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Abstract. This paper contains an existence theorem for functional-differential
generalized equations of the form

:i}(t) EF(t’ T s 2‘4),

where F is a multivalued mapping taking as values non-empty closed convex subsets
of R", which satisfies the Carathéodory conditions and is Lipschitz continuous with
respect to the third variable.

1. Introduction. The existence of solutions of generalized functional-
differential equations of the form

(1) z(t) € F (1, @y &)

has been investigated in the author’s paper [4], with F taking non-empty
compact values and satisfying, in particular, a strong continuous depend-
ence condition with respect to the third variable. It is natural to expect that
if F satisfies the Carathéodory conditions and is Lipschitz continuous
with respect to the third wvariable, then an appriopriate initial value
problem for (1) has at leat one solution. It is the aim of this paper to present
an existence theorem of this type for (1) under the assumption that the
values of F(t, #, y) are non-empty closed convex subsets of the n-dimen-
sional Euclidean space R". The proof is based on a fixed point theorem for
multivalued mappings which extends the well-known fixed point theorem
of Krasnoselskii ([7]). This theorem can be proved in Section 2. The
main result of this paper is given in Section 3.

2. Extension of the Krasnoselskii fixed point theorem. Let (X, |-|)
be a Banach space and let (Y, |-|) be a Hilbert space. Denote by £2(Y)
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the space of all non-empty closed convex subsets of ¥ with the generalized
Hausdorff metric d defined for A, Be 2(Y) by

inf{e¢ > 0: A < N,(B) and B < N, (4)}
d(4, B) = if the infimum exists,
oo  otherwise,

where N,(C) = {y € X: |ly —¢|| < ¢ for some ¢ € 0} for ¢ > 0 and Ce 2(X).

Let A € 2(Y) be bounded and suppose that I': A > X is a given
mapping. We will consider a multivalued mapping G: A X I'(4) - 2(A).
It will be proved that if G(-, y) is a contraction, uniformly with respect
to ye I'(4), if G(x, ) is continuous on I'(4) (in the relative topology)
and if I' is completely continuous, then there exists £ € A such that o
€ G(z, I'(z)).

This type theorem for single-valued mappings has been proved by
Melvin ([8]) in the case where Y is a Banach space.

LEMMA 2.1. Let A be a non-empty bounded subset of Y and suppose
that K is a non-empty compact subset of X. If H: K — 2(A) is conlinuous,
then for every ¢ > O there exists a continuous function g,: K — A such that
a(g, (), H(x)) < & and ||lg,(#)|| — (0, H(z))| < & for z e K, where alo, H (z))
denotes the distance of c e A from H(z) < A.

Proof. Let us first observe that the generalized Hausdorff metric
drestricted to 2(A4) X 2(A)is a metricon 2(A4). It can be defined by setting

d(4;, 4,) = max(supa(z, 4,), supa(ws, 4,)).
zed) zedy

Let ¢> 0 be fixed and let 6> 0 be such that d(H(z), H(y)) < ¢
for x, y e K satisfying [r—y| < 6. Let (U;);<;<nx be an open cover of K
with diam(U,) < §, let (P;),.;< be a continuous partition of unity rela-
tive to (U;)ici<y and let 2,e U, for ¢ =1,2,..., N. Select v; € H(x;)
such that ||v;]| = a(O H(z ) This is possible, beca,use each H(z;) is a closed
convex bounded subset of the Hilbert space Y ([2], Lemma IV. 4.2).

Now we define the desired function g, by setting

N
g,(z) = Z P,(x)v; for zeK.
i=1
It is clear that ¢g,: K — A is continuous. Furthermore, for z € K we have

alg. (e), H(2)) = a(ZP (@05, > P E () +

i=l

£ 3 Py@)d{H (@), H) < c.

=1
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Finally,
N N N .
lg @l = > P;(@) ol < D Py(@)a{0, H(@))+ Y Py(a)d(H (@), H (w,))
t=l 1=l =1

< ¢+al0, H(x))
for z € K. Hence it follows that
|llg. (@)l — a(0, H())| < &,
which completes the proof.

LEMMA 2.2. Suppose that the assumptions of Lemma 2.1 are satisfied.
Then there exists a continuous function g: K — A such that g(z) e H(x)
and |g(=)| = o{0, H () for z € K.

Proof. Let ¢, > 0 be an arbitrary number and let g,: K — A be the
continuous function defined in Lemma 2.1, corresponding to & = &,.
For any ¢ >0 we can select é,> 0 such that d(H(z), H(y))< &, and
go(@) —go(¥)| < &, for @,y e K satisfying |z—y|< 6,. Let (U})an,
be an open cover of K with diam(U}) < é,, let (P}) be a continuous parti-
tion of unity relative to (U})iicn, and let e U, ¢ =1,2,...,N,.
Select Ve H(x;) such that

Vi —go(@Dll = a{go(2}), H(a}))
for each ¢ =1,2,...,N,.
Define a function g,: K — A by setting

Ny
0:(2) = D) Pi(x)V}

i=1

for 2 € K. It is evident that g, is continuous and
algy (), H(x)) < &.

Furthermore, for  €e K we have

N Ny
lgx(@) —go(@N < || ) Ph@) Vi— ' Pi(a)go(ad)] +
=1 1=]
Ny

+ D) Pi(@)lgo(ah) —go(®)]

fe=l
1
< ) PY@) Vi —go(@}l + &1 < &0+ 1.
i=]
Moreover,
|lg: (=) — a{0, H(@))| < lliga (@) — ligo (@)l + |llgo ()] — a{0, H (2))
< 260+ &,
for each z ¢ K. ’
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In a similar way we define for any e, > 0, a continuous function
g.: K — A such that

a(gz(w)’ H(w)) < &, |g:(2) —g1(2)l < &1 +¢,
and

gz (@)l — a{0, H(®))| < 2(eo+ 1)+ &,
for r e K.

We now define, by induction, for each natural n>1 and ¢, >0,
a continuous function ¢,: K — A such that

a(gn(m)’ H(w)) < Eny ”gn(x) _gn—l(w)” < 8n+8n—1
and

g, (@) —a(0, H(®))| < 2(go+ &1+ -+o +&u_y)+,-

Let ¢, = 9/4-2" for n = 0,1, ... and fixed > 0. Denote by ¢ the
function g, defined for this ¢,. It is easy to see that for every fixed » > ¢
the sequence (g]) converges uniformly on K. Then there exists a continu-
ous function ¢": K — A such that ¢"(z) e H(z) and ||¢" ()| —a(0, H(x))
< 7 for # e K. Taking n = 1/n, we can easily see that the sequence (y, ()|
given by y,(z) = lg" (#)| converges uniformly on K to {0, H ().
Then

limy, () = lim|lg"™(x)| = {0, H ())
n—0 n—>00

uniformly with respect to z € K. We have, of course, ¢"" (x) ¢ H () for)
z € K and n > 1. Therefore ([2], Lemma IV.4.2) the sequence (g'"(x))
is uniformly convergent on K. Let g(x) = limg'™ () for «# € K. It is clear

n—»00

that g is a continuous mapping of 'K into A satisfying g(z) € H (z) and
lg(x)l = a(0, H(z)) for # € K. The proof is complete.
Now, as a corollary to Lemma 2.2, we get the following lemma.

LEMMA 2.3. Suppose that the assumptions of Lemma 2.1 are satisfied
and let f: K —~ A be continuous. Then there exists a continuous mapping
g: K~ A such that g(z) e H(z) and |f(x)—g(x)| = off(2), H(z)) for
rzeK.

Proof. Let 8: K — Q(B) be a mapping defined by S(x) = H (z)—
—f(x) for © € K, where B = {a —f(z): ae A, v € K}.

It is clear that S is continuous. Then, in virtue of Lemma 2.2, there
exists a continuous mapping h: K — B such that h(z) € S(z) and ||k (z)||
= a0, S(x)) for each = e K.

By the definition of S(z), for every x € K there exists g(x) € H (x)
such that h(z) = g(z)—f(«). It is evident that the mapping g: K>z
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— g(x) € A is continuous on K. Furthermore, we have
a(0, 8(x)) = (0, H(x) —f(2)) = inf{lla —f(«)l: a e H(x)}
= a(f(2), H(z)).

Then |lg(z) —f(2)| = k()] = a(f(x), H (v)) for each z € K, which com--
pletes the proof..
Now we can prove our fixed point theorem.

THEOREM 2.4. Suppose that A is a non-empty closed convexr bounded
subset of the Hilbert space (Y, |-|) and let I be an operator with domain.
A and range in the Banach space (X, |'|). Suppose further that G: A x I'(A)
— Q(A) is such that

(i) G(-, y) is a comtraction, uniformly with respect to y € I'(A)
and

(ii) G(z, *) is continuous on I'(A) in the relative topology.

If I' is completely continuous, then there ewists x e A such that:
z € Gz, I'(x)).

Proof. Let K = I'(A). By the properties of Iy K is a compact.
subset of (X, [-|). Suppose that L € [0, 1) is such that

dG(z,2),q(Z,2) < Lljz—%|| forz, Ted

and every 2z € K. Fix g, € A and let g, be a continuous mapping of K into-
A such that g, (2) € G(w,, #) and [|g,(2) —goll = a(go, G (g, 2))-Such a mapping-
exists in virtue of Lemma 2.3.

Now, let g,: K — A be a continuous mapping such that g,(z) e G(gl(z) , z)
and [|g5(2) — g1 ()l = aga(2), G{g:(2), #)). Using induction we can select
for each »>1 a continuous function g,: K - A satisfying g, (2)
€ H(gn_1(2),2) and [g,(2) —gn_1(2)| = a{gny(2); F(g0-1(2), 2))-

Sinee [|g,,(2) — gn—1 () < Llgn_1(2) —gp_2(2)] for n > 2 and eachz e K,
a sequence (g,) of mappings from K into 4 is uniformly convergent on K..
Thus there exists a continuous mapping g: K — A4 such that

sup{llg,.(2) —g(2)ll: ze K} -0 as n — oo.
Since
a(g (2), G(g (2), z))
< 119(2) — ga (@)l + {8, (2) , Glgu—r (), 2)) + AE{g.—1 (2), 2), Hg(2), 2))

for z e K and n > 1, therefore g(2) € G(g(z), 2) for each 2 € K.

Let us now consider the operator I': A — A given by 7T'(z) = g(I‘(a;));
for # € A. Since I'" is completely continuous and g is continuous on K
= I'(4), T is completely continuous on A. Hence, in virtue of the Schauder
fixed point theorem, follows the existence of x € A such that z = g(F(w))..
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But 2 = g(I'(z)) eG(g(I’(a:)),I’(w)) = @(z, I'(x)), and so z is a fixed
point of G(m, P(a:)) and the proof is complete.

3. Existence of solutions of a generalized functional-differential
equations of neutral type. Let 7 > 0 and B > 0 be given and let us denote
by C; and Lj, respectively, the space of all continuous and the space
of all square (Lebesgue) integrable functions of [ —r, §] into R™ with the
usual norms. By 2(R") we will denote, as in Section 2, the space of all
non-empty closed convex subsets of R™ with the generalized Hausdortf
metric h.

Let f: [0, T] X Cp X L} — Q(R™) be a multivalued mapping satisfying
the following Carathéodory type conditions:

i) f(:, @, y) is measurable for fixed (z, u) € Cp X L%,

(i) f(¢, -, ) is continuous for fixed fe [0, T]
and

(iii) there exists a square (Lebesgue) integrable function m,: [0, T]
— R such that

h(f(@, @, u), {0}) K my(t) for (z,u)eCpxLi

and almost all ¢ e [0, T].

Furthermore, it will be assumed that f(¢, z, :) is Lipschitz continu-
ous uniformly with respect to # € Cp, i.e. that

(iv) there exists a square (Lebesgue) integrable function k: [0, T']
— R such that

¢
MFE, @, w), f(, 2, @) <T(t) [ lu(s)—u(s)lds

for # € Cp, %, % € L} and almost all ¢ e [0, T].

We will consider a generalized functional-differential equation of the
form

(2) @(t) ef(t, z,a) for almost all ¢ e[0,T]
together with the initial condition
(3) z(t) = p(t) for te[—r,0],

where ¢: [ —7r,0] > R" is an absolutely continuous function such that
p € L2
? It will be shown that conditions (i)—(iv) imply the existence of an
absolutely continuous function z: [ —r, T] — R satisfying (2) and (3).
Hence, in particular, follows the existence of solutions of (1) with the initial
condition (3).

THEOREM 3.1. Suppose that f: [0, T]x Cp x LZ — Q(R") satisfies the
Carathéodory conditions (i)—(ilil) and the Lipschitz condition (iv). Let ¢:
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[—r,0] - R" be an absolutely conlinuous function such that ¢ € L. Then
there exists atl least one absolutely continuous function x € Cp such that

Z(t) e f(t,z,x) for almost all t [0, T],
z(1) = @(1) for te[—r,0].

Proof. Let A be a subset of L% containing all functions u e L%
such that «(t) = ¢(t) for almost all t € [ —»,0] and |u(t)] < m,(t) for almost
every t € [0, T']1. It is not difficult to see that A is a closed convex bounded
subset of L. '

Let us introduce in L. the inner product (-, -> by setting

(4)

r
) = [ (@) lo() e~ = F0at,

|4
where L > T, K(t) = 0 for t e [ ~r, 0] and K (f) = [k?*(s)ds for t € [0, T].
0

Let | be a norm in L} defined by |ully = V{w, u) for w e L}.

Asg in Section 2, let us denote by Q(L%) the space of all non-empty
closed convex subsets of L2 with the generalized Hausdorff metric d gen-
erated by |*|ip.

Define an operator I' on A by putting

@(t) for te[—r, 0],

r _ 11
(I'u)(t) @(0)+ f u(8)ds for te[0,T].

It is easy to see that I'"is a completely continuous mapping of A into C;.
Let us now consider a generalized functional equation

(5) u(t) ef(t, I'(uw),u) for almost all ¢t e [0, T].

It is clear that for each u € A, satisfying (5), # = I'(u) satisfies (4). For any
fixed (u, «) € L x Cp let G(u, x) denote the subset of L} containing all
y € L} of the form

» @(t) for almost all te[—r, 0],
YW= low  for tefo, ),
where »: [0, T] - R" is a meagsurable selector of f(-,x,u). We have,
of course, G(u,x) # @ for each (u,z) € L;x Cp ([6]). It is not difficult
to verify that G(u, z)is a closed convex subset of A for each (u, x) € L X Cp.
We now show that G(-, #) is a contraction, uniformly with respect
to x € Op. Let o € Cp be fixed and let u,, u, € 4.

10 — Annales Polonicl Mathematlcl XLII
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For every y eG(u,,x) and almost all te[0,T] there exists a
z, €f(t,xz, u,) such that

4
1y (1) — 2] <T(t) [ 1us(s) —uq(s)lds.

Thus we can define a multivalued mapping # by

.%(t) = f(t: Z, yz)nS(t),
where

t
S(t) = {zeR": |y(t) —2| < k(1) f Uy (8) —us(s)|ds.
0

‘We have £(t) # @ for almost all ¢ e [0, T'], because 2, € £(¢) for almost
every te [0, T].

It is easy to verify that S is a measurable multivalued mapping of
[0,7] into Q(R"). Thus £ 1is also a measurable mapping of
[0, T'] into Q2(R"). Therefore there exists ([6]) a measurable selector w for
Z. We have

{
Iy (8) — 0 (1) < (1) [ luy(s) —ua(s)lds
0

for almost all ?e [0, T], where all #(t) = ¢(t) for almost all te[—r,0]
and w(t) = w(t) for t € [0, T']. Then

T T
f Iy (t) —i)(t)lze_L-KU)dt — f Iy(t) _ t‘b(t)lze_L.K(t)dt

¢
<f‘k2(t) (f lul(s)—uz(s)lds)ze‘r"x‘”dt
0

o

T 4
< T [ K (t)e = EO [|uy(s) —uy(s)*dsdt

UT r 0
=T f [ 18 (8) 65 fuy (5) — g (5)* dsdt

OTS T
=T [ luy(s) —ug(s)]* [ k2(t)e == Patds

T
= (T/L) [ uy(8) —us(8)[* [~ K@ — e~ LK D] ds
0

T
S(TIL) [ lua(s) —us(s) P~ H 5O ds.
0
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Therefore
fly — w”T (T/L)llu; — wollp -

Hence and from the analogous inequality obtained by in{erchanging the
roles of u, and %, we get

d(G(ul, x), G(ug, m)) S (T /L) |ty —wollp

for each ¢ € Cr and u,, u, € A.Since L > T, the mapping G(-, #) is a con-
traction, uniformly with respect to x e Cy.

In a similar way we can verify that G (u, -) is continuous for any fixed
uweAd.

Therefore, in virtue of our fixed point theorem, there exists u € A
such that « e G(u, P(u)), which means that u (1) f(t I'(u), u) for almost
allt e [0, T] and «(t) = ¢(?) for almost every ¢t e [ —r, 0]. Hence it follows
that x = I'(u) satisfies (4) and the proof is complete.

Now, as a consequence of the above existence theorem we get

THEOREM 3.2. Suppose that F: [0, T]1x C,x L} - Q(R"™) satisfies the
Carathéodory conditions with mgp € L,([0,T], R) and assume that there
exists a square (Lebesque) inlegrable function k: [0,T] - R such that

WE(t, @, 1), F(t, @, y2) < k(2) f lya (s 8)|ds

for z € Cy, y,, y, € L} and almost all t € [0, T]. Let ¢: [—r, 0] — R" be an
absolutely continuous function such that ¢ € Ly. Then there ewists an abso-
lutely continuous function x: [ —r, T] — R" such that

x(t) e F(t, x;, ;) for almost every te[0,T],
z(t) = @(?) Jor te[—r, 0],
where xz,(s) = x(t+8) and z,(8) = x(t+8) for te[0,T] and se€[—r,0].
Proof. Let f: [0, T] X Cpx L} — Q(R™) be the mapping defined by
ft,»,y) = F(t, x,y,) for t € [0, T] and (z,y) € Cp X L.
It is not difficult to check that f satisfies the Carathéodory conditions.
Furthermore, for fixed z € C; and ¥, ¥ € L} we have

h(f(t’ %, ), f(¢, », ?7)) = h(F(ty Tyy Yo)y F (2, @, gt))

k() [ ly(t+s)—5(t+s)ds
¢
= k() [ Iy —§(@de < k() fly )—F(v)ldr

t—r

for almost all ¢ € [0, T]. Therefore, Theorem 3.1 implies the existence
of an absolutely continuous function z: [—r,T] - R" such that z(?)
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= ¢(t) for te[—r,0] and &(¥) e f(¢, 2, @) = F(, 2, @) for almost all
t € [0, T]. This completes the proof.

Remark 3.1. The idea of renorming certain function spaces in
order to change a locally contracting operator into a global contraction
is due to Bielecki ([1]); we have used here this idea, just as Himmelberg
and Van Vleck ([3]) have done with contracting multifunctions. Lasota
and Opial ([7]) have also indicated its usefulness in connection with
solving generalized differential equations via the Fan fixed point theorem.
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