the proposed method. (d) The 3D result obtained by the 12-step PS algorithm. (e) The absolute error map of the three-step PS
algorithm. (f ) The absolute error map of the proposed method.
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Fig. 18(c), these non-sinusoidal errors can be compensated with
the proposed method effectively. A pair of ceramic spheres was
then tested, and the results are shown in Fig. 19. We can see
that the deep neural network is able to eliminate the ripple
errors successfully and reduce the MAE and STD to

0.041 mm and 0.038 mm, respectively. Further, Figs. 20(a)–
20(c) demonstrate 3D reconstructions of a ceramic plate by
the traditional three-step PSmethod, our method, and the 12-step
PS method, respectively. From the error distribution shown in
Fig. 20(d), the MAE and the STD of the three-step PS method
are 0.33 mm and 0.21 mm, respectively. When our method was
applied, the MAE and the STD have been reduced to 0.047 mm
and 0.039 mm, showing an accuracy improvement of more
than 80%.

5. CONCLUSION

The fringe analysis is important to fringe projection profilom-
etry, which has a high requirement on captured sinusoidal
fringes. When the fringe is not a perfect sinusoid, the phase
accuracy and the 3D reconstruction suffer. This paper focuses
on several frequently encountered non-sinusoidal issues, in-
cluding the gamma effect of digital projectors, residual high-
order harmonics in binary defocusing projection, the image sat-
uration, and more complex cases where the image saturation is
coupled with the gamma effect and with the binary defocusing
projection. Conventionally, these non-sinusoidal issues are sel-
dom considered in a unified framework. Also, approaches that
can handle the coupling cases are rarely discussed. Here,
we have demonstrated that these kinds of non-sinusoidal
patterns can be represented by a generalized model and the cor-
responding phase errors can be relieved by increasing the num-
ber of phase shift in the PS algorithms. We proposed a unified
deep learning technique that can analyze fringe images from all
of the mentioned non-sinusoidal causes and their coupling
scenarios. More importantly, to remove these phase errors
without increasing the number of phase shift, we train a deep
neural network that can mimic the phase correction of PS

Fig. 17. 3D reconstructions of a ceramic plate in the coupling non-sinusoidal case where the gamma effect of 2.2 was coupled with the image
saturation. (a) The 3D result obtained by the traditional three-step PS algorithm (3PS). (b) The 3D result obtained by the proposed method (DL).
(c) The 3D result obtained by the 12-step PS algorithm. (d) Comparison of the measurement errors of the three-step PS method and the proposed
method.

Fig. 18. 3D reconstructions under the coupling non-sinusoidal case
where the images were projected through a slightly defocused projector
and were captured with the pixel saturation. (a) One of the captured
three-step phase-shifting images. (b) The 3D result obtained by the
traditional three-step PS algorithm. (c) The 3D result obtained by
the proposed method. (d) The 3D result obtained by the 12-step
PS algorithm.
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algorithms with many steps (e.g., the 12-step PS method) by
using PS fringe images captured with a few-step PS method
(e.g., the three-step PS method). Experimental results have
shown that compared with the traditional PS algorithm, the
proposed method can effectively suppress the phase error

due to the gamma effect of projectors, insufficient defocusing
of binary fringe projection, the image saturation, and two
complex coupled non-sinusoidal cases without increasing the
fringe images. We believe this method shows great potential
for robust and accurate phase retrieval and 3D measurements.

Fig. 19. 3D reconstructions of a pair of ceramic spheres under the coupling non-sinusoidal case where the effect of the slightly defocusing
projection was coupled with the image saturation. (a) One of the captured three-step PS images. (b) The 3D result obtained by the traditional
three-step PS algorithm. (c) The 3D result obtained by the proposed method. (d) The 3D result obtained by the 12-step PS algorithm. (e) The
absolute error map of the three-step PS algorithm. (f ) The absolute error map of the proposed method.

Fig. 20. 3D reconstructions of a ceramic plate under the coupling non-sinusoidal case where the effect of the slightly defocusing projection was
coupled with the image saturation. (a) The 3D result obtained by the traditional three-step PS algorithm (3PS). (b) The 3D result obtained by the
proposed method (DL). (c) The 3D result obtained by the 12-step PS algorithm. (d) Comparison of the measurement errors of the three-step PS
method and the proposed method.
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