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Abstract

Full-information item bifactor analysis is an important statistical method in psychological and
educational measurement. Current methods are limited to single group analysis and inflexible in
the types of item response models supported. We propose a flexible multiple-group item bifactor
analysis framework that supports a variety of multidimensional item response theory models for
an arbitrary mixing of dichotomous, ordinal, and nominal items. The extended item bifactor model
also enables the estimation of latent variable means and variances when data from more than one
group are present. Generalized user-defined parameter restrictions are permitted within or across
groups. We derive an efficient full-information maximum marginal likelihood estimator. Our
estimation method achieves substantial computational savings by extending Gibbons and
Hedeker’s (1992) bifactor dimension reduction method so that the optimization of the marginal
log-likelihood only requires two-dimensional integration regardless of the dimensionality of the
latent variables. We use simulation studies to demonstrate the flexibility and accuracy of the
proposed methods. We apply the model to study cross-country differences, including differential
item functioning, using data from a large international education survey on mathematics literacy.
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Full-information item bifactor analysis (Gibbons & Hedeker, 1992; Gibbons et al., 2007) has
been increasingly recognized as an important statistical method in psychological and
educational measurement. Item bifactor analysis, as a special case of confirmatory
multidimensional item response theory (IRT) modeling, provides information about the
dimensionality of the measurement instrument, strategies for scaling individual differences,
and new approaches to computerized adaptive testing. For instance, Reise, Morizot, and
Hays (2007) applied item bifactor analysis to patient reported health outcomes data and
concluded that the item bifactor model provides a valuable tool for exploring
dimensionality. In psychopathology research, Simms, Grös, Watson, and O’Hara (2008)
found that a bifactor structure is needed for describing mood and anxiety symptoms. In the
area of psychiatric services research, Gibbons et al. (2008) applied the bifactor model to the
construction of item banks and computerized adaptive tests and demonstrated dramatic
reductions in patient and clinician burden. In educational measurement, DeMars (2006)
applied the item bifactor model to data from testlet-based assessments and found the bifactor
model a practical alternative to more specialized testlet response models (e.g. Wainer,
Bradlow, & Wang, 2007).
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From a psychometric angle, the hierarchical bifactor structure (Holzinger & Swineford,
1937) has provided plausible explanations for real data under a number of different
scenarios (see e.g., Jöreskog, 1969; Tucker, 1958). Some theoretical results pertaining to its
applicability also exist (see e.g., Yung, McLeod, & Thissen, 1999 for a discussion of the
relation between hierarchical and higher-order factor analytic models). However, we are not
proponents of the bifactor structure per se. Our view is that the item bifactor model is one of
the many possible measurement models that may be useful in practice. Further research can
provide fruitful avenues of new opportunities.

From a statistical angle, the success and popularity of full-information item bifactor analysis
is largely due to Gibbons and Hedeker’s (1992) discovery of an efficient maximum marginal
likelihood parameter estimation method. It takes advantage of the bifactor measurement
structure to analytically reduce the dimensionality of the otherwise intractable integrals in
the item factor analysis likelihood function. Regardless of the number of factors in the
model, one only needs to numerically approximate a series of two-dimensional integrals. We
refer to this general strategy as dimension reduction. This computational breakthrough,
together with its availability in popular software programs (e.g., TESTFACT, Bock et al.,
2003; BIFACTOR, Gibbons & Hedeker, 2007), have made full-information item bifactor
analysis widely accessible.

We note here that because the item bifactor model is a confirmatory item factor analysis
model, alternative estimation strategies exist. For instance, adaptive quadrature methods
(Schilling & Bock, 2005) have already been implemented in software programs such as
Mplus (Muthén & Muthén, 2008). Bayesian Markov chain Monte Carlo (MCMC)
estimation methods for general confirmatory item factor analysis (see e.g., Wirth &
Edwards, 2007 and the references therein), and stochastic optimization algorithms for
maximum marginal likelihood estimation (Cai, 2010a; Cai, 2010b) are effective alternatives.
Under appropriate circumstances, limited-information least squares estimators such as
NOHARM (Fraser & McDonald, 1988) can also be applied.

We do not pursue the alternatives mentioned above for the following reasons. First, these
methods share the common characteristic of not using analytical dimension reduction. When
the factor pattern indeed conforms to the bifactor structure, which we assume throughout,
deterministic quadrature based optimization algorithms (e.g., the EM algorithm of Bock &
Aitkin, 1981) that implement dimension reduction can be substantially more efficient and
stable than alternative adaptive quadrature or stochastic methods that do not actively employ
dimension reduction (see e.g., Cai, 2010c, for a timing comparison). Second, duly noting the
advantages of Bayesian inference, we focus on obtaining modal estimates, which, in
principle, should be conducted first so that one may “begin mapping the posterior density”
(Gelman, Carlin, Stern, & Rubin, 2004, p. 312). Finally, the flexibility of full-information
maximum likelihood estimation becomes particularly important as the complexity of
contemporary psychometric modeling surpasses the capabilities of limited-information
estimators in routine use (Cai, 2010c).

Limitations of Current Methods

Successful as they are, current full-information item bifactor analysis methods are not
without limitations. The original derivations in Gibbons and Hedeker (1992) relied heavily
on a result specific to the bivariate normal integral, which restricted their item response
model to the normal ogive model for dichotomous responses. Gibbons et al.’s (2007) recent
extension to the case of graded responses continues to rely on the normal ogive argument. It
turns out that the limitation to the normal ogive model is unnecessary. Using graph theory
arguments, Rijmen and coworkers (Rijmen, Vansteelandt, & De Boeck, 2008; Rijmen,
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2009) convincingly demonstrated that bifactor-type dimension reduction holds under more
general conditions and for a wider variety of IRT models than Gibbons and Hedeker (1992)
originally considered.

In practice, however, this restriction has been reinforced by software that only uses the
normal ogive parameterization. For example, the unidimensional 3-parameter IRT model
with an estimated lower asymptote parameter is popular in educational measurement and
increasingly applied in psychological measurement (e.g. Reise & Waller, 2003).
TESTFACT currently supports a multidimensional analogue of the 3-parameter model
(Reckase, 1997) but does not allow the estimation of the lower asymptote as a free
parameter. A recommendation (see e.g. Thissen & Wainer, 2001) that is also endorsed by
the software manual is to fix the asymptote value at an estimate obtained from a prior
unidimensional 3-parameter model run. This recommendation rests on the presumption that
the prior estimate is unaffected by dimensionality, despite evidence to the contrary (e.g.
DeMars, 2007). Estimating all parameters jointly is ideal but is not possible given current
item bifactor analysis software.

Consider as another example Muraki’s (1992) Generalized Partial Credit (GPC) model and
its multidimensional counterpart (e.g. te Marvelde, Glas, Van Landeghem, & Van Damme,
2006). The GPC model is a popular alternative to Samejima’s (1969) graded response
model, particularly for constructed response items. As Thissen and Steinberg (1986)
showed, it is both a special case of Bock’s (1972) nominal categories model and a
generalization of partial credit and rating scale models based on Rasch measurement
principles (e.g. Andrich, 1978; Masters, 1982). Though Gibbons et al. (2007) implement a
version of the rating scale model by restricting the thresholds of the normal ogive graded
response model, it remains unclear whether GPC-type multidimensional models are possible
within their framework.

It is of interest to note that current methodological research on item bifactor analysis has
been confined to single-group models largely due to the complexity of the dimension
reduction method. As of this writing, we are aware of only one full-information multiple-
group analysis that utilizes dimension reduction (Jeon & Rijmen, 2010). However, the
reality is that multiple-group IRT modeling (Bock & Zimowski, 1997) forms a cornerstone
of IRT-based test linking and equating (see, e.g., Kolen & Brennan, 2004), IRT-based
Differential Item Functioning (DIF) detection (see, e.g., Thissen, Steinberg, & Wainer,
1993), and IRT-based vertical/developmental scaling (see e.g., Williams, Pommerich, &
Thissen, 1998), among other useful activities. As Reise et al. (2007) noted, the item bifactor
model can potentially enrich all of the above areas of investigation. The key prerequisites –
practical estimation methods and software implementation of flexible multiple-group item
bifactor models – have yet to be developed. In particular, a multiple-group modeling
framework will be most useful if it has a degree of flexibility that is comparable to structural
equation modeling (e.g., the LISREL model and software, Jöreskog & Sörbom, 2001),
wherein a user can impose restrictions such as fixing or equality constraints directly on the
parameters, facilitating theory-driven hypothesis testing and model comparison.

Overall Objectives

In this research, we systematically generalize the bifactor model due to Gibbons and
Hedeker (1992) and Gibbons et al. (2007). We aim to achieve the following objectives:

1. As a departure from the normal ogive tradition, the IRT models connecting the
latent variables and observed data are multidimensional extensions of all major
unidimensional logistic models, including but not limited to the 1-2-3-parameter
logistic models, the logistic graded model, the GPC model, and the full nominal
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model. The focus on logistic models makes any arbitrary mixings of the above
models straightforward so that one may mix items with different response formats
(e.g., dichotomous, ordinal, and even nominal) in a single analysis.

2. With more than one group, we allow the estimation of means and variances of all
latent variables, provided that a group is chosen as the reference population. In
addition, we permit generalized user-defined restrictions on all item and population
mean/variance parameters. These features extend capabilities of standard multiple-
group IRT models and software packages, e.g., Multilog (Thissen, 2003).

3. We preserve the computational efficiency of full-information maximum likelihood
bifactor estimation by generalizing Gibbons and Hedeker’s (1992) dimension
reduction technique. This ensures that our item bifactor models can be estimated
within a practical amount of time. There is little restriction in terms of the
dimensionality of latent variables, the types of IRT models, the number of groups,
the number of respondents, and the number of user-defined restrictions on
parameters.

4. Finally, we illustrate the proposed methodology with simulated and real data.

The General Statistical Approach

A Bifactor-Like Structure

The standard item bifactor measurement structure has the following factor pattern

(1)

for 6 items, one general dimension and 2 specific dimensions. The a’s are the item slope/
discrimination parameters that are analogous to factor loadings. As can be seen, the first
dimension is the general factor and the others are specific factors. The first subscript denotes
the item and the second denotes the factor. As will be clear later, it is advantageous
notationally to begin the index of factors from zero. We call a pattern bifactor-like if an item
always loads on the general factor and is permitted to load on at most one specific factor,
potentially with other fixing or equality constraints, e.g.,

(2)

In the example above, item 3 does not load on a specific dimension and there are additional
equality restrictions, as indicated by the subscripts, reducing the number of free parameters
to 6. Some of these restrictions are identification conditions and some are testable
constraints. For example, the equality restriction for the specific factor slopes a11 is an
identification condition. In this case, the specific factor is defined by a pair of items, and
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amounts to a residual correlation in standard confirmatory factor analysis. On the other
hand, the within- and across-item equality restrictions on the slopes of items 4 and 5 may be
testable. With appropriate software support for restrictions, a wide variety of interesting
substantive questions can be implemented as user-defined restrictions and tested for
statistical significance, e.g., are two items equally discriminating on the general dimension;
are the item slopes equal across groups; do the latent variables have the same means, etc.

We may also use path diagrams to represent the relationships between items and factors. In
Figure 1, we depict the bifactor-like structure in Equation 2 as a path diagram. As one can
see, there are six observed items, represented as rectangles, and there are three latent factors
(θ0, θ1, θ2), shown as circles. What is different from a standard path diagram is the notation
we use to represent the number of categories for each item and the kind of IRT model. The
rectangle for item 1 contains the letter D, which means that we fit a dichotomous response
model with a lower asymptote (i.e., a 3-parameter logistic model) to this item. Items 2 and 3
are marked with numbers 2 and 5, which denotes the use of graded response models for 2
and 5 categories, respectively. It should be noted that the 2-category graded response model
is equivalent to a 2-parameter logistic model. We describe it here as a graded response
model in order to empahsize that the 2-category model belongs to the larger family of
models for ordinal data. We fit the GPC model to items 4 and 5 (hence the letter G in the
rectangles) for ordinal categories. Item 4 is a 3-category item (G3) and item 5 has 4
categories (G4). Finally, the last item is nominal with 5 categories (N5). The details of these
IRT models will be elaborated in a later section.

The general dimension is θ0, and the two specific factors are defined by two item doublets.
The item slope/discrimination parameters are represented as single-headed arrows, with
equality and fixing constraints explicitly shown. For instance, the path from θ1 to item 3 is
omitted because it is a fixed zero slope, and the slopes of items 1 and 2 on θ1 are set equal.
The latent factors are mutually orthogonal with zero means and unit variances. We will give
a more in-depth discussion of the distribution of the latent factors in the section on
estimation.

Some Notation

Let us suppose that there are g = 1, …, G independent and mutually exclusive groups, which
may be defined by such variables as gender, ethnicity, education level, disease status,
treatment condition, geographical region, etc. In group g, let there be j = 1, …, ng items each
scored in Kjg categories. Further, let there be i = 1, …, Ng independent respondents or

examinees in group g. The overall sample size is . We denote the response from
person i to item j in group g as yijg. Without loss of generality, we assume that yijg may
either take integer values from {0, 1, …, Kjg − 1} or yijg may be a missing value. Let us
write the ng × 1 vector of item responses from respondent i in group g as yig = (yi1g, …, yijg,
…, yingg)t, where the symbol t denotes the transpose of a matrix or vector.1 The entire Ng ×

ng matrix of item responses in group g is Yg, with its ith row given by . Let the ng

observed items measure Sg + 1 latent variables, which we denote here as θg = (θ0g, θ1g, …,
θSgg)t. Let the mean vector of θg be (μ0g, μ1g, …, μSgg)t. We preserve the orthogonality
requirement for the factors so that for group g, the covariance matrix of θg is diagonal, i.e.,

. Of these Sg + 1 factors, θ0g is the general dimension, and the rest
are specific.2

1We follow the notational convention that regular lower case symbols are scalars while symbols in bold face denote vectors or
matrices.
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On the Conditional Independence Assumption

An IRT model relates the conditional probabilities of the item responses yig to them latent
variables θg (see e.g. Edwards & Edelen, 2009). Model building typically starts with the
conditional independence assumption (Lord & Novick, 1968), i.e., the item responses are
independent given the latent variables. Conditional independence is a hallmark feature of a
number of popular models in psychometrics, including exploratory factor analysis and
(unidimensional) item response theory. In the unidimensional IRT literature, satisfying
conditional independence amounts to unidimensionality because the unidimensional IRT
model only allows a single latent factor to influence the observed item responses. Various
diagnostic approaches (e.g. Braeken, Tuerlinckx, & De Boeck, 2007; Chen & Thissen, 1997;
Stout, 1990) exist to check this critical assumption. Because the IRT model we consider is
multidimensional, the conditional independence assumption we make is a more relaxed one
in that we condition on all Sg + 1 latent variables simultaneously. In other words, the
operating assumption is that the item responses yig are correlated wholly due to their being
influenced by a common set of unobserved random variables θg. Once the influence of θg is
accounted for, the item responses should be independent. Indeed, proponents of the bifactor
model use the specific factors to explicitly model extra residual dependence above and
beyond the primary dimension.

Bifactor IRT Models

Recall that the response of individual i to item j in group g is yijg ∈ {0, 1, …, Kjg − 1}.
There is no requirement that the items must all have the same number of response
categories, or that all the IRT models have to be the same within a group. To avoid
notational clutter, we temporarily drop the subscripts, with the understanding that we are
referring to a generic item j in group g. The lack of subscripts should not be taken as an
indication that the parameters are equal.

A Model for Dichotomously Scored Response

When the item response is scored dichotomously (i.e., K = 2), we denote y = 1 as the correct/
endorsement response and y = 0 as the incorrect/nonendorsement response. Dichotomous
item responses are routinely encountered in educational measurement (e.g. multiple-choice
test items) or psychological assessment (e.g. symptom checklists). The model we describe is
a bifactor extension of the classical 3-parameter logistic model. Let the conditional
probability of correct/endorsement given the general dimension θ0 and specific factor θs be

(3)

where c is the lower asymptote (“guessing” probability), d the item intercept, a0 the item
slope on the primary factor, and as the item slope on specific factor s. Naturally, the
conditional probability for the incorrect/nondendorsement response is P(y = 0|θ0, θs) = 1 −
P(y = 1|θ0, θs). If the item does not load on a specific factor, then as is zero and the
conditional probability does not depend on θs, in which case the model reduces to the
classical 3-parameter logistic model:

2Note that the additional g subscript permits different number of observed variables as well as different number of latent variables
across the groups. This gives the data analyst yet another degree of flexibility.
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(4)

In the unidimensional case, the logit in Equation (4) can be reexpressed in a more
convenient slope-threshold form as d + a0θ0 = a0(θ0 − b), where b = −d/a0 is the threshold
(or item difficulty) parameter, indicating the point on the θ0 scale at which the probability
for correct/endorsement response is exactly .5 if c = 0, or .5 + .5c if c is not zero.
Unfortunately, the slope-threshold form does not generalize well to truly multidimensional
models, so we adopt the slope-intercept parameterization for this model and all remaining
IRT models.

In qualitative terms, the item slopes reflect the strength of association between the item
responses and the factors, or how indicative/discriminating the item is for the latent
variables. The model effectively generates an item response surface as a function of θ0 and
θs. Consider the level plot (a filled contour where lighter colors indicate higher probabilities)
of the correct/endorsement response surface as shown in Figure 2. The slope parameters are
a0 = 1 and as = 1. Thus, the item is equally discriminating along both θ0 and θs. In contrast,
Figure 3 presents a response surface with a markedly different shape. The slope parameters
are a0 = 2 and as = 0.5. In other words, this item derives most of its discrimination along the
direction of the primary dimension, as reflected by a much faster rate of change of the
surface along the direction of θ0 than θs.

The lower asymptote for the item in Figure 2 is c = 0.3, and hence the height of the contour
begins at 0.3 from the lower-left corner. In educational measurement, the c parameter is
routinely interpreted as the guessing probability for multiple-choice exam questions. In
psychological measurement, Reise and Waller (2003) argue that a non-zero lower asymptote
might indicate item content ambiguity that has little to do with the underlying trait or
symptom being assessed. The lower asymptote of the item in Figure 3 is equal to 0.1, which
is lower than the previous item, as clearly indicated by the gray scale legend on the right.

The item intercept parameter d is negatively associated with the difficulty/location of the
item (Reckase, 2009). Indeed, as shown in Equation (4), this relation is transparent as we
defined the item threshold parameter as b = −d/a0. For a multidimensional IRT model such
as the one we are discussing, we can adopt Reckase’s (2009) formula (p. 90) to convert the
intercept into a location parameter (multidimensional difficulty; MDIFF) to aid
interpretation

(5)

Note that MDIFF reduces to b when one of the a’s is zero. The intercept parameter is d = −1
for the item depicted in Figure 2, whereas the intercept of the item in Figure 3 is equal to 1.

The location parameters are therefore  and , respectively.
Thus the item in Figure 3 can be interpreted as being either “easier” (in educational
measurement) or less “severe” (in psychological measurement) than the other item, pending
context. We discuss additional estimation issues for the dichotomous response model in
Appendix A.
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A Model for Graded Response

This model is the bifactor counterpart of the logistic version of Samejima’s (1969) graded
response model. Muraki and Carlson (1995) describe similar normal ogive multidimensional
models. The graded response model has been popular in the item analysis for psychological
scales and recently has become the recommended model in patient reported outcomes
measurement (Thissen, Reeve, Bjorner, & Chang, 2007). In educational measurement, the
graded model has been applied in the analysis of questionnaire data (e.g. at the student or
teacher level) where the items have Likert-type ordered categorical response options or
when the data are judged ratings of constructed response items. Let y ∈ {0, 1, …, K − 1} be
the item response in K graded categories. The development starts from the cumulative
response probabilities:

(6)

where d1, …, dK−1 are a set of K − 1 (strictly ordered) intercepts. As before, a0 is the item
slope on the primary factor, and as the item slope on specific factor s. Equation (6) implies
that the category response probability is a difference of two adjacent cumulative response
probabilities:

(7)

where the two boundaries are defined by P(y = 0|θ0, θs) = 1 − P(y ≥ 1|θ0, θs) and P(y = K −
1|θ0, θs) = P(y ≥ K − 1|θ0, θs). If the item does not load on specific factor s, we obtain the
unidimensional graded model.

As with the dichotomous model, the graded model generates a set of response probability
surfaces in terms of the primary and the specific dimensions. Barring the absence of a lower
asymptote parameter, the slope and intercept parameters carry similar meaning in this model
as in the dichotomous response model. Figure 4 presents the category response surfaces for a
hypothetical graded item with 3 categories.

The item slope parameters are a0 = 1, as = 2. This item is more discriminating along the
specific factor. The level plots clearly reveal the shapes of the category response surfaces.
From the lower-left corner, the lowest category’s response probabilities gradually decrease
to zero as both θ0 and θs increase. The middle category’s response probabilities first increase
and then decrease, resulting in a ridge that lies in the middle of the plot. The highest
category’s response probabilities gradually increase to 1 as both θ0 and θs increase. The
overall rate of change along θ0 is not as fast as that of θs, consistent with the lower slope on
the primary dimension. The first intercept is d1 = −1 and the second intercept is d2 = 1. As
with the dichotomous response model, the intercepts are negatively related to the difficulty/
location/severity of the response categories. The only difference here is that an item
potentially possesses more than one intercept. Finally, we mention that if the number of
categories K is exactly two, the graded response model will coincide with a dichotomous
model with c = 0.

A Generalized Partial Credit Model

This model is a bifactor extension of Muraki’s (1992) unidimensional GPC model (see e.g.
Yao & Schwarz, 2006), which further generalizes the rating scale model (Andrich, 1978),
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and the partial credit model (Masters, 1982). The GPC model is often used in scoring
constructed response items for educational assessments. The GPC model is derived from a
different set of assumptions about the item response process than the graded model, but it
can often generate similarly shaped item response functions as the graded response model.
Because of this, it is an effective and popular alternative to the graded model in practical
data analysis. Chapter 4 of Reckase’s (2009) book contains excellent discussions about the
multidimensional GPC and graded models.

Let y ∈ {0, 1, …, K − 1} be the item response in K ordinal categories. Historically there are
a number of equivalent ways to express the GPC model. Here, we adapt Thissen, Cai, and
Bock’s (2010) notation for the full multidimensional GPC model. Let

(8)

be the conditional response probability for category k = 0, …, K − 1, where Tk is the so-
called scoring function for category k and dk is the category intercept. We continue to denote
the item slopes as a0 and as for the general and specific dimensions, respectively. Without
loss of generality, the scoring function can be taken as Tk = 0, …, K − 1. They are often
interpreted as the scores that would be assigned to responses by a rater. The category
intercepts are themselves not directly estimable due to an indeterminacy of the multinomial
logit. If we add a constant to all the dk’s, the category response probabilities are left
unchanged. This is analogous to the estimablity issues in analysis of variance: only K − 1
contrasts are identifiable for K categories. A remedy is to impose an identification restriction
so that one of the dk’s (usually that of the first category) is zero. We accomplish this
restriction via a reparameterization of the intercepts as described in Appendix B. As before,
if the item does not load on a specific factor, the unidimensional GPC model is obtained.

Figure 5 presents the GPC category response probability surfaces in terms of the primary
and the specific dimensions. This item has three categories. The surfaces behave similarly as
the graded model surfaces. As θ0 and θs increases, the lowest category probabilities decrease
to zero, the highest category probabilities increase to one, and the middle category
probabilities first increase and then decrease.

For this item, the slope parameters are a0 = 1 and as = 1, so it is equally discriminating along
both latent dimensions. The intercepts are c0 = 0, c1 = 1, and c2 = 2, which are interpretable
as location parameters, much as the category intercepts in the graded model. An alternative
interpretation is that the intercepts control the relative frequency of endorsements in each of
the categories, or equivalently stated, the height of the category surfaces, at specific points in
the (θ0, θs) plane. Take the origin for example. At this point, (θ0, θs) = (0, 0), and the
category probabilities are entirely functions of the dk’s. For the item in Figure 5, the first
category’s endorsement probability is equal to e0/(e0 + e1 + e2) = .09 at the origin. The
second category probability is e1/(e0 + e1 + e2) = .24, and the highest category probability is
e2/(e0 + e1 + e2) = .67 at the origin. The calculation generalizes to any number of categories
and dimensions, as long as the item parameters are known.

A Model for Nominal Response

This model is a recent extension of Bock’s (1972) classical nominal categories model to
multidimensional IRT (Thissen et al., 2010). The nominal model is one of the most flexible
parametric IRT models and has found wide-ranging applications in psychometrics. Thissen
and Steinberg (1986) used the nominal model to provide a taxonomy of a variety of
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polytomous IRT models. It has been applied to data analysis involving testlets (Thissen,
Steinberg, & Mooney, 1989). The nominal model has been found useful in representing the
item response process (e.g., Revuelta, 2007), and accounting for individual differences in
response style (e.g., Johnson & Bolt, 2010). It has also emerged as a practical tool to explore
the rank order of the response categories in data analysis for patient report outcomes (see,
e.g., Thissen et al., 2007).

Let y ∈ {0, 1, …, K − 1} be the item response in K nominal (unordered) categories.
Category k’s response probability is defined as

(9)

where dk is the category intercept (as in Equation 8) and a0 is the item slope on the primary

factor, as the item slope on specific factor s. The  scoring function parameters describe the
empirical “ordering” of the response categories with respect to the linear combination of
latent variables: a0θ0 + asθs. By comparing Equations (8) and (9), one can see that the GPC
model is a special case of the nominal model, with predetermined scoring functions for each
category, whereas the scoring functions are estimated parameters in the nominal model.

As with the GPC model, the category intercepts are not directly estimable. A similar
identification restriction must be imposed on the dk’s so that the first intercept is always zero
and what are estimated are the remaining K − 1 intercept contrasts. Due to the added
complexity of estimating the “ordering” of the categories from data, two identification

restrictions must be placed on the set of  parameters. Hence, we estimate K − 2 scoring
function contrasts. We present details of the reparameterization in Appendix B. Though the
particular reparameterization we adopt here is not unique, it has the easily discernable

feature that  is always 0 and  is always K − 1. Regardless of the reparameterization, we

emphasize that the ’s can always be interpreted as the ordering of the response categories
and can be used as scoring functions. Finally we note that this model reduces to Bock’s
(1972) original nominal model when one of the item slopes is zero.

Figure 6 presents level plots of the category response surfaces for a nominal model with 4
categories. The item slopes are a0 = 1 and as = 1. These are overall item discrimination
parameters and have the same interpretation as the item slopes in the other models. The

scoring function parameters for this item are , and . The scoring

function values must be strictly ordered ( ) in order for the categories to be so

ordered. Clearly, the categories are not ordered for this item. Since , the order of the
first two categories cannot be distinguished, and the order of categories 2 and 3 are in fact
reversed, with category 2 possessing a higher scoring function value than category 3. The
level plots clearly reveal the reversal of categories 2 and 3, showing category 3’s surface
increasing and then decreasing, as if it is one of the middle categories in a set of ordered
responses.

The effects of the intercepts are harder to see from the level plots. As in the GPC model,
they continue to function as indicators of the relative proportions of responses in each
category. For this item, the intercepts are c0 = 0, c1 = 2, c2 = 1, and c3 = 2. The curves in
Figure 7 resemble a set of item characteristic functions for the standard unidimensional
nominal model, but they are in fact a cross-section of the item response surfaces in Figure 6,
holding θs constant at 0. This slice of the item response surface reveals that category 1 has a
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much higher endorsement probability than category 0, though the two categories’ ordering is
the same. In practice, this implies that categories 0 and 1 can be collapsed into a single
category. In addition, it appears from Figure 6 that the order of response categories 2 and 3
should be reversed. With these changes, an IRT model for ordinal data (e.g., the graded
model) might be fitted to this item.

Putting the IRT Models Together

From Equations (3), (7), (8), and (9), we can write, generically, for respondent i’s response
to item j, the conditional category response probability as P(yij = k|θ0, θs), for k = 0, …, Kj −
1. Let

be an indicator function such that χk(y) = 1 if and only if y = k, for y ∈ {0, 1, 2, …}, and
χk(y) = 0 otherwise. The conditional distribution for an observed response yij is a
multinomial with trial size 1 in Kj cells, and the conditional density is

(10)

Note that the indicator function effectively selects out the category response probability for
each observed response. If yij is a missing value, then the value of the indicator function will
always be 0, which implies that the conditional density f (yij|θ0, θs) is identically equal to 1.
This observation will subsequently be important because the natural logarithm of 1 is 0, so a
missing observation does not contribute any information to the log-likelihood. The resulting
estimator thus utilizes observed information fully in the presence of of missing data.

The Distribution of Latent Factors

We make the standard bifactor analysis assumption that the general factor and the specific
dimensions are jointly normally distributed and mutually orthogonal (see, e.g., Gibbons &
Hedeker, 1992).3 This is also the underlying assumption of testlet response models (Wainer
et al., 2007). For a single group, the location and scale of the latent variables must be set in
order to achieve identification. It is typically assumed that θ has a multivariate normal
distribution with zero means and identity covariance matrix. Appendix C contains additional
details.

The orthogonality and normality imply that the density function of the latent variables
reduces into a product. In the case of Figure 1, the distribution of the latent factors can be
written as

(11)

3Strictly speaking this is not necessary. Rijmen (2009) showed that the dimension reduction only requires the conditional
independence of the specific factors given the general factor. Nevertheless, the orthogonality restriction is often required to identify
the model.
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where  is the standard univariate normal density.

For multiple-group analysis, the latent variable means and variances become estimable
parameters, provided that a group is chosen as the reference, and that enough identification
restrictions have been imposed on the item parameters to link the latent variable scales
together. As with the item parameters, we also permit arbitrary user-defined equality or
fixing restrictions on the factor means or variances, either within or between groups.

Consider the simplest situation, where there are two groups. Typically the latent variables in
the reference group have zero means and an identity covariance matrix, and the location and
scale of the latent variables in the other group are estimated relative to the reference group,
with at least one common item’s parameters set equal across the two groups to link the
scales together. When there are more than two groups in an analysis, general identification
rules are harder to specify, especially given the multitude of possibilities with generalized
user-defined restrictions on the item parameters and/or group means and variances. As in
structural equation modeling, we recommend inspecting the definiteness of the Fisher
information matrix to determine the identification of a particular model.

Maximum Marginal Likelihood Estimation

The principle of maximum marginal likelihood was first applied in the IRT modeling
context by Bock and Lieberman (1970). The key idea is that the individual latent variables,
i.e., the θ’s, are nuisance parameters (in the sense of Neyman & Scott, 1948). To obtain
consistent statistical inference in the presence of nuisance parameters, a well-accepted
approach is to integrate the nuisance parameters out of the likelihood function. The resulting
likelihood is known as the marginal likelihood. In our context, it is solely a function of the
item parameters and the group means and variances. Optimizing the marginal likelihood
leads to the maximum marginal likelihood estimator, which enjoys desirable statistical
properties such as asymptotic normality, asymptotic unbiasedness, and asymptotic
efficiency.

Given the complexity of our generalized bifactor model, we give detailed formulas and
approximations related to the maximum marginal likelihood estimator in Appendix C.
Interested readers can find more discussions about computation in Cai (2010c) for a model
that includes the bifactor model. In this section, we illustrate key estimation issues with the
example depicted in Figure 1. That is, we only consider a single group model, n = 6
observed items, one general dimension and S = 2 specific dimensions. We attempt to give a
non-technical description of the role of the generalized bifactor dimension reduction method
in the derivation of efficient computational methods for full-information maximum
likelihood estimation.

The Numerical Integration Problem

As a first step, we note that in the example considered here, we are only estimating the free
item parameters. These item parameters include the six a parameters shown in the path
diagram, as well as the c, d, and a* parameters, depending on the type of IRT model.
Without loss of generality, let us assemble all the unknown parameters together and refer to
them collectively as β. Clearly, the conditional distribution of the observed item responses in
Equation (10) depends on β. The distribution of the latent factors (Equation 11) does not
depend on β in this example, but if any of the latent variable means and variances are free,
such as in a multiple-group setting, the distribution of the latent variables would also depend
on β.
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In the second step, we write the marginal distribution of the item responses. From
elementary probability, we first multiply the conditional distribution of y given the latent
variables θ with the distribution of θ to obtain the joint distribution. Next, we integrate θ out
of the joint distribution, and what is left is the marginal of y. In our example with 3 latent
factors, the marginal distribution is

(12)

where the subscript β is added to emphasize the dependence of the conditional and marginal
distributions on the unknown parameters. From Equation (11), we know that f (θ0, θ1, θ2) is
the product of three univariate normal densities. From our discussions about conditional
independence in the previous section, we know that the conditional density fβ(y|θ0, θ1, θ2)
must factor into a product of conditional distributions of the individual items,

 because the model assumes that the item responses are
related entirely due to their joint dependence on θ. The dependence is reflected and modeled
by the IRT models, as shown in Equation (10).

In general, the integral in Equation (12) must be approximated via numerical quadrature.
That is, instead of deriving an analytical answer to Equation (12), we must represent it as a
sum of values evaluated at discrete points. The more points are used, the more accurate the
approximation becomes. A problem with numerical quadrature is its computational
complexity, which increases exponentially in the order of integration. Consider the triple
integral in Equation (12), quadrature approximation takes the following form

(13)

where the integrand is evaluated at a set of Q discrete quadrature nodes (the Xq’s) for each
latent factor, with weights at each node give by Wq. One can use either Gauss-Hermite
quadrature or equally-spaced (rectangular) quadrature. In Gauss-Hermite quadrature, pre-
computed nodes and weights are widely available from applied mathematics reference
sources (e.g., Abramowitz & Stegun, 1964). With rectangular quadrature, around Q = 20
quadrature points equally spaced between −5 and 5 are usually necessary for a practical
degree of accuracy in item factor analysis. The weights in rectangular quadrature are the
(normalized) ordinates of normal densities evaluated at the corresponding quadrature nodes.

The details of the numerical integration scheme is not as important as the realization that the
triple sum on the right hand side of Equation (13) implies a total of Q3 evaluations of the
integrand. If Q = 20 points are adopted, the total number of function evaluations is 203 = 8,
000. Note that in general, the direct quadrature approximation requires QS+1 function
evaluations. For example, if there are S = 5 specific factors in a bifactor model, the
complexity of the direct quadrature approximation is in the order of 206 = 64, 000, 000
function evaluations. Even if we reduce the number of quadrature points per dimension by
half, it still requires 106, or a million function calls. This is prohibitive even for today’s
computers. Wirth and Edwards (2007) refer to this as the “challenge of dimensionality.”

Cai et al. Page 13

Psychol Methods. Author manuscript; available in PMC 2012 September 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Dimension Reduction

The central thesis of the full-information item bifactor method is that by a judicial
rearrangement, the integral in Equation (12) can be converted into a series of iterated
integrals whose dimensionality is at most two. This facilitates the numerical integration that
is required in marginal likelihood computations because the number of function evaluations
is at most a constant multiple of Q2 as opposed to QS+1. The dimension reduction method
tackles the challenge of dimensionality analytically.

To see this, we need to pay special attention to the conditional distribution of item
responses. While all items depend on θ0, the first two items are the only ones that depend on
θ1, and items 4 and 5 are the only ones that depend on θ2. For the 6 − 1 vector of item
responses y = (y1, …, y6)t, conditional independence implies

(14)

Therefore, when we seek the marginal distribution of y, we can integrate the two specific
dimensions out of the joint distribution first, and then integrate θ0 out so that the marginal
distribution of y is expressed as the following iterated integral:

(15)

As a result of integration over the specific factors, the terms in the square brackets only
depend on θ0, which is ultimately integrated out. For the iterated integral in Equation (15),
we can approximate its value to arbitrary precision as

(16)

where the number of function evaluations is 2 × Q2. If Q is 20, the total number of function
calls is 800, which is 1/10th of the computational complexity of the direct approximation in
Equation (13).

We emphasize that it is ultimately the bifactor-like structure that allows us to reexpress the
multiple integral as an iterated integral and subsequently achieve dramatic reduction in
numerical integration. Equations such as (15) and (16) epitomize the power of analytical
dimension reduction. Appendix C provides a derivation of the marginal likelihood under the
full generality of our model.

We urge methodologically sophisticated readers to consider analytical dimension reduction
when confronted with high dimensional latent variable modeling problems. Cai (2010c),
Rijmen et al. (2008), and Rijmen (2009) present additional applications of dimension
reduction in multidimensional IRT. Cudeck, Harring, and du Toit (2009) present another
example in the context of nonlinear structural equation modeling.

Estimation

Recall that yi is a vector of observed item responses from respondent i. The marginal
likelihood of β based on yi is defined as a function of the unknown parameters β, i.e., L(β|yi)
= fβ(yi), treating the item responses as fixed once they are observed. Because we have
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assumed the independence of respondents, for the single-group example that we have

considered thus far, the marginal log-likelihood is a sum over respondents .
For more than one independent groups, the marginal log-likelihood is a sum of the group-
specific contributions

(17)

where Yg is an Ng × ng matrix of item responses as defined earlier. In this case, β contains
all free parameters in the model, across all groups.

The marginal log-likelihood contains N integrals that must be approximated using numerical
quadrature, as discussed in the previous section. It can then be optimized over β using
standard numerical techniques such as an EM algorithm due to Bock and Aitkin (1981). Let
β ̂ be the optimizer of log L(β|Y1, …, YG). Then β ̂ is the maximum marginal likelihood
estimate. Cai (2010c) describes the EM algorithm in full detail.

Inference

All standard likelihood-based inferential techniques (see e.g., Pawitan, 2001) would apply in
this setting. When coupled with user-defined restrictions, the log-likelihood value at the
maximum likelihood estimate can be used to conduct likelihood ratio tests of nested models.
For instance, the relative fit of the bifactor and the unidimensional models can be compared
because the unidimensional model is nested within the bifactor model. As another example,
Thissen et al.’s (1993) likelihood ratio DIF test can be directly extended to the bifactor
setting, wherein the significance of DIF items is inferred from the likelihood ratio between
two models: a model with item parameters constrained equal across groups and a model that
relaxes the constraint.

Let Model B denote the less constrained (baseline) model. Adding constraints to Model B
would produce a Model A that is nested within B. Using notation from above, let log LA(β ̂A|
Y1, …, YG) be the maximized log-likelihood of Model A, and let log LB(β ̂B|Y1, …, YG) be
the maximized log-likelihood of Model B. Then under appropriate conditions (Haberman,
1977; see also Maydeu-Olivares & Cai, 2006), minus 2 times the difference of the two log-
likelihoods

(18)

is asymptotically distributed as a central chi-square variable under the null hypothesis that
the constraints that define Model A are correct. It produces a direct test of the user-defined
restrictions in the same way as nested model comparisons in structural equation modeling.
The degrees-of-freedom of the chi-square variable are governed by the difference in the
number of free parameters of the two models.

Furthermore, the parameter estimates and their covariance matrix can be used to construct
Wald chi-square test statistics much in the same way as in regression analysis or structural
equation modeling. For example, the difference in factor means or variances can be
statistically tested for significance. Yet another example is the extension of Langer’s (2008)
multiple-group Wald DIF test to bifactor analysis, where the item parameters are directly
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compared across groups, turning DIF null hypotheses into linear hypotheses that are
amenable to Wald tests.

Let the null hypothesis be expressed as H0 : Ltβ = β0, where L is a fixed matrix of contrast
coefficients, and β0 is a vector of null hypothesized constant values for the linear
combination Ltβ. The null hypothesis reflects a set of linear restrictions on the parameters
and the alternative hypothesis is simply the lack of such restrictions. For instance, the null
hypothesis may specify that two item slope parameters are equal across two groups, in
which case a potential contrast coefficient matrix is (1, −1)t and the null hypothesized value
is 0. This is analogous to a two-group t-test or a pair-wise comparison in analysis of
variance. More broadly, the following statistic

(19)

is asymptotically distributed as a chi-square variable under the null, where cov(β ̂) denotes
the covariance matrix of the maximum likelihood estimate β ̂ under the alternative
hypothesis. The degrees-of-freedom are governed by the number of linear restrictions in the
null hypothesis, or equivalently the rank of the contrast matrix L. Unlike the likelihood ratio
test, the success of the Wald test depends critically upon the availability of accurate
covariance matrix for the parameter estimates. As in Langer (2008), we compute this
covariance matrix using a Supplemented EM algorithm (Meng & Rubin, 1991). For the
interested reader, Cai (2008) and Cai and Lee (2009) present additional details of the
Supplemented EM algorithm in the contexts of IRT and structural equation modeling.

Finally, the asymptotic normality of the maximum likelihood estimator implies that we can
construct confidence intervals for the parameter estimates, following standard recipes. For
instance, the limits of a symmetric 95% univariate confidence interval could be β ̂ ± 1.96 ×

se(β ̂), where se(β̂) is the standard error estimate.

Simulations

We conduct two sets of simulations, as an empirical check of the accuracy of our proposed

estimation methods and as a demonstration of some of the capabilities of our extended

bifactor model. The item response data are generated with a built-in simulator in the numeric

engine of IRTPRO (Cai, du Toit, & Thissen, forthcoming). The fitted models and the data

generating models are the same, so the results represent parameter recovery. We use the

Bock and Aitkin (1981) EM algorithm in conjunction with the bifactor dimension reduction

method as implemented in the numeric engine of IRTPRO to obtain maximum likelihood

estimates. For the EM algorithm, the M-step convergence criterion is 1.0 × 10−7. The E-step

cycles are terminated when the maximum absolute difference in parameter estimates drops

below 1.0 × 10−3 between adjacent E-steps. The maximum number of E-steps is set at 500,

and a solution is declared nonconvergent if the maximum is reached. As to quadrature, we

use Q = 21 quadrature points equally-spaced between −5 and +5 to approximate the

integrals in the marginal log-likelihood. With dimension reduction, the number of function

evaluations is a constant multiple of Q2 = 441 for each integral in the marginal log-

likelihood. The computer we used is a workstation running Windows XP, with duo 3GHz

Xeon CPUs and 3GB RAM.

Simulation One: A Two-Group Model

We generated data from an extended bifactor model in two groups (N1 = N2 = 1, 000). As

shown in Figure 8, group 1 has n1 = 16 dichotomously scored items all fitted with the graded
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response model for two categories. The specific factors are defined by S1 = 4 item clusters
(items 1–4, 5–8, 9–12, 13–16). In group 1, the latent variables are assumed to have zero
means and unit standard deviations. In group 2, one of the item clusters (items 13–16) is not
present, resulting in n2 = 12 observed items and S2 = 3 specific factors. The factor means
and variances are freely estimated in group 2. The item parameters (intercepts and slopes) of
the first 12 items are constrained to be equal across groups. Thus, the data generating model
reflects measurement invariance across the two groups. The generating parameter values are
listed in Table 1. These parameters are chosen so that we examine parameter recovery for a
variety of plausible intercept/slope combinations.

The simulated example also shows the flexibility of our extended modeling framework. In a
realistic setting, perhaps the unadministered items (items 13–16) are inapplicable to the
respondents in group 2. For instance, the two groups may be defined by two countries, and
the measurement instrument may contain culturally-sensitive items that are not relevant in
one country. In an educational context, the groups may be students from two adjacent grade
levels, and the assessment contains 12 overlapping items for vertically linking the two
grades so that a developmental scale can be constructed. The non-overlapping items (items
13–16) may be inappropriate for the lower grade. As in unidimensional multiple-group IRT,
the key to flexible multiple-group bifactor analysis lies in the ability to estimate factor
means and variances, and the ability to impose arbitrary within/cross group restrictions. Our
model has achieved that without sacrificing computational efficiency.

We ran M = 500 replications of the Monte Carlo simulation. In each replication, the two-
group model is fitted back to the simulated data and the parameter estimates, standard errors,
and computer process time (measured as CPU seconds) are recorded. For this model, all 500
replications converged. The average per-replication time is 28 CPU seconds in 113 E-cycles.
4

We examine both bias and variability of the estimates. For a generic parameter β, let β ̂m be

its estimate in the mth Monte Carlo replication. Then  is the Monte Carlo
average of the point estimates. The estimated bias is defined as β̄ − β. As can be seen from
Table 1, the estimated biases for all parameters are quite small (maximum absolute bias is .
06), indicating good parameter recovery.

Table 2 compares the Monte Carlo averages of the estimated standard errors with the Monte
Carlo standard deviations of the estimated parameters. Specifically, for a generic parameter
β, let the estimated standard error from replication m be se(β ̂m). The Monte Carlo average of

the estimated standard error is , and the Monte Carlo standard

deviation is defined as . If the standard errors are
estimated accurately, their average should agree with the Monte Carlo standard deviations of
the parameter estimates. We can see that this is indeed the case (maximum discrepancy is .
05).

4The efficiency of the bifactor dimension reduction is evident. As a comparison, for a randomly selected replication that converged in
26 seconds and 103 cycles, we also used the adaptive quadrature based EM algorithm (Schilling & Bock, 2005) implemented in
IRTPRO to estimate the model. The number of adaptive Gauss-Hermite quadrature points per dimension is 5. The adaptive quadrature
based EM algorithm does not implement the bifactor dimension reduction. It required 1,715 seconds in 103 E-cycles to converge to
the same place as the dimension-reduced Bock and Aitkin (1981) EM algorithm for bifactor analysis.
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Simulation Two: A Model for Complex Assessment

It is not uncommon in educational measurement to encounter scales or assessments made up
of items with complex response formats. Thissen, Wainer, and Wang (1994) describe
educational tests consisting of a multiple-choice (MC) section and a constructed response
(CR) section. While both sections are intended to measure the same construct (e.g., general
reading achievement), the underlying factor structure may be multidimensional. A bifactor
pattern is one of the possibilities. The MC section may be composed of several clusters of
items, e.g., in a passage-based reading assessment, and the CR section may exert some
additional influence above and beyond the general dimension due to method effects.

In recent large-scale educational surveys, the so-called Complex Multiple-Choice (CMC)
format has become popular. Take the Program for International Student Assessment (PISA)
as a case in point. A typical CMC item in PISA consists of a set of tightly coupled multiple-
choice questions (see e.g., Organization for Economic Co-operation and Development,
2009). In other words, a CMC item is a mini testlet, which in turn can be nested within a
larger testlet potentially consisting of a number of other MC, CMC, or CR items. PISA
scores a CMC item by counting the number of correct responses, and then assigns partial
credit according to a pre-specified scoring rubric, akin to Thissen et al.’s (1989) nominal
model approach for testlets.

This similarity brings up the potential application of our bifactor nominal response model to
CMC items. Consider the simplest CMC item, which contains 2 multiple-choice questions.
If we use 0 to denote the incorrect response and 1 the correct response, the pattern of
responses to the two questions must be one of the following four possibilities: 00, 01, 10,
and 11. Instead of collapsing the pattern of responses into a number-correct score, we can
directly treat the four possibilities as a single nominal item with four potentially unordered
categories. They are unordered because though the 00 pattern should in general indicate less
ability or achievement of the respondent than the 11 pattern, it is unclear a priori which one
of the 01 or 10 response patterns reflects “higher” ability/achievement. The bifactor nominal
model can 1) suggest the empirical order of the categories, 2) use all available item response
information, and 3) permit the item responses be influenced by more than one source of
individual difference, both due to the general factor and the testlet-specific factor on which
the CMC item loads.

Figure 9 shows a hypothetical test with 9 MC items, 1 CMC item, and 5 CR items. The MC
items have 4 response alternatives and there is potentially a non-zero guessing probability
for each item. The MC items are scored right/wrong and the dichotomous model is
appropriate for these items. The CMC item consists of 2 questions and as we described
earlier, we use a 4-category nominal model for this CMC item. We code the categories in
the lexicographical order: 00 as category 0, 01 as category 1, 10 as category 2, and 11 as
category 3. The CR items are scored in 4 ordinal categories. A popular model for these CR
items is the GPC model, although as we mentioned earlier, the graded model is suitable as
well. There are three factors in the model. In the MC and CMC section of the test, the first
five items form into a cluster. For instance, they are potentially all based on the same
reading passage or the same graph. Hence, they load on a specific factor to account for the
residual influence above and beyond the general factor. The entire CR section defines
another specific factor. The factors are assumed to be normally distributed with zero means
and unit variances.

Table 3 shows the generating parameter values for this model. In the generating model, the
CR items 11–15 are equally discriminating with respect to θ2. We simulated data from this
bifactor model and the sample size is N = 3, 000. For each simulated data set, we fitted two
models. The first model imposes equality constraints on the slopes of items 11–15 on θ2.
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The second model does not impose the equality constraints. Therefore, the first model is
nested within the second model, and the likelihood ratio comparison of these two models
provides a test of the equality restrictions. In this case, the likelihood ratio test statistic
should be distributed as a central chi-square variable with 4 degrees-of-freedom because the
4 equality constraints are indeed correct in the data generating process. For the parameter
estimates and standard errors, we report results from the second model in Tables 3 and 4.

We ran 500 replications and all replications converged. To help stabilize estimation for the
MC items, we imposed the normal stochastic constraint (prior) outlined in Appendix A on
the lower asymptote parameters with mean equal to −1.1 and standard deviation equal to .
50. For each replication, we recorded the parameter estimates, the standard errors, the CPU
time, and the maximized log-likelihood values for the two fitted models. The average per-
replication runtime is 13 CPU seconds in 48 E-cycles.

Figure 10 plots the empirical quantiles of the likelihood ratio test statistic against the
theoretical distribution – central chi-square with 4 degrees-of-freedom. As one can tell, the
points are very close to the 45-degree reference line, showing a good distributional fit. The
mean of the empirical distribution is 4.07 (the expected value should be 4) and the variance
is 7.50 (the expected variance should be 8). Overall, the chi-square approximation seems to
have worked well.

Table 3 presents the estimated bias of all parameters. We mention that though we actually
estimate the logit of the lower asymptote parameter (as shown in Appendix A), and
reparameterize the GPC/nominal intercept and nominal scoring function parameters into
estimable contrasts (as shown in Appendix B), we present the item parameters in their
natural form in Table 3. In other words, the Appendices are prerequisites to a full
understanding of the results in Table 3.

As one can see, the item parameters for the CR items are recovered well. The slopes of the
GPC model show very little bias. The nominal model has also successfully recovered the
parameters for the CMC item. In particular, the true scoring function value for category 1 is

, which is higher than , indicating that the order of the two middle categories
corresponding to the 01 and 10 responses should in fact be reversed. Though the two
categories share the same number-correct score, a correct response to the second one of the
CMC questions indicates a higher ability/achievement than a correct response to the first.

Due to the presence of the stochastic constraint on the logit of the asymptote parameter, the
estimates of guessing are all centered on the true values. However, the estimates for the
slopes and intercepts of the MC items exhibit slightly larger biases than the CMC and CR
items. The largest MC slope bias is .09 for item 10, but on a relative note, it is only off by
6.3 percent of the true slope (1.44). Our results are consistent with the well-known fact in
unidimensional IRT that the 3-parameter model requires significantly larger N than the other
item response models to achieve stable estimation.

Turning to the variability information presented in Table 4, we see that the estimated
standard errors of the CR and CMC items are all closely aligned with the Monte Carlo
standard deviations. Note that as we mentioned earlier, these are standard errors for the
parameters that are actually estimated, i.e., the logits and the contrasts. On the other hand,
while the standard errors for the MC item parameters are generally close to the Monte Carlo
standard deviations, there is an interesting relationship between the difficulty/location of the
item and the standard errors. Item 1 has the highest intercept, and hence it is the easiest item.
With few people answering an easy item incorrectly, the data contain little information
about guessing. Consequently, the average of the standard errors (.31) is not appreciably
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smaller than the prior standard deviation (.50) for the logit of guessing. Note that the MC
items are arranged in an descending order by item intercept (see Table 3). Hence, the items
become more difficult as we move down the rows of Table 4, and the data become
increasingly more informative of the guessing strategy, which results in decreased standard
errors that are in closer agreement with the Monte Carlo standard deviations.

Illustrative Real Data Analysis

We analyze item responses to 15 math questions from the 2000 Program for International
Student Assessment (PISA) conducted by the Organization for Economic Co-operation and
Development (OECD).5 We selected students who have attempted all 15 items on Booklet 1
from 5 developed countries (sample size in parentheses): Australia (464), Germany (409),
Japan (445), UK (889), US (358). There are 14 CR items and one MC item with 4 response
alternatives. For the CR items, 10 are scored in 2 categories, 3 in 3 categories, and 1 in 4
categories. For the MC item, we fitted the model in Equation (3) for the dichotomously
scored response. The estimation of the logit of guessing probability is stabilized by the
normal stochastic constraint (prior) outlined in Appendix A. The mean for the prior is −1.1
and the prior standard deviation is increased to 1.0 to weaken the potential impact of the
prior on the guessing parameter as we do not know its true value. For the CR items, we
fitted the graded response model, although the GPC model can certainly be used instead.

The items belong to the following content clusters (number of items in the cluster appears in
the parentheses): Cube Painting (4), Farms (2), Walking (2), Apples (3), Continent Area (1),
Growing Up (3). With the exception of Continent Area, which is a singleton, each cluster
defines a separate specific factor in addition to the general math literacy factor on which all
items load. These specific factors reflect the residualized individual differences that are
specific to the content cluster above and beyond the individual differences in general math
literacy. As discussed earlier, because the specific factors for Farms and Walking only have
two items each, we constrain the slopes to be equal within each factor for identification,
making these two factors the equivalent of correlated residuals. Figure 11 shows the path
diagram for the bifactor structure for one of the 5 countries. We believe this factor structure
is reasonably appropriate for these data (see e.g., DeMars, 2006).

Invariant Items to Explore Group Differences

In this section, we assume measurement invariance. That is, we are assuming that each item
functions in the same way across countries. In other words, there is no DIF. For our
multiple-group bifactor model, or more generally for all parametric IRT models, the
invariance assumption translates into restrictions on the item parameters. The parameters for
each item are set equal across groups to indicate that their measurement properties are the
same in all countries. While the PISA test developers may have conducted extensive
measurement invariance analysis (Adams & Wu, 2002) to ensure the quality of the
instruments, we emphasize that the absence of DIF is an assumption that should and can be
checked empirically. We will relax the invariance restrictions in the second model and
discuss ways to model potential DIF.

With the equality restrictions on the item parameters, we can freely estimate the group
means and variances of the general factor to make cross-country comparisons of math
literacy. Optionally, we allow some or all of the means/variances of the specific factors to be
freely estimated. We arbitrary choose the US children as the reference group and standardize
the latent factors in this group to set the location and scale.

5General introductions to PISA and public-use data sets can be found at http://www.pisa.oecd.org/.

Cai et al. Page 20

Psychol Methods. Author manuscript; available in PMC 2012 September 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://www.pisa.oecd.org/


As an illustration, we estimate the mean and variance of the Cube Painting factor because it
has the most items of all specific factors. After all, in order for the factor means and
variances to be interpretable substantively, the underlying factor should correspond to a
broad enough construct, even though technically a specific factor is identified with as few as
two items loading on it. Though this specific factor may not be broad enough, we note that
in other settings such as quality of life research (see e.g., Gibbons et al., 2007), the specific
factors often represent meaningful content subdomains. We estimate the mean of Cube
Painting to illustrate what an investigator can do.

Table 5 presents the bifactor slope estimates and standard errors for the PISA math items.
With the exception of the items for the Growing Up cluster, all slopes are strong and
statistically significant. It is particularly important to note the magnitude of the specific
factor slopes, as they indicate the presence of additional underlying dimensions.

Adding these specific factors has significantly improved model-fit. The unidimensional
multiple-group model is nested within our extended bifactor model. Using the notation of
the likelihood ratio test developed earlier (see Equation 18), the unidimensional model is
Model A and the bifactor model is model B. One can obtain the unidimensional model by
fixing all the specific factor slopes to 0 and not estimating the Cube Painting factor means
and variances. The bifactor model has 64 free parameters, whereas the unidimensional

model has 44 parameters. The likelihood ratio chi-square is , which is highly
significant on 20 degrees-of-freedom.

Table 6 presents information about the response format, the various IRT models fitted, as
well as estimates of guessing and/or intercept parameters. Note that the logit of guessing is
estimated to be −2.31, which translates into a guessing probability of .09. In contrast, when
we fitted a unidimensional IRT model to the data, the guessing probability is estimated to
be .15. Thus, the guessing parameter estimate is dependent on dimensionality, and directly
estimating the parameter is preferable to the TESTFACT-recommended strategy of setting
guessing at a value obtained from a prior unidimensional model run.

Table 7 presents the estimated factor means and variances for each country, with the US as
the reference. It can be seen that Japan has the highest mean and the smallest variance in the
general dimension. Japanese students are .75 standard deviations higher than the American
students in math literacy. Their achievement levels are also much more homogeneous
(variance estimate of .58) than the US students (assumed variance of 1.00). Interestingly, the
Japanese students as a group are not the highest achievers when we look at the context-
specific skills for solving the Cube Painting exercise. In this case, the Australian students
have the highest mean. Finally, it is worth noting the efficiency of the dimension reduction
method because fitting this 6-dimensional model to data from all 5 countries simultaneously
took only 2 minutes of CPU time on the workstation we used for simulations.

Modeling and Testing for DIF

In this section, we adapt the IRT likelihood ratio DIF (IRTLRDIF) procedure due to Thissen
et al. (1993) and the updated Wald DIF test described by Langer (2008) to the case of
bifactor modeling. The strategy we adopt combines the linking method in IRTLRDIF with
the flexibility of the Wald test to model DIF across several groups simultaneously. To our
knowledge, Jeon and Rijmen (2010) is the only reference that also adopts an IRT-based
method for DIF detection in a bifactor model. Our unique contribution here is the
completeness of the approach.

We would like to illustrate our proposed procedure by testing the two constructed response
items in the Farms cluster for DIF. The responses to these two items are dichotomous rater
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scores, and the graded response model was used. Within a group, there is one intercept, one
slope on the general dimension, and one slope on the specific dimension for each item.
However, the slopes on the specific dimension must be set equal across the two items within
each group for identification.

As in IRTLRDIF, the first step is to link the latent variable scales. In the model assuming no
DIF, all item parameters are set equal across groups. To study DIF, the cross-group equality
restrictions for the Farms items must be dropped. The remaining 13 items in the other
content clusters serve as the anchoring set that links the latent variable scales together.
Specifically, the item intercepts, and slopes for the general factor are freely estimated in
each group for the Farms items. On the other hand, the item slopes on the factor specific to
the Farms cluster are set equal both within and across groups while at the same time, we
freely estimate the variances for this specific factor in all groups but the US, which is the
reference group and has an assumed factor variance of 1.0. Thus, though there appears to be
only one slope parameter pertaining to residual dependence, we estimate 4 additional factor
variances. In total, 20 new parameters are added: 8 intercepts, 8 slopes, and 4 specific factor
variances. We could have chosen to set the Farms factor variances to 1 and freely estimate
the slopes on the Farms factor for each group – which would lead to an equivalent model.
The parameterization we adopt not only uses a unique feature of our generalized modeling
framework, i.e., the ability to estimate factor variances, but also has the advantage of
effectively separating out the DIF parameters that are substantively important (the intercepts
and general factor slopes) from those that are nuisance (parameters for residual dependence).

The item parameters that are specific to the Farms cluster are shown in the top portions of
Tables 8 and 9. Even a cursory glance reveals the fact that the intercepts and slopes are
different across the countries, indicating possibly significant DIF. For instance, the highest
intercept for Farms 1 is 1.06, obtained in Japan, and the lowest intercept is −.24, from the
US children. Thus the item is much more difficult for the US children than their Japanese
counterparts. The highest slope estimate for this item is in the UK group (2.51), which is
almost twice as large as the lowest slope of 1.31 in the Germany group. Thus the
discrimination of the items is also different. Table 10 presents the estimated factor means
and variances. Note that the variances for the Farms factor are freely estimated relative to
the US reference variance of 1.0. While the trend in the general factor means and variances
remains as before, with Japan having the highest mean (.66 standard deviations above the
US average) as well as the most homogeneity, the absolute magnitude of the difference
between Japan and the other countries lessened somewhat in comparison to results in Table
7.

Once the latent variable scales are set, we are ready to conduct DIF tests for the items in
question. For this, we employ the Wald test described earlier. For each item, there are 10
item parameters that are relevant to the Wald test, 5 general dimension slopes (one per
group) and 5 intercepts (also one per group). Let us denote these item parameters as

where the subscripts indicate the group number. The parameters for the other items are
invariant across groups and hence can be dropped from further consideration without loss of
generality. As a concrete example, for Farms 1, the estimated parameters are
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To conduct the Wald DIF test involving multiple groups, we must choose a set of contrast
coefficients that describe the group comparisons that we wish to make. In principle, any
standard analysis of variance contrasts (e.g., deviation, polynomial) can be used. Here we
use the so-called Helmert contrasts. Let the contrast coefficient matrix be

(20)

These contrasts have the desirable property of being mutually orthogonal, i.e., LtL is a
diagonal matrix. The vertical bars separate the contrasts into 4 orthogonal sets. The first set
contrasts the US against the average of Australia, Germany, Japan, and UK. The second set
contrasts UK against the average of Australia, Germany, and Japan. The third one contrasts
Japan against the average of Australia and Germany. The final set contrasts Australia and
Germany. Furthermore, within each set, there are two orthogonal contrasts, one for the slope
parameters and one for the intercept parameters.

The null hypothesis is of the form: H0 : Lβ = 0. In other words, the null specifies that there
is no DIF, so there is no difference in the item parameters across countries, and all contrasts

must be zero. To test this null, we use  as the test statistic,
which is the same as Equation (19) by setting β0 = 0. The degrees-of-freedom are

determined by the rank of L, which is 8 in this case. For Farms 1, , which is highly

significant on 8 degrees-of-freedom. Similarly, for Farms 2, , again highly
significant. Thus, we must reject the null hypothesis of no DIF for both items under the
Farms cluster.

As in the IRTLRDIF procedure, a significant overall Wald DIF test is followed by a set of
targeted DIF tests to locate the source of DIF (Langer, 2008). In other words, we would like
to know whether the significant overall chi-square is caused by differences in item slopes
(nonuniform DIF) or in the intercepts (uniform DIF). They resemble the step-down tests in
standard analysis of variance. Given the orthogonality of our contrast coefficients,
conducting step-down tests are straightforward. Table 11 presents the results of these step-
down tests. In each case, the test statistic remains the Wald chi-square, with differences in
the contrast coefficients. As noted above, the L matrix as shown in Equation (20) contains
four distinct sets of orthogonal contrasts. Correspondingly, each item has 4 rows of results in
Table 11.

Take the first row for Farms 1 as an example. The Total column presents a Wald chi-square
for a step-down test of this particular 2 degrees-of-freedom contrast for the item slopes and
intercepts. Effectively, this test is using the first two columns of L in Equation (20) as the
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contrast coefficients. The chi-square is 19.45, which shows that the US item slope and
intercept are jointly significantly different from the average slope and intercept of the other
countries. This test can be further decomposed into two single degree-of-freedom tests. The
a column reports the chi-square for slope differences alone. One can obtain this test by using
the first column of L in Equation (20) as the contrast coefficients. There is no statistically
significant slope difference between the US and the average of the other countries. The third
chi-square is denoted as d|a, which is simply the total chi-square minus the a chi-square:
19.45 − .06 = 19.39. This is a direct test of intercept differences, conditional on the test of
slope differences. In this case, the d|a chi-square is highly significant, indicating that most of
the DIF between the US and the others is due to a difference in the intercept (or difficulty)
of the item. The second comparison (UK vs. the preceding countries) shows a different
picture. The slope contrast results in an a chi-square of 9.63, which is significant. Given the
significant difference in slopes, it is less clear how or whether the intercept comparisons
should be interpreted. We refer the reader to the advice of Thissen et al. (1993) on the order
in which specific DIF tests should be conducted (p. 88). The other rows of Table 11 can be
interpreted analogously.

The DIF tests can be repeated for each item cluster, essentially “sweeping” over the item
clusters. Overall and step-down tests can then be conducted for each item. This is the
bifactor equivalent of the sweep procedure as implemented in the software program
IRTLRDIF (Thissen, 2001), but further generalized to more than one groups. The software
program IRTPRO (Cai et al., forthcoming) has implemented the Wald DIF tests as described
here. We note that these tests are rather new. Simulations under the unidimensional model
(Langer, 2008) show that the Wald test have well-calibrated Type I error rates and have
adequate power. However, more research on their performance in the multidimensional IRT
context is needed. Furthermore, we have only provided an outline of a bifactor DIF testing
procedure and have not had room to discuss either the details or the ramifications of the
results. We encourage future work on DIF for multidimensional IRT.

Discussion

In this research we propose a comprehensive item bifactor analysis framework with
extended support for a variety of item response models. The framework can handle item
responses from multiple groups, with dichotomous, ordinal, and nominal response formats.
Motivated by Rijmen et al.’s (2008) results, an efficient full-information maximum marginal
likelihood estimator is defined, and we show how one can extend the Gibbons and Hedeker
(1992) dimension reduction technique to a much more generalized model. Arbitrary user-
defined restrictions on model parameters are permitted and directly testable using standard
likelihood based inferential statistics.

The simulation studies demonstrate that one can indeed reliably fit the generalized bifactor
model to data. We have implemented the estimation procedures in IRTPRO (Cai et al.,
forthcoming). The analysis can be conducted via a mouse-driven graphical user interface.
The simulations also show that the bifactor dimension reduction method results in
substantial time-savings. The empirical application of the model to cross-country
comparisons using real data from an OCED PISA survey serves to highlight the flexibility
of the model in exploring group differences.

A generalized modeling framework opens up many opportunities previously unanticipated.
Our model directly supports full-information bifactor-based multidimensional differential
item functioning analyses, for more than two groups. Our model also supports bifactor-
based linking/equating studies. Though Gibbons et al. (2007) only mention the computation
of scale scores for the general factor, our model allows the computation of scale scores for
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all the factors in the model as posterior expected values (see Cai, 2010c for detailed scoring
formulas). Gibbons et al. (2008) discuss the utility of the domain-specific scores in mental
health assessments.

The proposed model can be applied to explore the dimensionality of psychological and
educational measurement instruments. The extension to polytomous, particularly nominal,
IRT models significantly improves the generality of item bifactor analysis. The inclusion of
latent variable means and variances in conjunction with the ability to impose and test user-
defined constraints not only enhances the flexibility of multidimensional item response
theory modeling but also offers a likelihood-based alternative to popular Bayesian item
factor analytic methods (e.g., Wainer et al., 2007). The full-information estimator seamlessly
handles a variety of response formats as well as data that are missing at random, providing
some advantages over existing limited-information categorical factor analysis methodology.
In sum, we believe that our proposed modeling framework has wide-ranging implications
for data analysis and measurement modeling in psychology, education, public health, and
medical research.

We conclude by noting some important limitations of our research. First, the paper is
exclusively written from the perspective of IRT. Given the well-known relationship between
the normal ogive IRT model and the categorical factor analysis model (Takane & de Leeuw,
1987), a large class of dichotomous and polytomous IRT models can be effectively
estimated with limited-information methods using standard structural equation modeling
software. In particular, a multiple-group item bifactor analysis with the normal ogive graded
response model can be handled by virtually all standard software on the market today.
Though limited-information estimation methods may have certain deficiencies, as
mentioned in the beginning of this paper, their computational speed has made them far more
attractive to data analysts. On the other hand, we wish to point out that by applying
dimension reduction, full-information estimation can also be highly computationally
efficient. Hence the choice between limited-information and full-information estimation
should be based on the nature of the problem. Though it is our belief that full-information
estimation methods are more flexible, the two approaches may be complementary.

Second, for the ease of exposition, we have restricted ourselves to normal latent variables.
While the normality assumption is usually appropriate in educational measurement, it may
not be for psychological assessment, particularly for clinical populations. In the context of
unidimensional IRT, semi-parametric approaches to handling non-normal latent densities
have been proposed (see e.g. Woods & Thissen, 2006), and in principle, can be applied to
item bifactor models. This is a topic that we will pursue in future research.

Third, the other assumption we made is the orthogonality of the latent variables. This
assumption is much more critical for bifactor analysis. It ensures model identification (see
e.g. Rijmen, 2009) and is used to derive dimension reduction in maximum likelihood
computations. However, as Rijmen (2009) noted, the assumption can be relaxed (subject to
model identification) to the case of independent specific factors conditional on the general
factor. In addition, recent development of exploratory and confirmatory item factor analytic
methods (see, e.g., Cai, 2010a, 2010b) also provide computationally efficient alternatives
under more general conditions.

Finally, we would like to emphasize the issue of model fit diagnosis. The purpose of this
research is to develop a new modeling framework and we had little room for comprehensive
studies of model fit. Nevertheless, it is a singularly important problem that should be
addressed in any analysis of real data. Recent years have seen active research on goodness-
of-fit tests for IRT models (e.g. Cai, Maydeu-Olivares, Coffman, & Thissen, 2006; Maydeu-
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Olivares & Joe, 2005; Orlando & Thissen, 2000), but the proposed indices have generally
only been applied to unidimensional models. Future research in the area of multidimensional
models would be useful.
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Appendix A

In equation (3), the lower asymptote parameter c is bounded between 0 and 1. Stable
estimation of c often requires a reparameterization γ = log[c/(1 − c)], so that one may
estimate the unbounded logit of guessing γ instead of c. Clearly, the inverse relationship is c
= 1/[1 + exp(−γ)]. In addition, a stochastic constraint (or prior if one adopts a Bayesian
intepretation) on γ is usually needed to ensure proper convergence. For instance, when
analyzing items from a multiple-choice test with 4 response alternatives, one may postulate
that c should be about .25 if the distractors are constructed appropriately. The logit of .25 is
log[0.25/(1 − 0.25)] = −1.10. In this case, a stochastic constraint (or prior) in the form of a
univariate normal

with mean ν = −1.1 and standard deviation τ = 0.5 is a plausible choice as a penalty function
(see, e.g., Thissen, 2003). The constraint penalizes γ as it moves away from −1.1. When
interpreted as a prior, the prior standard deviation of .5 leaves ample room for the data to
suggest where the most likely estimate of γ should be. In our implementation, we permit
user-defined mean and standard deviation for the constraint function for maximal generality.

Appendix B

Let θ = a0θ0 + asθs be a linear combination of the general dimension and the specific factor s
with weights given by the item slopes. It follows from Equation (8) that the category
response probability for the GPC model may be written as

Similarly, from Equation (9), the category response probability for the nominal model is
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Thissen et al. (2010) point out that for identification, the following restrictions should be in

place: , d0 = 0. This can be accomplished by reparameterizaton. Let

The scalar parameters  and dk are the kth elements of the K-dimensional vectors a* and d,
respectively. The vector α is a (K − 2) × 1 vector of scoring function contrasts that defines
the ordering of categories, and δ is a (K − 1) × 1 vector of intercept contrasts. The matrix F

is a fixed K × (K − 1) matrix of contrast coefficients that relate the ’s and dk’s to the
estimable parameters in α and δ. By an appropriate choice of F, the identification
restrictions will be automatically satisfied. Thissen et al. (2010) propose the use of the
following linear-Fourier contrast matrix

where a typical element fk,m for k = 1, 2, …, K and m = 1, 2, …, K − 1 takes its value from a
Fourier sine-series:

For instance, for K = 4, the contrast matrix is

and for K = 5, the contrast matrix is
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For the nominal model, one can verify that identification conditions are all satisfied. For the

GPC model, the ’s are not relevant, and the dk share the same identification condition as
the nominal model. In fact, this derivation shows that the GPC model is a special case of the
nominal model where all the α contrasts are set to zero. Other contrast matrices can also be
used (see, e.g., Thissen & Steinberg, 1986).

The seemingly complicated reparametrization achieves several goals. First, the linear-
Fourier contrasts implement the identification restrictions. Second, this reparametrization
permits one to “mix” the nominal model with other models for any arbitrary number of
dimensions, as is routinely done in Multilog (Thissen, 2003) for unidimensional IRT. Third,
the linear-Fourier matrix provide (partially) orthogonal bases that essentially serve to
“smooth” category boundaries or define partial ordering of the categories.

Appendix C

In this technical appendix we present additional details relevant to parameter estimation.
Recall that with the bifactor orthogonality restriction, in group g = 1, …, G, the distribution
of the (Sg + 1)-dimensional vector of latent variables θg can be written as a product of Sg + 1
univariate normals, i.e.,

(21)

where fβ(θsg|μsg, σsg) is the density of a normal variable with mean μsg and standard
deviation σsg. The means and variances are dependent on the vector of free parameters β,
and the dependence is explicitly shown in Equation (21) by the β subscript.

Let us denote the conditional distribution of the response pattern yig given θg as fβ(yig|θg).
Similarly, the item parameters are dependent on the vector of free parameters β. For item j,
let the conditional distribution of yijg be fβ(yijg|θg). By conditional independence, we should
be able to write fβ(yig|θg) as a product, i.e.,

(22)

However, recall that the bifactor-like structure implies that the response probabilities of item
j depend on at most two latent variables, the general dimension θ0g and (optionally) another
specific factor. Thus, conditional independence in the item bifactor context can be more
conveniently expressed as follows

(23)

where  is a set of indices of items that load on specific factor s = 1, …, Sg and  denotes
the set of items that do not load on any specific factor. Equation (23) is simply a
rearrangement of the right-hand side of Equation (22). Instead of taking a product of ng item
response probabilities by the natural indexing, we break the product into Sg + 1 sections.
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Then we immediately realize that within section s = 1, …, Sg, the item response probabilities
only depend on θ0g and θsg. For instance, the bifactor structure in Equation (1) implies Sg =
2 sections, and the item index in section 1 is given by  = {1, 2, 3}, and in section 2,  =
{4, 5, 6}. When there are items that load only on the primary dimension, as in the bifactor-
like structure in Equation (2), the section index  is given by {3, 6}, with  = {1, 2} and 
= {4, 5}.

Multiplying fβ(yig|θg) by fβ(θg) and substituting in Equations (21) and (23) leads to the joint
distribution of the observed and the latent variables in group g:

(24)

We now notice from the last line of Equation (24) that the joint distribution of yig and θg

conveniently factor into Sg + 1 terms that are mutually independent. In order to conduct
maximum marginal likelihood estimation, we must integrate the latent factors out of the
joint distribution. We realize from the factorization result in Equation (24) that the marginal
distribution of yig can be written as

(25)

As in Gibbons and Hedeker (1992), we may approximate the series of two-dimensional
integrals in Equation (25) to any desired degree of accuracy with numerical quadrature:

(26)

where the integrand functions are evaluated at a set of Q × Q quadrature nodes (the Xq’s),
with weights at each point give by the Wq’s. The contribution to the marginal log-likelihood
of β given yig is log L(β|yig) = log fβ(yig). When summed over the respondents and the
groups, we arrive at the marginal log-likelihood given in Equation (17).
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Figure 1.
Conceptual Path Diagram Showing the Bifactor-like Factor Structure in Equation (2). Key to
notations for IRT models: D = Dichotomous response with lower asymptote; 2 = Graded
response in 2 categories; 5 = Graded response in 5 categories; G3 = GPC response in 3
categories; G4 = GPC response in 4 categories; N5 = Nominal response in 5 categories.
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Figure 2.
Level Plot of the Item Response Surface of a Bifactor IRT Model for Dichotomous
Response. The item parameters are a0 = 1, as = 1, d = −1, c = 0.3.
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Figure 3.
Level Plot of the Item Response Surface of a Bifactor IRT Model for Dichotomous
Response. The item parameters are a0 = 2, as = 0.5, d = 1, c = 0.1.
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Figure 4.
Level Plots of the Category Response Surfaces of a Bifactor IRT Model for Three Graded
Response Categories. The item parameters are a0 = 1, as = 2, d1 = −1, d2 = 1.
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Figure 5.
Level Plots of the Category Response Surfaces of a Bifactor Generalized Partial Credit IRT
Model. The item parameters are a0 = 1, as = 1, d0 = 0, d1 = 1, and d2 = 2.
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Figure 6.
Level Plots of the Category Response Surfaces of a Bifactor Nominal Categories Model.

The scoring function parameteres are , and . The item slopes are a0 =
1, and as = 1. The intercepts are d0 = 0, d1 = 2, d2 = 1, and d3 = 2.
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Figure 7.
Plot of a Cross-section of the Item Response Surfaces of a Bifactor Nominal Categories
Model. In this plot, θs is held constant at 0. The item parameters are the same as Figure 6.
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Figure 8.
Conceptual Path Diagram for a Two-Group Extended Bifactor Model. There are 16 items in
group 1. These items form into 4 clusters of 4 items each. There are 12 items in group 2 and
one of the clusters is not present. Though not shown directly, all item parameters are set
equal across the groups to link the two groups. Group 1 is chosen as the reference with fixed
means and variances for all latent variables. In group 2, the latent variable means and
variances are estimated parameters.
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Figure 9.
Conceptual Path Diagram for an Extended Bifactor Model. There are three types of items,
dichotomous, 4-category nominal, and 4-category ordinal (GPC).
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Figure 10.
Q-Q Plot of the Quantiles of the Likelihood Ratio Test Statistic for Bifactor Nested Model
Comparisons Against Theoretical Quantiles of a Central Chi-square Variable with 4
Degrees-of-Freedom
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Figure 11.
Conceptual Path Diagram Showing an Extended Bifactor Model for the 15 Items on Booklet
1 of the PISA Math Assessment.
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Table 6

PISA Other Item Parameter Estimates (Standard Errors): Measurement Invariance Assumed

Items logit(c) Intercept 1 Intercept 2 Intercept 3

Cube Painting 1 (CR2) .53 (.09)

Cube Painting 2 (CR2) −2.15 (.12)

Cube Painting 3 (MC4) −2.31 (.23) 1.80 (.26)

Cube Painting 4 (CR2) −1.41 (.11)

Farms 1 (CR2) .22 (.08)

Farms 2 (CR2) .28 (.06)

Walking 1 (CR2) −2.36 (.14)

Walking 2 (CR4) −1.86 (.12) −4.03 (.19) 5.75 (.25)

Apples 1 (CR2) .28 (.06)

Apples 2 (CR2) −3.28 (.19)

Apples 3 (CR3) −4.08 (.31) −6.05 (.45)

Continent Area (CR3) −1.42 (.09) −3.65 (.12)

Growing Up 1 (CR2) .33 (.07)

Growing Up 2 (CR2) −.10 (.06)

Growing Up 3 (CR3) 2.02 (.08) −.21 (.05)

Note. CR = Constructed Response; MC = Multiple-choice; The number of categories for each item is listed in the parentheses.
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Table 9

PISA Other Item Parameter Estimates (Standard Errors): Studying DIF for the Farms Cluster

Items logit(c) Intercept 1 Intercept 2 Intercept 3

Australia

 Farms 1 (CR2) .76 (.16)

 Farms 2 (CR2) .35 (.11)

Germany

 Farms 1 (CR2) .03 (.15)

 Farms 2 (CR2) −.43 (.15)

Japan

 Farms 1 (CR2) 1.06 (.20)

 Farms 2 (CR2) 1.66 (.24)

UK

 Farms 1 (CR2) .21 (.14)

 Farms 2 (CR2) .20 (.09)

US

 Farms 1 (CR2) −.24 (.15)

 Farms 2 (CR2) .56 (.15)

All Groups

Cube Painting 1 (CR2) .49 (.09)

Cube Painting 2 (CR2) −2.23 (.14)

Cube Painting 3 (MC4) −2.30 (.28) 1.65 (.22)

Cube Painting 4 (CR2) −1.40 (.11)

Walking 1 (CR2) −2.22 (.16)

Walking 2 (CR4) −1.74 (.13) −3.92 (.22) 5.63 (.30)

Apples 1 (CR2) .37 (.07)

Apples 2 (CR2) −3.09 (.18)

Apples 3 (CR3) −3.84 (.43) −5.78 (.64)

Continent Area (CR3) −1.35 (.08) −3.59 (.12)

Growing Up 1 (CR2) .39 (.08)

Growing Up 2 (CR2) −.05 (.06)

Growing Up 3 (CR3) 2.06 (.09) −.16 (.05)

Note. CR = Constructed Response; MC = Multiple-choice; The number of categories for each item is listed in the parentheses.
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