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Generalized Free Fields and the AdS-CFT
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Abstract. Motivated by structural issues in the AdS-CFT correspondence, the the-
ory of generalized free fields is reconsidered. A stress-energy tensor for the gener-
alized free field is constructed as a limit of Wightman fields. Although this limit
is singular, it fulfills the requirements of a conserved local density for the Poincaré
generators. An explicit “holographic” formula relating the Klein-Gordon field on
AdS to generalized free fields on Minkowski space-time is provided, and contrasted
with the “algebraic” notion of holography. A simple relation between the singular
stress-energy tensor and the canonical AdS stress-energy tensor is exhibited.

1 Introduction

According to Maldacena’s conjecture [31], type IIB string theory on 5-dimensional
asymptotically Anti-deSitter (AdS) backgrounds with five compactified dimen-
sions is equivalent to a maximally supersymmetric Yang-Mills theory in physical
Minkowski space-time. In the limit of large number of colors N → ∞ and large
’t Hooft coupling θ = Ng2 → ∞, it is conjectured that the string may be replaced
by classical supergravity on AdS. Roughly speaking, 1/N corrections correspond to
quantum corrections, and the strong coupling expansion in 1/θ corresponds to the
perturbative incorporation of string corrections measured by the string tension α′.

The “dual” correspondence between fields on AdS and conformal fields on
Minkowski space-time was made concrete by a proposal in [22, 36]. As a scalar
model, the conformal field dual to the free Klein-Gordon field on AdS has been
considered as an exercise in [36]. It is a generalized free field [20, 27, 29]. It follows
that the perturbative treatment of the AdS-CFT correspondence amounts to an
expansion around a generalized free field.

For this reason, we believe it worthwhile to reconsider the properties of gen-
eralized free fields. Generalized free fields have been introduced by Greenberg [20]
as a new class of models for local quantum fields, and have been further studied
by Licht [29] as candidates for more general asymptotic fields as required by the
LSZ asymptotic condition. They can be characterized in several equivalent ways:
the commutator is a numerical distribution; the truncated (connected) n-point
functions vanish for n �= 2; the correlation functions factorize into 2-point func-
tions; the generating functional for the correlation functions is a Gaussian. But in
distinction from a canonical free field, a generalized free field is not the solution to
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an equation of motion, and its 2-point function is not supported on a mass shell.
It rather has the form of a superposition

〈Ω, ϕ(x)ϕ(x′)Ω〉 =
∫

R+

dρ(m2) Wm(x − x′) (1.1)

where Wm are the 2-point functions of the Klein-Gordon fields of mass m in
d-dimensional Minkowski space-time. The (positive and polynomially bounded)
weight dρ(m2) occurring in the superposition is known as the Källen-Lehmann
weight [28].

In fact, this is the most general form of the 2-point function of any scalar
quantum field [28], and a general theorem [21] states that a field whose 2-point
function is supported within a finite interval of masses, is necessarily a (generalized)
free field.

There are several ways by which generalized free fields arise. E.g., from any
Wightman field φ on a Hilbert space H, one can obtain Wightman fields φ(N),
N ∈ N, as the normalized sum of replicas of φ on H⊗N . This suppresses the
truncated n-point functions with a factor N (2−n)/2. In the “central” limit N →
∞, one obtains a generalized free field which has the same 2-point function as
the original (interacting) field. Similarly, in the large N limit of O(N) or U(N)
symmetric theories, all truncated functions of gauge invariant (composite) fields
exhibit a leading factor of N , so that if the 2-point function is normalized, the
higher truncated functions are also suppressed by inverse powers of N , and the
limit is again a generalized free field [26].1

Another obvious way to obtain a generalized free field is to restrict a free
Klein-Gordon field of mass M in 1+4 dimensions to the 1+3-dimensional hypersur-
face x4 = 0. The resulting Källen-Lehmann weight is dρ(m2) = dm2/

√
m2 − M2,

supported at m2 ≥ M2.
Finally, the AdS-CFT correspondence associates with the free Klein-Gordon

field on d + 1-dimensional Anti-deSitter space-time a Gaussian conformal field in
d-dimensional Minkowski space-time whose scaling dimension ∆ = d

2 + ν depends
on the Klein-Gordon mass M through the parameter ν = 1

2

√
d2 + 4M2. Its 2-

point function proportional to (−(x − x′)2)−∆ is a superposition of all masses
with Källen-Lehmann weight dρ(m2) = dm2m2ν (cf. Sect. 4).

As a consequence of the continuous superposition of masses, there is no La-
grangean and no canonical stress-energy tensor associated with a generalized free
field. The first purpose of this article (entirely unrelated to AdS) is the construction
of a non-canonical stress-energy tensor (Sect. 3). This stress-energy tensor turns
out to be more singular than a Wightman field, but it fulfills the requirements as
a density for the generators of (global) space-time symmetries. If smeared with a

1On the other hand, the limit W of 1/N times the connected functional for finite N , WN =
log ZN , is finite and non-Gaussian. But W does not define a quantum field theory of its own
because it violates positivity (unitarity). The significance of this quantity is that N ·W gives the
asymptotic behaviour of the large N expansion of WN .
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test function, it has finite expectation values but infinite fluctuations in almost
every state of the Hilbert space (including the vacuum). Technically speaking, it is
a quadratic form on the Wightman domain, rather than an unbounded operator.
Its commutator with field operators, however, is well defined as an operator.

Our construction of the stress-energy tensor relies on the fact that on the
vacuum Hilbert space of a generalized free field ϕ there exists a large class of
mutually local Wightman fields (including ϕ itself, hence relatively local w.r.t.
ϕ) which is much larger [11, 20, 29] than the class of Wick polynomials of ϕ.
They form what is known as the Borchers class [5, 27] of ϕ. These fields can be
expressed in terms of ϕ (and its Wick polynomials) by the use of highly non-
local (pseudo) differential operators or convolutions, while still satisfying local
commutativity with ϕ (i.e., the commutator vanishes at spacelike separation). This
fact illustrates the distinction between the algebraic notion of local commutativity
(Einstein locality) underlying the concept of the Borchers class, and a notion
of “expressibility in terms of local operations”. E.g., in perturbation theory the
Lagrangean interaction density should be local in the former sense in order to
ensure locality of the interacting field.

The second prominent issue of this article is the “holographic” identification
of a quantum field on AdS (the free Klein-Gordon field φ) in the Borchers class
of the boundary generalized free field ϕ (Sect. 4). More precisely, AdS is regarded
conveniently as a warped product of Minkowski space-time with R+ (whose co-
ordinate we call z > 0). Then for every fixed value z, φ(z, ·) is a Wightman field
ϕz(·) on Minkowski space-time in the Borchers class of ϕ, obtained from ϕ by a
non-local (pseudo) differential operator involving a z-dependent Bessel function.

Local commutativity of the Klein-Gordon field φ on AdS implies that the
fields ϕz and ϕz′ in Minkowski space-time satisfy a certain “bonus locality” (local
commutativity at finite timelike distance). We shall explicitly derive this property
as a consequence of the specific non-local operations relating the AdS field to the
boundary field, invoking a nontrivial identity for Bessel functions.

The canonical stress-energy tensor of the Klein-Gordon field on AdS is identi-
fied as a z-dependent generalized Wick product of the boundary field. Integrating
this field over z, yields the singular stress-energy tensor of the generalized free field
mentioned above. This complies with the fact that the canonical AdS stress-energy
tensor is a density in a Cauchy surface of AdS, while the stress-energy tensor for
the generalized free field on the boundary is a density in a time zero plane of
Minkowski space.

With these findings, we want to point out that generalized free fields are
rather well behaved Wightman fields, which moreover are “closer” to interacting
quantum fields than free Klein-Gordon fields. It might be advantageous to perform
a perturbation around a generalized free field, which has already the correct 2-point
function of the interacting field, while the perturbation only affects the higher
truncated correlations.

As was noticed implicitly, e.g., in [4], and systematically analyzed in [15],
the perturbative approach to the AdS-CFT correspondence may be understood
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as a perturbation around a canonical field on AdS with subsequent restriction to
the boundary. The interaction part of the action is an integral over AdS of some
Wick polynomial in the AdS field. Expressing the latter in terms of the limiting
generalized free field on the boundary, and performing the (regularized) z-integral,
one obtains (at least formally) a Lagrangean density on the boundary which is a
generalized Wick polynomial of the boundary generalized free field.

In view of this observation, the present work is also considered as a starting
point for a perturbation theory of the generalized free field with generalized Wick
polynomials as interactions, which includes the perturbative AdS-CFT correspon-
dence as a special case.

In the last, somewhat tentative section, we point out the relation between the
existence of relatively local fields beyond the Wick polynomials, and the violation
of the time-slice property (primitive causality [24]) and “Haag duality” for gen-
eralized free fields in Minkowski space-time. These issues are discussed in terms
of the von Neumann algebras of localized observables associated with a quantum
field [23]. Although logically unrelated to AdS-CFT, they may be nicely under-
stood in terms of geometric properties of AdS and its boundary, using the above
holographic interpretation. The discussion also exhibits a slight but important
difference between the present holographic picture and the “algebraic” notion of
holography [33].

2 Generalized free fields

Let M
d = (Rd, ηµν) denote d ≥ 2-dimensional Minkowski space-time, and V+ the

open forward light-cone (in momentum space).
We consider a hermitian scalar generalized free field [27, Chap. 2.6] on M

d

with Källen-Lehmann weight

dρ(m2) = dm2 on R+.

It has the form

ϕ(x) =
∫

V+

ddk [a(k)e−ikx + a+(k)eikx] (2.1)

in terms of creation and annihilation operators

[a(k), a+(k′)] = (2π)−(d−1)δd(k − k′), [a, a] = 0 = [a+, a+]. (2.2)

It is defined on the Fock space H over the 1-particle space H1 = L2(V+, ddk),
identifying

L2(V+, ddk) 	 f ≡ (2π)
d−1
2

∫
V+

ddk f(k)a+(k)Ω ∈ H1. (2.3)
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H1, and hence H, is equipped with the obvious unitary positive-energy represen-
tation of the Poincaré group with generators2

Pµ = (2π)d−1

∫
V+

ddk a+(k) kµ a(k), (2.4)

Mµν = (2π)d−1

∫
V+

ddk a+(k) i(kν
∂

∂kµ
− kµ

∂

∂kν
) a(k), (2.5)

such that

i[Pµ, ϕ(x)] = ∂µϕ(x), (2.6)
i[Mµν , ϕ(x)] = (xµ∂ν − xν∂µ)ϕ(x). (2.7)

The generalized free field ϕ is a local field because its commutator reads

[ϕ(x), ϕ(x′)] = (2π)−(d−1)

∫
V+

ddk
(
e−ik(x−x′) − eik(x−x′)) =

=
∫

R+

dm2 (2π)−(d−1)

∫
V+

ddk δ(k2 − m2)
(
e−ik(x−x′) − eik(x−x′))

=
∫

R+

dm2∆m(x − x′) (2.8)

where ∆m is the commutator function of the free Klein-Gordon field of mass m.3

2.1 Relatively local generalized free fields and generalized Wick products

Our first observation is that on the same Hilbert space, we can define

ϕh(x) =
∫

V+

ddk h(k2) [a(k)e−ikx + a+(k)eikx] (2.9)

with h any smooth polynomially bounded real function on R+ (called “weight
function”). These are again hermitian scalar fields on H, satisfying (2.6) and (2.7).
Moreover, all ϕh are local and mutually local fields, because their commutators

[ϕh1(x), ϕh2(x
′)] =

∫
R+

dm2 h1(m2)h2(m2) ∆m(x − x′) (2.10)

2The reader might be worried about the meaning of derivatives of a(k). The expressions
(2.4), (2.5) as well as (2.17), (2.22) below are understood in the distributional sense, i.e., after
application of an integral

∫
ddka+(k)Xa(k) to a 1-particle vector of the form (2.3) the differential

operator X is found acting on the smearing function f ∈ L2(V+, ddk), and likewise for n-particle
vectors. Thus, (2.4), (2.5), (2.17), (2.22) are the “second quantizations” of the corresponding
differential operators on L2(V+, ddk). We shall not discuss here the precise domains on which
these hermitian generators are (essentially) self-adjoint.

3The Klein-Gordon fields themselves are not present in the theory, though, because square
integrable functions in H1 cannot have sharp mass.
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vanish at spacelike distance irrespective of the functions hi. By inspection of the
2-point functions

〈Ω, ϕh1(x)ϕh2 (x
′)Ω〉 =

∫
R+

dm2 h1(m2)h2(m2) Wm(x − x′), (2.11)

one sees that each ϕh is a generalized free field with Källen-Lehmann weight
dm2h(m2)2. In fact, the weight function h need not be smooth as long as
dm2h(m2)2 is a polynomially bounded measure.

If the weight function h is a polynomial, then

ϕh = h(−�)ϕ (2.12)

is just a derivative of ϕ, and ϕh(f) = ϕ(h(−�)f) where the support of h(−�)f
equals (a subset of) the support of f . Hence h(−�) is a local operation. But if h is
not a polynomial, then h(−�) may be tentatively defined on f by multiplication
of the Fourier transform f̂(k) with any function of k2 which coincides with h on
R+ (all giving the same field operator ϕ(h(−�)f)). This is a highly non-local
operation which does not preserve supports. Likewise, one may formally read (2.9)
as a convolution in x-space [20]

ϕh(x) =
∫

Md

ddx Ȟ(x − y)ϕ(y) (2.13)

with the distributional inverse Fourier transform of any function H(k) which equals
h(k2) on V+. E.g., if h is analytic, h(−�) and H(k) may be defined as power series;
but as the example of h(z) = cos

√
z exemplifies, the inverse Fourier transform of

h(k2)f̂(k) or H(k) may not exist due to the rapid growth of h(k2) at negative k2.
Therefore, expressions like (2.12) or (2.13) in the general case should not be taken
literally. These are suggestive ways of rewriting the definition (2.9), indicating a
non-local operation on ϕ which yet gives rise to a local field.

The above construction of fields satisfying local commutativity with ϕ and
among themselves can be extended to Wick products [11, 20, 29]. The expressions

(: ϕ2 :)h(x) =
∫

V+

ddk1

∫
V+

ddk2 h(k2
1 , k

2
2)

: [a(k1)e−ik1x + h.c.][a(k2)e−ik2x + h.c.] : (2.14)

define Wightman fields, relatively local with respect to ϕ and ϕh′ and mutually
local among each other, for every (smooth) polynomially bounded real symmetric
function h on R+ ×R+. Formally, they may be represented as point-split limits of
the form

(: ϕ2 :)h(x) = lim
x′→x

h(−�,−�′)
(
ϕ(x)ϕ(x′) − 〈Ω, ϕ(x)ϕ(x′)Ω〉). (2.15)

The smoothness of the functions h may be considerably relaxed. While we
refer to [11] for details, we point out that for (: ϕ2 :)h to be a Wightman field, h2
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ought to be at least a measurable function on R+×R+: otherwise (: ϕ2 :)h(f) fails
to be an operator with the vacuum vector in its domain. This can be seen easily
from the 2-point function

〈Ω, (: ϕ2 :)h(x)(: ϕ2 :)h(x′)Ω〉 =

= 2
∫

R+

dm2
1dm2

2 h(m2
1, m

2
2)

2 Wm1(x − x′)Wm2(x − x′). (2.16)

It is clear how this construction generalizes to higher Wick polynomials, and
also to multi-local fields such as (: ϕ(x1)ϕ(x2) :)h. All these fields satisfy local
commutativity among each other with respect to their arguments in spite of the
non-local operations involved. It is crucial that the weight functions h depend only
on the squares of the four-momenta, since general functions of the components kµ

would spoil local commutativity. It is also clear that the construction can be as
well applied to Wick polynomials of derivatives ∂µ . . . ∂νϕ of the generalized free
field.

Generalized Wick polynomials belong to the Borchers class of the general-
ized free field consisting of the relatively local Wightman fields defined on the
same Hilbert space. With suitable specifications of the functions h involved, they
exhaust the Borchers class [29, 11]. They are natural candidates for perturbative
interactions, e.g., in causal perturbation theory [17, 9, 14].

2.2 Conformal symmetry

The 1-particle Hilbert space H1, and hence the Fock space H, carry also a natural
representation of the group of dilations with generator

D = (2π)d−1

∫
V+

ddk a+(k) i
2

(
(k · ∂k) + (∂k · k)

)
a(k). (2.17)

Under this representation, the generalized free fields ϕh transform according to

U(λ)ϕh(x)U(λ)∗ = ϕhλ
(λx) (2.18)

where hλ(m2) = λ
d
2 h(λ2m2). In particular, the generalized free fields with homo-

geneous weight functions mν ,

ϕ(∆) = (−�)ν/2ϕ with ν ≡ ∆ − d
2 (2.19)

transform like scale-invariant fields of scaling dimensions ∆ = d
2 + ν:

U(λ)ϕ(∆)(x)U(λ)∗ = λ∆ϕ(∆)(λx), (2.20)

or in infinitesimal form

i[D, ϕ(∆)(x)] = (xµ∂µ + ∆)ϕ(∆)(x). (2.21)
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U(λ) scales the momenta (2.4) and commutes with the Lorentz transformations
(2.5). Hence it extends the representation of the Poincaré group to a representation
of the Poincaré-dilation group, also denoted by U .

It is well known, that the scale-invariant 2-point functions of these fields are in
fact conformally covariant, extending the fields to a suitable covering of Minkowski
space-time CM

d [30]. This means in particular that the unitary representation U
of the Poincaré-dilation group extends to a unitary representation U (∆) of the
conformal covering group. Under U (∆), the field ϕ(∆) transforms as a conformally
covariant scalar field of scaling dimension ∆. Unlike those of the Poincaré-dilation
group, the generators of the special conformal transformations depend on the
parameter ∆ = d

2 + ν and are explicitly given on H1 by

K(∆)
µ = (2π)d−1

∫
V+

ddk

a+(k)
(

∂

∂kα
kµ

∂

∂kα
− (k · ∂k)

∂

∂kµ
− ∂

∂kµ
(∂k · k) + ν2 kµ

k2

)
a(k), (2.22)

such that

i[K(∆)
µ , ϕ(∆)(x)] =

(
2xµ(x · ∂) − x2∂µ + 2∆xµ

)
ϕ(∆)(x). (2.23)

We emphasize that although the fields ϕ(∆) are for all values of ∆ defined on
the same Hilbert space (the common Fock space H for all generalized free fields
ϕh), they are conformally covariant with respect to different representations U (∆)

of the conformal group on the same Hilbert space. These representations coincide
only on the Poincaré-dilation subgroup. U (∆) does not implement a geometrical
point transformation of ϕ(∆′), ∆′ �= ∆, nor of ϕh in general.

3 The stress-energy tensor

The purpose of this section is to find a stress-energy tensor Θµν(x) for the gener-
alized free field (2.1) which has the properties of a local and covariant conserved
tensor density for the generators of the Poincaré group. It should thus satisfy

∂µΘµν = 0, (3.1)∫
dd−1�x Θ0ν = Pν , (3.2)∫

dd−1�x (xµΘ0ν − xνΘ0µ) = Mµν , (3.3)

Θµν(x) = Θνµ(x), (3.4)

[Θµν(x), ϕh(x′)] = 0 ((x − x′)2 < 0). (3.5)

With an ansatz of the form (2.14), including derivatives of ϕ, we find the
solution

Θµν =
(

: ∂µϕ∂νϕ − 1
2ηµν (∂αϕ∂αϕ + ϕ�ϕ) :

)
δ
. (3.6)
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The generalized Wick product (: · · · :)δ is understood as (: · · · :)h with the choice
of the weight “function”

h(m2
1, m

2
2) = δ(m2

1, m
2
2) ≡ δ(m2

1 − m2
2)θ(m

2
1). (3.7)

This singular choice cannot be avoided due to the requirement (3.2), since
the spatial integral over a generalized Wick square such as (2.14) can only enforce
equality of the spatial components of the momenta of the creation and annihilation
operators, �k1 = �k2, while the representation (2.4) of the total momentum operator
requires kµ

1 = kµ
2 . But with this singular weight function h, the 2-point function

(2.16) involving h2 becomes highly divergent, hence the stress-energy tensor has
infinite fluctuations in the vacuum state. Smearing Θµν with a test function does
not give an operator whose domain contains the vacuum vector. Thus the stress-
energy tensor is not a Wightman field.

But Θµν(f) is a quadratic form on the Wightman domain of ϕh, i.e., its
matrix elements with vectors from that domain are finite (more precisely: are
continuous functionals of the test function f). To prove this, only the finiteness of

〈Ω, Θµν(f)ϕh1(f1)ϕh2(f2)Ω〉,
〈Ω, ϕh1(f1)Θµν(f)ϕh2(f2)Ω〉, (3.8)
〈Ω, ϕh1(f1)ϕh2(f2)Θµν(f)Ω〉

needs to be checked since every matrix element of Θµν(f) on this domain is a sum
of terms of either of these forms with finite coefficients. Explicit evaluation of the
above matrix elements, which are all of the form

∫
V+

ddk1 f̂1(±k1)h1(k2
1)

∫
V+

ddk2 f̂2(±k2)h2(k2
2) δ(k2

1 − k2
2)

×P (k1, k2)f̂( ± k1 ± k2) (3.9)

with P some polynomial, exhibits their finiteness and continuity with respect to
f , for arbitrary test functions fi and arbitrary weight functions hi. Θµν(f) being
a quadratic form on the Wightman domain of ϕh, its commutator with ϕh(g) is a
priori well defined as a quadratic form. It turns out to be in fact an operator on the
Wightman domain. It vanishes if the supports of f and g are spacelike separated.

The formula (3.6) for Θµν is uniquely determined by the requirements (3.1–
5), up to addition of a multiple of (∂µ∂ν − ηµν�)(: ϕ2 :)δ. We note that Θµν is
not traceless, nor can it be made traceless by such an addition. Thus it does not
provide a density for the generator of the dilations (2.17), nor for the conformal
transformations (2.22).

4 Application to AdS-CFT

The conformal group SO(2, d) of d-dimensional Minkowski space-time coincides
with the group of isometries of d+1-dimensional anti-deSitter space-time ADSd+1.
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In fact, ADSd+1 has a conformal boundary which is a twofold covering4 of the
Dirac compactification CM

d of Minkowski space-time, such that the AdS group
restricted to the boundary acts like the conformal group on CM

d. One-parameter
subgroups with future-directed timelike tangent vectors in AdS (“time evolutions”)
have future-directed timelike tangent vectors in CM

d. Hence, the respective (AdS
and conformal) notions of “positive energy” for the unitary representations of
SO(2, d) coincide.

It was shown in [19] that the scalar Klein-Gordon field on ADSd+1 can be
canonically quantized on a 1-particle space which carries a positive-energy repre-
sentation of the AdS group.

Our aim is to find the explicit relation between these scalar Klein-Gordon
fields φ on ADSd+1 (parameterized by a parameter ν > −1 such that the Klein-
Gordon mass equals M2 = ν2 − d2

4 ) and the generalized free field on Minkowski
space-time M

d (characterized by its scaling dimension ∆ = d
2 + ν). Both fields are

defined on the same Fock space H over the 1-particle space H1 (2.3), carrying the
same unitary positive-energy representation U (∆) of SO(2, d) under which both
fields transform covariantly in the respective (AdS or conformal) sense.

We shall work in the convenient chart of AdS given by Poincaré coordinates
xM ≡ (z ∈ R+, xµ ∈ M

d), in which the metric takes the form

ds2 = gMN dxMdxN = z−2 · (ηµν dxµdxν − dz2), (4.1)

i.e., it is a “warped product” of d-dimensional Minkowski space-time M
d by R+, or

in the terminology of [7], AdS has a foliation by M
d. The chart is given as follows.

We fix a pair e± of lightlike vectors in R
2,d, e+ · e− = 1

2 , and a basis eµ of the
subspace orthogonal to e±, with eµ · eν = ηµν . Then

ξ = z−1 · (xµeµ + e− + (z2 − xµxµ)e+) (4.2)

fulfills ξ · ξ = 1. This chart covers PADSd+1 except for the hypersurface ξ · e+ = 0
which formally corresponds to z = ∞.

The corresponding chart (xµ ∈ M
d) of CM

d, parameterizing the lightlike rays
in R

2,d by
ζ = R · (xµeµ + e− − xµxµe+), (4.3)

is Minkowski space-time M
d ⊂ CM

d. This chart misses out the hypersurface of
compactification points “at infinity” of M

d, consisting of the lightlike rays or-
thogonal to e+, namely the rays R · (λe+ + xµeµ), xµxµ = 0. In CM

d, these are
the points at lightlike distance from ω ≡ R · e+ (the compactification point “at
spacelike infinity” of M

d).

4We denote by ADSd+1 the quadric ξ · ξ = 1 in R2,d (signature (+, +,−, . . . ,−)), and by
PADSd+1 its quotient by the antipodal identification ξ ↔ −ξ. The conformal boundary of this
quotient is the Dirac compactification CM

d of Minkowski space-time whose points are the lightlike
rays ζ = R · n, n · n = 0, in R2,d. The field theories discussed below in general are defined on
covering spaces of the respective manifolds.
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ζ(xµ) is the boundary point approached by ξ(z, xµ) as z → 0. Thus the
Poincaré chart meets the boundary exactly in Minkowski space-time.

From this discussion, we conclude that the chart (z, xµ) is mapped onto itself
only by the stabilizer subgroup in SO(2, d) of the ray R+ ·e+ in R

2,d. This subgroup
has the form

(SO(1, d − 1) × R+) � R
d. (4.4)

Here, SO(1, d − 1) � R
d is the stabilizer group of the vector e+. SO(1, d − 1)

preserves also e− and transforms the basis eµ like the Lorentz group, while R
d

takes e− �→ e− + aµeµ − aµaµe+, eµ �→ eµ − 2aµe+. Hence the stabilizer subgroup
of e+ preserves the coordinate z = (2ξ · e+)−1 and acts on xµ like the Poincaré
group. The remaining factor R+ in (4.4) scales e± �→ λ±1e± and preserves eµ, hence
it takes (z, xµ) to (λz, λxµ) and acts on the boundary z = 0 like the dilations. We
shall refer to these subgroups of SO(2, d) as Poincaré and dilation subgroups also
in the AdS context. Thus, the Poincaré chart of AdS is preserved by the Poincaré-
dilation group of Minkowski space-time. The remaining elements of SO(2, d) induce
rational transformations of the coordinates (z, xµ), such as (z, xµ) �→ (z, xµ −
bµ(x2−z2))/(1−2(b ·x)+b2(x2−z2)), b ∈ M

d, restricting to the special conformal
transformations of the boundary z = 0.

4.1 The Klein-Gordon field on AdS

We fix any value ν > −1 and set ∆ = d
2 + ν and M2 = ∆(∆ − d) = ν2 − d2

4 .
The Klein-Gordon field on AdS

(�g + M2)φ = (−z1+d∂zz
1−d∂z + z2�η + M2)φ = 0 (4.5)

has been quantized with an AdS-invariant vacuum state, e.g., in [3, 19]. Its 2-point
function can be displayed in the form [7]

〈Ω, φ(z, x)φ(z′, x′)Ω〉 = 1
2 (zz′)

d
2

∫
R+

dm2 Jν(zm)Jν(z′m) Wm(x − x′)

= (2π)−(d−1) 1
2 (zz′)

d
2

∫
V+

ddk Jν(z
√

k2)Jν(z′
√

k2) e−ik(x−x′). (4.6)

Here, Jν is the Bessel function solving Bessel’s differential equation

((u∂u)2 + u2)Jν(u) = ν2Jν(u), (4.7)

and z
d
2 Jν(z

√
k2)e±ikx (k ∈ V+) are the plane-wave solutions of the Klein-Gordon

equation (4.5).
We note that, depending on the integrality of the parameter ∆ = d

2 + ν, the
quantum field φ is in general defined on a covering space of ADSd+1 [7, 19]. This
complicates the analysis, but the complications precisely match the complications
arising in the corresponding conformal QFT which is defined on a covering space
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of CM
d. We shall limit ourselves to the Klein-Gordon field on the Poincaré chart

(z, xµ), and correspondingly to boundary fields in Minkowski space-time.
We also note that for |ν| < 1, the two possible signs of ν give rise to inequiva-

lent covariant quantizations [8] (in fact, an interpolating one-parameter family [7])
of the Klein-Gordon field of the same mass. The commutator functions derived
from (4.6) are the same for both signs of ν [7], hence both quantum field theories
have the same local structure.

φ satisfies the canonical equal-time commutation relation between the field
and its canonical momentum π = z1−d∂0φ

[φ(z, x), π(z′, x′)]|x0=x′0 = iδd−1(�x − �x′)δ(z − z′), (4.8)

as can be verified from (4.6), using the fact that Wm(x − x′) satisfies canonical
commutation relations on M

d, and using Hankel’s identity
∫ ∞

0

t dt Jν(tu)Jν(tu′) = u−1 δ(u − u′), (4.9)

which expresses the completeness of the plane-wave solutions involved in the inte-
gral (4.6).

4.2 Expression in terms of generalized free fields

By comparison of (4.6) with (2.11), we conclude that φ(z, x) can be identified with

φ(z, x) = 1√
2

z
d
2

∫
V+

ddk Jν(z
√

k2)[a(k)e−ikx + a+(k)eikx]. (4.10)

This is of the form
φ(z, x) = ϕhz (x) (4.11)

with
hz(m2) = 1√

2
z

d
2 Jν(zm) (4.12)

i.e., for each value of z, φ(z, ·) is one of the generalized free fields considered in
Sect. 2.1.

From the power law behaviour of Jν(u) ≈ 2−ν

Γ(ν+1) uν(1 + O(u2)) at small
arguments, one obtains

lim
z→0

z−∆φ(z, x) = 2−ν− 1
2

Γ(ν+1) ϕ(∆)(x), (4.13)

i.e., the generalized free field ϕ(∆) is the boundary limit of the Klein-Gordon field
on AdS. This agrees with the results discussed in [7] and [15].
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4.3 Identification of the representations of SO(2, d)

The 2-point function (4.6) is AdS-invariant, i.e., it depends only on the AdS-
invariant “chordal distance” (the distance within R

2,d) (−(x−x′)2+(z−z′)2)/2zz′.
It follows that the representation of the AdS group defined by

U (KG)(g) φ(z, x)Ω := φ(g(z, x))Ω (g ∈ SO(2, d)) (4.14)

is unitary on the 1-particle space H1, and hence on H. It implements the covariant
transformation law

U (KG)(g)φ(z, x)U (KG)(g)∗ = φ(g(z, x)). (4.15)

We want to show that this representation of SO(2, d) coincides with the
representation U (∆) of the conformal group, constructed on the same Hilbert space
by the extension of the scale-invariant field ϕ(∆) on M

d to the conformally invariant
field on CM

d (cf. Sect. 2.2).
Eq. (4.15), restricted to the boundary z = 0 where g acts like the conformal

group on x, shows that U (KG)(g) implements the same conformal point transfor-
mation of the limiting field ϕ(∆) as U (∆)(g). More specifically, consider the in-
finitesimal form of the AdS transformation law (4.15) for the relevant subgroups,

i[P (KG)
µ , φ(z, x)] = ∂µφ(z, x),

i[M (KG)
µν , φ(z, x)] = (xµ∂ν − xν∂µ)φ(z, x),

i[D(KG), φ(z, x)] = (z∂z + xµ∂µ)φ(z, x),

i[K(KG)
µ , φ(z, x)] =

(
2xµ(z∂z + (x · ∂)) + (z2 − x2)∂µ

)
φ(z, x). (4.16)

In the limit z → 0 according to (4.13), the right-hand sides of (4.16) turn into
(2.6), (2.7), (2.21), (2.23), respectively. Thus, the infinitesimal generators of the
respective subgroups coincide. We conclude that the two representations U (KG)

and U (∆) of SO(2, d) coincide, cf. [12].
With the help of the representation U (KG) = U (∆), the AdS field φ and the

boundary field ϕ(∆) extend to the respective covering spaces of PADSd+1 and CM
d.

We emphasize once more that this does not apply for the other boundary fields ϕh.

4.4 “Holographic” interpretation

Combining (4.11) and (2.19), we find

φ(z, x) = 1√
2

z∆ jν(−z2�) ϕ(∆)(x), (4.17)

where
jν(u2) = u−νJν(u) (4.18)

is a (polynomially bounded) convergent power series in u2. This is an explicit
expression for the Klein-Gordon field on AdS in terms of its limiting generalized
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free field on the boundary. This “holographic” relation5 is possible with the help
of non-local (pseudo) differential operators of the kind discussed in Sect. 2.

Obviously, the fact that ϕh = h(−�)ϕ are mutually local fields for arbitrary
functions h, ensures that φ(z, x) and φ(z′, x′) written in the form (4.11) or (4.17)
commute if (x − x′)2 < 0. But this is less than locality on AdS, which requires
that the commutator must vanish even if (x− x′)2 < (z − z′)2. Of course we know
that φ is a local field on AdS, so the stronger local commutativity of generalized
free fields ϕhz (x) and ϕhz′ (x

′) at finite timelike Minkowski distance must be true.
One can understand the origin of this “bonus locality” for the generalized free

fields involved. Evaluating the commutator function according to (2.10), gives an
integral over three Bessel functions (because ∆m at timelike distance (x−x′)2 = τ2

is also given by a Bessel function (m/τ)
d−2
2 J 2−d

2
(mτ)) of the form

I(a, b, c) =
∫ ∞

0

u1−µ du Jµ(au)Jν(bu)Jν(cu) (4.19)

with a2 = (x−x′)2, b = z, c = z′ and µ = 2−d
2 . This integral can be found, e.g., in

[35, Sect. 13·46(1)], where it is shown to vanish if a2 < (b− c)2. Thus we precisely
find local commutativity on AdS. It is the specific form of the Bessel functions in
(4.17), (4.18) which is able to ensure locality in a higher-dimensional space-time.

This remark should make it clear that defining φ(z, x) = ϕhz (x) with any
suitable family of functions hz(m2), depending on a parameter z and solving a
suitable differential equation with respect to z, may well produce a quantum field
on a higher-dimensional space-time solving some equation of motion, but this field
will in general not satisfy local commutativity.6

4.5 The stress-energy tensor

The Klein-Gordon field on AdS has a canonical covariantly conserved stress-energy
tensor given by

ΘKG
MN (z, x) = : DMφDNφ − 1

2gMN (gABDAφDBφ − M2φ2) : . (4.20)

Because of the special form of the AdS metric, the covariant tensor continuity
equation gives rise to ordinary continuity equations for the Minkowski components
ΘKG

Mν , ν �= z,
gMN∂N (z1−dΘKG

Mν) = 0. (4.21)

5Our use of the term “holography” does not quite match the one originally suggested by
’t Hooft [25], namely the reduction in the bulk of degrees of freedom of a QFT, ascribed to
gravitational effects in the presence of a horizon. We rather allude to the enhancement on the
boundary of degrees of freedom necessary and sufficient to “encode” a non-gravitational QFT in
the bulk.

6Such constructions were proposed in [32].
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Thus z1−dΘKG
0ν are densities of conserved quantities, which are the generators of

the Poincaré subgroup of SO(2, d),

Pµ =
∫ ∞

0

dzz1−d

∫
dd−1�x ΘKG

0µ (z, 0, �x), (4.22)

Mµν =
∫ ∞

0

dzz1−d

∫
dd−1�x (xµΘKG

0ν (z, 0, �x) − xνΘKG
0µ (z, 0, �x)). (4.23)

In these integrals, we may express φ in terms of the generalized free field ϕ
by means of (4.11), thus introducing two z-dependent (Bessel) weight functions,
and perform the z-integration. Because of the term gMN∂Mφ∂Nφ involving z-
derivatives, a partial integration becomes necessary after which Bessel’s differential
equation can be used to eliminate all derivatives of the Bessel functions.

After performing these steps on the Minkowski components of ΘKG
µν , one ends

up with a generalized Wick product of (derivatives of) ϕ, whose weight function
is the result of the z-integration over the Bessel functions:

∫ ∞

0

dz z1−d ΘKG
µν (z, x) =

(
: ∂µϕ∂νϕ − 1

2ηµν (∂αϕ∂αϕ + ϕ�ϕ) :
)
h

(4.24)

where

h(m2
1, m

2
2) = 1

2

∫ ∞

0

z dz Jν(zm)Jν(zm′). (4.25)

Once more using Hankel’s identity (4.9) which in this case plays the role of an
orthonormality relation, the integral can be performed, giving h(m2

1, m
2
2) = δ(m2

1−
m2

2).
We have thus exactly reproduced the singular stress-energy tensor found in

Sect. 3,

Θµν(x) =
∫ ∞

0

dz z1−d ΘKG
µν (z, x). (4.26)

But the origin of its singular weight function appears in an entirely new light:
it is the result of the “holographic” projection of AdS onto its boundary. Some
cutoff in the z-integral would smoothen the resulting weight function (4.25). The
smoothened stress-energy tensor would still act as a density for generators which
generate the correct transformation laws on those AdS fields which are causally
disconnected from the AdS region where the cutoff is effective. In terms of the
corresponding generalized free fields on the boundary, these are generalized free
fields within a restricted region and with a restricted set of weight functions hz.

5 Local algebras

At first sight, our “holographic” result of Sect. 4.4 does not quite agree with the
algebraic analysis of AdS-CFT in [33]. Let us sketch the situation.
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According to (4.11), the AdS fields at the point (z, x) are expressed in terms of
Minkowski space-time fields at the point x. Hence boundary observables (smeared
fields) localized in a region K ⊂ M

d encode all AdS observables localized in the
region V (K) = π−1(K) ⊂ ADSd+1 where π denotes the projection (z, x) → x. We
may call this feature “projective holography”.

On the other hand, the analysis called “algebraic holography” in [33] is based
on the identification

ACFT(K) = AAdS(W ) (W = W (K)) (5.1)

of the local algebras ACFT(K) of boundary observables localized in “double-cones”
K ⊂ C̃M

d (the conformal transforms of K0 = {(xµ) : |�x| < 1−|x0|} in the covering
space of the Dirac compactification of Minkowski space-time), with local algebras
AKG(W ) of AdS observables localized in the “wedge” regions W = W (K) ⊂
ÃDSd+1 (the AdS transforms of W0 = {(z, xµ) :

√
z2 + �x2 < 1 − |x0|} in the

covering space of AdS). The wedge W (K) is the causal completion of the boundary
region K. The map W = W (K) is a bijection which preserves inclusions, takes
causal complements in C̃M

d into causal complements in ÃDSd+1, and is compatible
with the respective actions of the covering group of SO(2, d).

For K ⊂ M
d, the wedge region W (K) extends only to finite “depth” z into

AdS and is strictly smaller than V (K), which extends to z = ∞ and contains
points causally disconnected from W (K). Hence AAdS(V (K)) is strictly larger
than AAdS(W (K)), and the two notions of “holography” cannot be equivalent.

We shall show how this apparent conflict is resolved, although the discus-
sion should by no means be considered as rigorous. We shall deliberately ignore
most of the technical subtleties involved in the passage between the Wightman
axiomatic formulation of QFT (in terms of fields, which are unbounded-operator
valued distributions) and the Haag-Kastler [23] algebraic formulation (in terms
of localized observables, which are bounded operators). But we are confident that
our argument captures correctly the essential features concerning the “size” of von
Neumann algebras of local observables associated with generalized free fields and
with free fields on AdS.

The general idea for the passage from fields to local algebras is to define for
any open space-time region O the von Neumann algebra

A(O) := {φ(f) : supp f ⊂ O}′′ (5.2)

where X ′ stands for the algebra of bounded operators on the given Hilbert space
which commute with (the closures of) all elements of X . By von Neumann’s density
theorem, the double commutant A(O) is the weak closure of the bounded functions
of the unbounded smeared field operators (such as exp iφ(f) if φ(f) is self-adjoint).
Obviously, the algebras increase as the regions increase (“isotony”). Although the
underlying fields are local, it is less trivial [13] that local algebras of the form
(5.2) associated with spacelike separated regions mutually commute (“locality”). A
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covariant transformation law of the fields such as (4.15) involves the corresponding
transformation of the support of test functions, hence the local algebras (5.2)
transform in the obvious sense under conjugation with the unitary representatives
of the group (“covariance”). One may imagine that the fields can be recovered
from the algebras by taking suitably regularized limits of elements of algebras
associated with regions shrinking to a point, see e.g., [18]. Together with the group
of covariance which involves the time evolution, the algebraic data determine the
quantum field theory.

5.1 “Algebraic” vs. “projective holography”

Applying the prescription (5.2) to the free Klein-Gordon field of mass M on AdS,
we obtain local algebras

AKG(O), (O ⊂ ÃDSd+1). (5.3)

Applying the same prescription to the single generalized free field ϕ(∆) on the
conformal completion of Minkowski space-time, we obtain local algebras

A∆(K), (K ⊂ C̃M
d). (5.4)

Applying it to the the entire family of generalized free fields ϕh with arbitrary
weight functions h on Minkowski space-time, we obtain local algebras

Atot(K), (K ⊂ M
d). (5.5)

We have the rather obvious inclusions for K ⊂ M
d

A∆(K) ⊂ AKG(W (K)) ⊂ AKG(V (K)) ⊂ Atot(K), (5.6)

of which the first reflects the limit (4.13), the second is isotony, and the last reflects
(4.11). We shall show that in fact

A∆(K) = AKG(W (K)) (5.7)

are proper subalgebras of

AKG(V (K)) = Atot(K) = Adual
∆ (K). (5.8)

In this formula, the “dual completion” [34] is defined as

Adual
∆ (K) := A∆(Kc)′ (5.9)

where Kc is the causal complement of K within M
d. Fields which are relatively

local to the given field, are among the generators of the dual completion. Roughly
speaking, the dual completion is the algebraic counterpart of the Borchers class in
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Wightman quantum field theory. By a general theorem [10], conformal invariance
ensures “conformal duality”

A∆(K) = A∆(K ′)′ (5.10)

where K ′ is the causal complement of K within C̃M
d; but if K is a double-cone

within M
d, then Kc is strictly smaller than K ′, and hence Adual

∆ (K) is expected
to be strictly larger than A∆(K) (violation of Haag duality).

(5.7) is the holographic identification of AKG(W ) with A∆(K) in the sense of
(5.1). It is defined globally, and covariant with respect to SO(2, d). On the other
hand, (5.8) shows that the projective notion of holography pertains to Atot(K) =
Adual

∆ (K) instead. Projective holography is defined only with respect to the chosen
chart (z, xµ), and is covariant only under the Poincaré-dilation subgroup.

Before we prove (5.7) and (5.8), we note that Atot(K) does not depend on the
parameter ν specifying the scaling dimension of the field ϕ(∆) and the mass of the
corresponding Klein-Gordon field φ. Hence, (5.7) can only be true, if AKG(V (K))
does not change if the generating Klein-Gordon field φ of mass M2 is replaced by
φ′ of mass M ′2. Indeed, for different values ν, ν′, we have by (4.10) and Hankel’s
formula (4.9)

φ(z, x) =
∫ ∞

0

z′dz′ Kνν′(z, z′)φ′(z′, x) (5.11)

with the kernel Kνν′(z, z′) = (z/z′)
d
2

∫ ∞
0

m dm Jν(zm)Jν′(z′m). Since this kernel
acts on the z coordinate only, it takes test functions supported in V (K) onto test
functions supported in V (K), and hence AKG(V (K)) = A′

KG(V (K)).
Let us now turn to (5.7). We invoke a general theorem [1, 6] of Wightman

QFT. Let O be a double-cone and T a timelike hypersurface passing through the
apices of O. Then, in order to generate A(O) as in (5.2), rather than smear the
field in O it suffices to smear the field and all its normal derivatives along O ∩ T .
In the present case, O is an AdS wedge W , T is the boundary, and O ∩ T is
the corresponding boundary double-cone K. The normal derivatives of φ(z, x) are
of the form limz→0 ∂N

z z−∆φ(z, x). By (4.17), and because jν is a power series in
−z2�, these derivatives vanish if N is odd and are proportional to �nϕ(∆)(x) if
N = 2n. With (�ϕ)(f) = ϕ(�f) we conclude that AKG(W ) is in fact generated
by ϕ(∆)(f), supp f ⊂ K. This justifies our claim (5.7).

Now we turn to (5.8). Because the fields generating Atot(K) are relatively
local with respect to ϕ(∆), we know that AKG(V (K)) ⊂ Atot(K) ⊂ A∆(Kc)′ ≡
Adual

∆ (K). The claim is that equality holds.
A∆(Kc) is generated by all A∆(J) where J are double-cones in M

d spacelike
separated from K. Hence its commutant is the intersection, running over the same
set of J , of algebras A∆(J)′ = A∆(J ′) (by (5.10)) = AKG(W (J ′)) (by (5.7)). Now,
J is spacelike separated from K and belongs to M

d iff J ′ contains K and the point
ω = R · e+ of CM

d (spacelike infinity of M
d, cf. Sect. 4), and iff the wedge W (J ′)
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contains W (K) and has ω as a boundary point (ω ∈ ∂W ). Thus,

A∆(Kc)′ =
⋂

W⊃W (K)
∂W�ω

AKG(W ). (5.12)

We may choose K = K0. The x0 = 0 Cauchy surface of V (K0) is C0 = {(z, 0, �x) :
z > 0, �x2 < 1}. Let W�e be the wedges with Cauchy surface C�e = {(z, 0, �x) : z >
0, (�e · �x) > −1}, �e ∈ R

d−1, �e2 = 1. Each W�e contains W (K0) and has ω as a
boundary point, and every wedge which contains W (K0) and has ω as a boundary
point, contains some W�e. Thus, by isotony, the intersection of algebras in (5.12)
may be taken over W�e,

A∆(Kc)′ =
⋂
�e

AKG(W�e). (5.13)

Now, because of the Klein-Gordon equation, the field φ(z, x) is expressible in terms
of its Cauchy data at x0 = 0, hence AKG(W�e) = AKG(C�e) and AKG(V (K0)) =
AKG(C0) (time-slice property [24], see Sect. 5.2 below). The latter algebras are
generated by the canonical x0 = 0 Klein-Gordon fields φ and π (cf. Sect. 4.1)
smeared over the respective regions of the Cauchy surface. Thus (5.8) is reduced
to the claim ⋂

�e

AKG(C�e) = AKG(C0). (5.14)

The independence of Cauchy data associated with disjoint regions entails [2]
⋂
�e

AKG(C�e) = AKG

( ⋂
�e

C�e

)
. (5.15)

Thus (5.8) is a consequence of the geometric fact
⋂

�e C�e = C0 for K = K0, and by
Poincaré and dilation covariance for all K ⊂ M

d.

5.2 Time-slice property

Finally, we consider the validity of the “time-slice property” (also called “primitive
causality” [24], or “weak additivity” in [33])

A(O) = A(C) (5.16)

if O is the causal completion of its Cauchy surface C. A(C) is generated by the
fields and their time derivatives smeared over C. This property holds for canonical
free fields [24], and we have just used it in the case of the Klein-Gordon field on
AdS.

The time-slice property does not hold for generalized free fields (with h fixed)
[24]. E.g., for the above double-cone K0 the Cauchy surface is the ball B0 = {(x0 =
0, �x) : �x2 < 1}. Smearing the generalized free field ϕ(∆) together with its time
derivatives over this surface, tests only the boundary limits of the corresponding
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canonical x0 = 0 Klein-Gordon fields φ and π and their z-derivatives at {(z =
0, x0 = 0, �x) : �x2 < 1}. Since this set does not constitute a Cauchy surface for the
wedge W (K0), the generalized free field smeared over the Cauchy surface of K0

generates only a proper subalgebra of A∆(K0) = AKG(W (K0)). This violation of
the time-slice property is a necessary feature of algebraic holography [33].

We want to show that the time-slice property is restored for the dual com-
pletion Adual

∆ (K) = Atot(K):

Atot(K) = Atot(C). (5.17)

Again we may choose K = K0. The algebra Atot(K0) equals AKG(V (K0)) by
(5.8) and hence is generated by the canonical x0 = 0 Klein-Gordon fields φ and
π smeared over the Cauchy surface C0 of V (K0). By (4.11), such smearing are
smearing of x0 = 0 generalized free fields ϕh(0, �x) and their time derivatives over
the Cauchy surface B0 of K0. Hence the latter generate Atot(K0). This justifies
(5.17).

It is natural to consider this restoration of the time-slice property as being
related to the existence of the singular stress-energy tensor (3.6) which is in some
weak technical sense associated with the algebras Atot(K) but not with A∆(K),
and whose integral over a Cauchy surface generates the causal time evolution.
Even though the stress-energy tensor is not itself a Wightman field, it is not too
singular to have this desirable dynamical consequence for the structure of the local
algebras associated with the Wightman fields of the theory.

6 Conclusion

We have studied generalized free fields from a general perspective and established,
in spite of the non-canonical nature of these fields, the existence of a stress-energy
tensor which serves as a density for the generators of the Poincaré group as in
the canonical framework. We have pointed out that this stress-energy tensor is a
mathematical object which is more singular than a Wightman field, but can be
obtained as a certain limit of generalized Wick products.

We have then studied the free field AdS-CFT-correspondence in the light
of the previous results on generalized free fields. In particular, we have given an
explicit “holographic” formula expressing the Klein-Gordon field on AdS in terms
of generalized free fields on the boundary. We have identified the above stress-
energy tensor for generalized free fields as an integral “along the z-axis of AdS”
over the canonical Klein-Gordon stress-energy tensor ΘKG

µν (z, ·) on AdS.
These results should be useful as a starting point for a perturbation theory of

the AdS-CFT-correspondence. If the AdS field is perturbed by a local interaction
Lagrangean density LI(φ) on AdS, it is naively expected that the effect on the
conformal field (generalized free field) on the boundary is that of a Lagrangean
perturbation by the integral “along the z-axis of AdS” of LI(φ(z, ·)). This inte-
gral, akin to (4.24), is again of the form of a (regular or singular) generalized
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Wick product of the boundary field. Further analysis of this issue will be pursued
elsewhere.
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Fewster, K. Fredenhagen, and S. Hollands.

References

[1] H. Araki, A generalization of Borchers’ theorem, Helv. Phys. Acta 36, 132–139
(1963).

[2] H. Araki, A lattice of von Neumann algebras associated with the quantum
theory of a free Bose field, J. Math. Phys. 4, 1343–1362 (1963).

[3] S.J. Avis, C.J. Isham, D. Storey, Quantum field theory in anti-de Sitter space-
time, Phys. Rev. D 18, 3565–3576 (1978).

[4] T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics
from conformal field theory, arXiv:hep-th/9808016.
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