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Abstract: This paper concerns the design of a generalized functional observer for Takagi–Sugeno
descriptor systems. Furthermore, a generalized structure is herein introduced for purposes of
estimating linear functions of the states of descriptor nonlinear systems represented into a Takagi–
Sugeno descriptor form. The originality of the functional generalized observer structure is that it
provides additional degrees of freedom in the observer design, which allows for improvements in the
estimation against parametric uncertainties. The effectiveness of the developed design is illustrated
by a nonlinear model of a single link robotic arm with a flexible link. A comparison between the
functional generalized observer and the functional proportional observer is given to demonstrate the
observer performances.
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1. Introduction

A functional observer is a dynamical system that is designed to estimate one or more
functions of the system states. They can be viewed as a generalization of classical state
observers. For instance, suppose that there exist n functions z1(x), . . . , zn(x) to be estimated
for an n-order system by using a functional observer, and each function is a different state
xi, i = 1, . . . , n, of an n-order system, i.e., z1(x) = x1, . . . , zn(x) = xn, then a functional
observer coincides with a full-order state observer. However, the main advantage of a
functional observer is that when a specific function needs to be estimated, it may be easier
than the standard approach. It may even be the case that the system does not need to be
observable but only be functional observable [1,2]. A complete study about the existence
and design of functional observers can be further explored in [3–5].

Numerous works in the literature can be found about applications of functional
observers. For instance, in [6] a functional observer for fault-detection of linear time-
invariant systems which is designed to converge in a finite-time is proposed. In [7], a
real-time implementation of a functional observer-based feedback controller is performed
to control the position of a ball on a balancing table. The authors demonstrate that this
task can be accomplished with only a minimum order functional observer. Their work
clearly reflects the advantages to implementing functional observers compared to classical
full-order state observers. Another interesting work where functional observers are used as
a method to cope with unknown inputs (which can represent process uncertainties, sensor
faults, communication problems or cyber-attacks) is presented in [8], where a functional
observer is used to perform load frequency control for a complex power system.

The case of functional observers for descriptor systems has been discussed by several
authors. For instance, in [9], the authors propose a functional observer for switched de-
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scriptor systems with Lipschitz nonlinearities. The observer is used for fault estimation
purposes. Functional observers of various orders for continuous-time and discrete-time
systems are treated in [10]. In [11], a finite-time functional observer for descriptor systems
is presented and used for fault-tolerant control purposes. Recently, the authors in [12]
presented a functional unknown input observer for linear descriptor systems with arbi-
trarily prescribed convergence time. The case of functional interval observers for switched
descriptor systems is treated in [13].

Functional observers for Takagi–Sugeno systems are presented in [14], where the
authors designed a functional observer for time-delayed systems. The effectiveness of the
observer is evaluated for fault estimation in a truck-trailer system and fault detection of a
permanent magnet DC motor. The case of stabilizing time-delay Takagi–Sugeno systems is
presented by the same authors in a precedent paper [15]. Researchers in [16,17] present a
parallel distributed compensation (PDC) feedback controller for Takagi–Sugeno systems.
The approach is based on the capability of functional observers to estimate the unmeasured
premise variables and/or the control law. A braking control of a suspended floater, the
regulation of a power electronics converter and stabilization of a synchronous generator
are used as case studies. Observer-based control for Wind Energy Centers (WEC) have
been studied in [18,19].

The design of functional observers for Takagi–Sugeno descriptor systems represents
the subject of this work. There exist some recent works about observer synthesis for Takagi–
Sugeno descriptor systems. For instance, the authors in [20] present the design of a robust
observer for Takagi–Sugeno descriptor systems with unmeasurable premise variables. The
observer is used for sensor fault detection and isolation. Recently in [21], a Takagi–Sugeno
observer for discrete nonlinear descriptor systems is designed. An extended Luenberger-
like structure is used for the observer synthesis. Unmeasured premise variables of the
Takagi–Sugeno representation and unknown inputs are considered. In the work presented
in [22], the authors reveal the design of a reduced-order observer for state estimation
for Takagi–Sugeno descriptor systems with time delay. The observer is then used in an
observer-based sliding control scheme in order to stabilize the system.

In this paper, a functional observer for Takagi–Sugeno descriptor systems is presented.
This class of functional observers is interesting because, on one hand, systems represented
in a Takagi–Sugeno descriptor form take advantage of the features of descriptor systems
which cover a wide range of systems represented by dynamic and static equations such
as hydraulic systems [23], mechanical systems [24], biomechanical systems [25], hydrogen
generation [26] and electronic circuits [27]. On the other hand, the Takagi–Sugeno approach
can be used to represent a wide class of nonlinear systems such as alcoholic fermentation re-
actors [28], steam generators of thermal power plants [29], nonlinear vehicle dynamics [30],
glucose–insulin system [31] and so on. The ability to merge both classes of systems offers
enormous potential for applications across a wide variety of fields.

The main contribution of this work is the presentation of a generalized functional
observer for Takagi–Sugeno descriptor systems. All the sufficient and necessary conditions
for its design are given. The main feature of this observer is to exploit the generalized
observer structure to estimate linear functions of the states of descriptor nonlinear systems
represented into a Takagi–Sugeno descriptor form. Another significant advantage of the
proposed functional observer is its capability to directly estimate a linear stabilizing control
law, instead of two subsystems that are used in a classical observer-based stabilization
control: (1) the observer and (2) the controller. This can be particularly advantageous in
systems where a stabilizing control law is required but where an estimation of the state is
not. In these cases, a functional observer can be designed to directly estimate the control
law. Another case is a system with a large number of states and a small number of inputs.
Here, a functional minimum order observer can stabilize the system.

A non-linear model of a single link robotic arm with a flexible link [32] is used to
illustrate the design procedure of the proposed observer. The performance capabilities
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of the generalized functional observer (GFO) are compared with a simple proportional
observer (PO).

2. Preliminaries

In this section, the notations used in this paper are introduced. A+ denotes the
generalized inverse of A and verifies AA+A = A. The notation E⊥ denotes a maximal row
rank matrix such that E⊥E = 0. When E is a full row rank matrix, E⊥ = 0 by convention.

The number of local models Ai, and Bi depends on the scheduling variables, κ = 2s,
where s is the number of scheduling variables. For systems with a high number of schedul-
ing variables, the value of κ will rapidly increase, this can be a disadvantage for the calculus
of the observers. Thus, this approach is suitable for nonlinear systems with a convenient-for-
design number of nonlinearities. There exist different T-S models that can be obtained from
a nonlinear system, the way to select the appropriate T-S model is to take into account the
variable states of the final transformed system, and those that are needed to be estimated
by the observer.

Consider a Takagi–Sugeno descriptor system of the form:

Eẋ(t) =
κ

∑
i=1

wi(t)(Aix(t) + Biu(t)) (1)

y(t) = Cx(t) (2)

z(t) = Lx(t) (3)

where x(t) ∈ Rn is the semi-state of the system, u(t) ∈ Rm is the input vector and
y(t) ∈ Rp is the measured output of the system. z(t) ∈ Rq is a linear function of the
state to be estimated.

wi(t) are membership functions formed with ρ ∈ Rs scheduled variables, which can
depend on states, inputs, measured variables or other exogenous variables of the system.
The membership functions have the following properties:

κ

∑
i=1

wi(t) = 1, wi(t) ≥ 0 (4)

for i = 1, . . . , κ = 2s. Matrices E ∈ Rn×n, Ai ∈ Rn×n, Bi ∈ Rn×m, C ∈ Rp×n and L ∈ Rq×n

are assumed known.

Assumption 1 ([4]). The triplet (C, E, Ai) is partially impulse observable with respect to matrix
L if the following equivalent statements hold

i. rank


E Ai
0 C
0 E
0 L

 = rank

E Ai
0 C
0 E



ii. rank


L
E

E⊥Ai
C

 = rank

 E
E⊥Ai

C

, ∀i = 1, . . . , κ

Partial impulse observability allows us to estimate the function z(t) by using only
the available output. It is important to note that the observer must correctly estimate the
function of the state, even in the presence of impulsive behavior of the descriptor system,
thus the importance of this lemma.
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The following Lemma will be used later in this paper.

Lemma 1 ([33]). Let matrices B and Q be given. The following statements are equivalent:

1. There exists a matrix X satisfying

BX + (BX )T +Q < 0

2. The following condition holds
B⊥QB⊥T < 0

Suppose the above statements hold and assume that B⊥B > 0. Then matrix X in statement 1
is given by

X = −γBT +
√

γLΓ1/2

where L is any matrix such that ||L|| < 1 and γ > 0 is any scalar such that

Γ = γBBT −Q > 0

3. Problem Statement

Consider the following generalized functional observer (GFO) of the form

ζ̇(t) =
κ

∑
i=1

wi(t)(Niζ(t) + Jiv(t) + Fiy(t) + Hiu(t)) (5)

v̇(t) =
κ

∑
i=1

wi(t)(Siζ(t) + Giv(t) + Miy(t)) (6)

ẑ(t) =
κ

∑
i=1

wi(t)(Piζ(t) + Qiy(t)) (7)

where ζ(t) ∈ Rq0 is the state of the observer, v(t) ∈ Rq1 is an auxiliary vector and ẑ(t) ∈ Rq

is the estimate of z(t). Ni ∈ Rq0×q0 , Ji ∈ Rq0×q1 , Fi ∈ Rq0×p, Hi ∈ Rq0×m, Si ∈ Rq1×q0 ,
Gi ∈ Rq1×q1 , Mi ∈ Rq1×p, Pi ∈ Rq×q0 and Qi ∈ Rq×p are constant matrices of appropriate
dimensions to be determined such that lim

t→∞
(ẑ(t)− z(t)) = 0. Equation (5) is the generalized

form of the observer, Equation (6) is an auxiliary vector that is used to give more degrees of
liberty, finally, Equation (7) makes it possible to design an observer with q0 6= q.

Consider a parameter matrix T ∈ Rq0×n and define the transformed error vector

ε(t) = ζ(t)− TEx(t) (8)

whose derivative is given by

ε̇(t) =
κ

∑
i=1

wi(t)
(

Niζ(t) + Jiv(t) + (FiC− TAi)x(t) + (Hi − TBi)u(t)
)

(9)

replacing ζ(t) from Equation (8) in Equation (9).

ε̇(t) =
κ

∑
i=1

wi(t)
(

Niε(t) + Jiv(t) + (NiTE + FiC− TAi)x(t) + (Hi − TBi)u(t)
)

(10)

By using the definition of ζ(t), Equations (6) and (7) can be rewritten as

v̇(t) =
κ

∑
i=1

wi(t)
(

Siε(t) + Giv(t) + (SiTE + MiC)x(t)
)

(11)
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and also

ẑ(t) =
κ

∑
i=1

wi(t)
(

Piε(t) + (PiTE + QiC)x(t)
)

(12)

By considering that the following conditions

NiTE + FiC− TAi = 0 (13)

Hi = TBi (14)

SiTE + MiC = 0 (15)

PiTE + QiC = L (16)

∀i = 1, . . . , κ are verified, then Equations (10) and (11) become

ε̇(t) =
κ

∑
i=1

wi(t)
(

Niε(t) + Jiv(t)
)

(17)

v̇(t) =
κ

∑
i=1

wi(t)
(

Siε(t) + Giv(t)
)

(18)

and, from Equation (12) we obtain

ẑ(t)− z(t) = ez(t) =
κ

∑
i=1

wi(t)
(

Piε(t)
)

(19)

By defining an augmented state vector σ(t) =
[

ε(t)
v(t)

]
∈ Rq0+q1 , Equations (17) and (18)

can be rewritten as:

σ̇(t) =
κ

∑
i=1

wi(t)
(
Aiσ(t)

)
(20)

where Ai =

[
Ni Ji
Si Gi

]
∈ R(q0+q1)×(q0+q1). It can be seen that, if matrix Ai is Hurwitz, then

lim
t→∞

ε(t) = 0 and lim
t→∞

ez(t) = 0.

4. Observer Parameterization

In this section, a specific structure for the observer matrices is determined.

Define matrices Γ =

[
E
C

]
∈ R(n+p)×n and R ∈ Rq0×n, which is a full row rank matrix,

such that rank
[

R
Γ

]
= rank(Γ). In this case there always exists two matrices T ∈ Rq0×n and

K ∈ Rq0×p such that,
TE + KC = R (21)

which can be rewritten as [
T K

]
Γ = R (22)

the general solution for Equation (22) is[
T K

]
= RΓ+ − Z

(
In+p − ΓΓ+

)
(23)

which can be decomposed as

T = T1 − Z1T2 (24)

K = K1 − Z1K2 (25)
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where Z1 ∈ Rq0×(n+p) is a matrix with arbitrary elements, and T1 = RΓ+

[
In
0

]
,

T2 =
(

In+p − ΓΓ+
)[In

0

]
, K1 = RΓ+

[
0
Ip

]
, and K2 =

(
In+p − ΓΓ+

)[ 0
Ip

]
.

Now, we define matrix Σ =

[
R
C

]
∈ R(q0+p)×n. Replacing TE from Equation (21), in

condition (13) we obtain
Ni(R− KC) + FiC = TAi (26)

which can be written as [
Ni K̃i

]
Σ = TAi (27)

where K̃i = Fi − NiK ∈ Rq0×p. The necessary and sufficient condition for the existence of a
solution to Equation (27) is

rank

[
Σ

TAi

]
= rank(Σ)

the general solution to Equation (27) is[
Ni K̃i

]
= TAiΣ+ −Yi1(Iq0+p − ΣΣ+) (28)

if we replace Equation (24) in Equation (28), we obtain

Ni = Ni1 − Z1Ni2 −Yi1N3 (29)

K̃i = K̃i1 − Z1K̃i2 −Yi1K̃3 (30)

where Yi1 ∈ Rq0×(q0+p) is a matrix with arbitrary elements, and Ni1 = T1 AiΣ+

[
Iq0

0

]
,

Ni2 = T2 AiΣ
[

Iq0

0

]
, N3 = (Iq0+p − ΣΣ+)

[
Iq0

0

]
, K̃i1 = T1 AiΣ+

[
0
Ip

]
, K̃i2 = T2 AiΣ+

[
0
Ip

]
,

K̃3 = (Iq0+p − ΣΣ+)

[
0
Ip

]
.

From the definition of K̃i we can deduce matrix Fi as

Fi = K̃i + NiK

= K̃i1 + Ni1K− Z1(K̃i2 − Ni2K)−Yi1(K̃3 − N3K)

= Fi1 − Z1Fi2 −Yi1F3 (31)

where Fi1 = T1 AiΣ+

[
K
Ip

]
, Fi2 = T2 AiΣ+

[
K
Ip

]
, F3 = (Iq0+p − ΣΣ+)

[
K
Ip

]
.

From Equation (22), we have [
TE
C

]
=

[
Iq0 −K
0 Ip

]
Σ (32)

Conditions (15) and (16) can be written as[
Si Mi
Pi Qi

][
TE
C

]
=

[
0
L

]
(33)

replacing Equation (32) into (33), we obtain[
Si Mi
Pi Qi

][
Iq0 −K
0 Ip

]
Σ =

[
0
L

]
(34)
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since
[

Iq0 −K
0 Ip

]−1

=

[
Iq0 K
0 Ip

]
the general solution of Equation (34) is given by

[
Si Mi
Pi Qi

]
=

([
0
L

]
Σ+ −Yi(Iq0+p − ΣΣ+)

)[
Iq0 K
0 Ip

]
(35)

where Yi =

[
Yi2
Yi3

]
∈ R(q1+q)×(q0+p) is a matrix with arbitrary elements. The solutions for Si,

Mi, Pi and Qi are given by

Si = −Yi2N3 (36)

Mi = −Yi2F3 (37)

Pi = P1 −Yi3N3 (38)

Qi = Q1 −Yi3F3 (39)

where Yi2 ∈ Rq1×(q0+p), Yi3 ∈ Rq×(q0+p), P1 = LΣ+

[
Iq0

0

]
, Q1 = LΣ+

[
K
Ip

]
.

The estimation error (19) shows that ez(t) → 0 while ε(t) → 0, so then, the function
estimation error ez(t) does not depend on the choice of matrix P. Then, for simplicity we
can assume that Yi3 = 0, so Pi = P1 and Qi = Q1, being now, constant matrices P and Q.

Now, by using Equations (29) and (36), the error dynamics (20) can be rewritten as

σ̇(t) =
κ

∑
i=1

wi(t)
(
Ai1 −YiA2

)
σ(t) (40)

where A1i=

[
Ni1 − Z1Ni2 0

0 0

]
∈ R(q0+q1)×(q0+q1), Yi =

[
Yi1 Ji
Yi2 Gi

]
∈ R(q0+q1)×(q0+q1+p) and

A2 =

[
N3 0
0 −Iq1

]
∈ R(q0+q1+p)×(q0+q1).

The problem of the design is to find matrices Yi and Z1 such that matrix Ai = Ai1 −
YiA2 is Hurwitz. This can be reached by using the linear matrix inequality (LMI) approach.

5. Functional Observer Design

Theorem 1. There exist parameter matrices Yi and Z1 such that error dynamic system (40) is
asymptotically stable if there exists a matrix

X = XT =

[
X1 X1
X1 X2

]
> 0

such that the following LMI is satisfied:

NT⊥
3

(
NT

i1X1 + X1Ni1 − NT
i2WT −WNi2

)
NT⊥T

3 < 0 (41)

where Z1 = X−1
1 W and matrix Yi can be determined as follows

Yi = −X−1(−γBT +
√

γLΩ1/2
i )T (42)

where
Ωi = γBBT −Qi > 0 (43)
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with

Qi =

[
X1(Ni1 − Z1Ni2) + (Ni1 − ZNi2)

TX1 (Ni1 − Z1Ni2)
TX1

X1(Ni1 − Z1Ni2) 0

]
B =

[
NT

3 0
0 −I

]
and matrix L is any matrix such that ||L|| < 1 and γ > 0 is any scalar such that Ωi > 0.

Proof. Consider the following Lyapunov function candidate

V(σ(t)) = σ(t)TXσ(t) (44)

which derivative is given by

V̇(σ(t)) = σ(t)T
[
(Ai1 −YiA2)

TX + X(Ai1 −YiA2)
]
σ(t) (45)

The asymptotic stability of Equation (40) is guaranteed only if V̇(σ(t)) < 0, this leads
to the following LMI

AT
i1X−AT

2 YT
i X + XAi1 − XYiA2 < 0 (46)

which can be rewritten as
Qi + BXi + (BXi)

T < 0 (47)

where Xi = −YT
i X, Qi = XAi1 +AT

i1X and B = AT
2 . According to Lemma 1, there exists a

matrix Xi satisfying Equation (47) if and only if the following condition holds.

B⊥QiB⊥T < 0 (48)

with B⊥ =
[
NT⊥

3 0
]
. By using the definitions of X, Qi and W = X1Z1, we obtain

Equation (41). Matrix Yi is obtained from Equation (42).

The following Algorithm 1 summarizes the observer design to obtain the correspond-
ing matrices.

Algorithm 1: Methodology of the observer design

1. Choose a matrix R ∈ Rq0×n such that rank
[

R
Γ

]
= rank(Γ).

2. Compute matrices Ni1, Ni2, N3, T1, T2, K1, K2, P1 and Q1.
3. Solve the LMI (41) to find X and Z1.
4. Choose a matrix L such that ||L|| < 1, and a scalar γ > 0 such that Ωi > 0, then

determinate matrix Yi as in (42).
5. Compute all the matrices gains of the observer (5) by using (29) to determinate

Ni, (42) to determinate Ji and Gi, (36)–(39) to find Si, Mi, Pi and Qi taking matrix
Yi3 = 0. Fi is given by (31) and matrix Hi could be determined with Equation (14).

6. Proportional Functional Observer Case

In order to obtain a Proportional Functional Observer (PFO) from the GFO, it corre-
sponds to the parameter matrices Si = 0, Ji = 0, Mi = 0 and Gi = 0 which generates the
following observer [34]:

ζ̇(t) =
κ

∑
i=1

wi(t)
(

Niζ(t) + Fiy(t) + Hiu(t)
)

ẑ(t) =
κ

∑
i=1

wi(t)
(

Piζ(t) + Qiy(t)
) (49)
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and the error dynamics (20) becomes

ε̇(t) =
κ

∑
i=1

wi(t)
(
Ãi1 − ỸiÃ2

)
ε(t) (50)

where Ãi1 = Ni1 − Z1Ni2, Ỹi = Yi1 and Ã2 = N3. Matrices Qi, B and Xi of Theorem 1
become:

Qi = X(Ni1 − Z1Ni2) + (Ni1 − Z1Ni2)
TX,

B = NT
3 ,

Xi = −YT
i1X

The observer matrices can be obtained following Algorithm 1.

7. Mathematical Model

The mathematical model chosen to show the performance of the generalized observer
is a linear-rotational vibration system with an uncertainty in one of the spring rigidity
values (see Figure 1).

Figure 1. Single link robot arm.

The robot has the following nonlinear model:

m2 p̈1(t) = −k2 p1(t)− β2 ṗ1(t)− k1(p2(t)− p1(t))

Jm θ̈(t) = −m1gl1sin(θ(t)) + l3k1(p1(t)− β1 θ̇(t)− p2(t))cos(θ(t))− l2cos(θ(t))u(t)

p2(t) = l3sin(θ(t))

(51)

The measurable states are

y1(t) = p1(t)

y2(t) = θ(t)
(52)

The parameters considered are given in Table 1.



Processes 2023, 11, 1707 10 of 17

Table 1. Parameters of model.

Jm Moment of inertia of the pendulum weight 0.0081 Kg m2

m1 Mass of the pendulum weight 0.25 Kg
m2 Linear movement mass 0.15 Kg
li Distances of the system 0.18, 0.15, 0.1 m
ki Spring rigidity coefficients 0.3, 0.25 Nm/rad
βi Viscous friction coefficients 0.1 Nms/rad

Taking as the states the position of m1 x1(t) = p1(t), the linear speed of m1 x2(t) = ṗ1(t),
the angle of the lever x3(t) = θ(t), the angular speed of the lever x4(t) = θ̇(t), and the
position of the lever x5(t) = p2(t), we can represent the nonlinear model (51) as follows:

Eẋ(t) = A(x(t))x(t) + B(x(t))u(t) (53)

y(t) = Cx(t) (54)

where x(t) is the semi-state vector x(t) =
[
x1(t) x2(t) x3(t) x4(t) x5(t)

]
, u(t) is the

force input, and A(x(t)), B(x(t)) are matrices containing nonlinear terms depending on
the state variables. E is a singular constant matrix given as:

E =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 (55)

and C is a constant matrix
C =

[
1 0 0 0 0
0 0 1 0 0

]
(56)

The variable terms presented in matrices A(x(t)), B(x(t)) from the nonlinear model (51)
are highlighted in boxes in Equations (57) and (58)

A(x(t)) =

0 1 0 0 0
k2−k1

m2
− β2

m2
0 0 − k2

m2
0 0 0 1 0

l3k2
Jm

cos(x3(t)) 0 −m1gl1
Jm

sin(x3(t))
x3(t)

− β1
Jm
− l3k2

Jm
cos(x3(t))

0 0 l3
sin(x3(t))

x3(t)
0 −1


(57)

B(x(t)) =


0
0
0

− l2
Jm

cos(x3(t))

0

 (58)

Considering the s = 2 scheduling variables as

ρ1(t) =
sin(x3(t))

x3(t)
(59)

ρ2(t) = cos(x3(t)) (60)

each variable has behavior limits depending on the variation of the input and the states.
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Since there are two scheduling variables, then four weighting functions are obtained:

η1
0(t) =

ρ1 − ρ1(t)
ρ1 − ρ1

(61)

η1
1(t) = 1− η1

0(t) (62)

η2
0(t) =

ρ2 − ρ2(t)
ρ2 − ρ2

(63)

η2
1(t) = 1− η2

0(t) (64)

where ρj and ρj are the upper and lower limit of variation of ρj(t), respectively, for all
j = 1, 2.

In this case s = 2, therefore there are κ = 22 = 4 membership functions, as:

w1(t) = η1
0η2

0 (65)

w2(t) = η1
1η2

0 (66)

w3(t) = η1
0η2

1 (67)

w4(t) = η1
1η2

1 (68)

Once the fuzzy sets are defined, the Takagi–Sugeno model has four rules. For each
rule, there is a linear local model of the form:

Eẋ(t) = Aix(t) + Biu(t), ∀i = 1, . . . , κ = 2s (69)

For example, the first rule (65) corresponds to ρ1 = ρ1 and ρ2 = ρ2 then, lower limits
are directly replaced by the nonlinear terms in matrices A(x(t)) and B(x(t)), resulting in
the following local model:

Eẋ(t) = A1x(t) + B1u(t) (70)

where A1 =


0 1 0 0 0

k2−k1
m2
− β2

m2
0 0 − k2

m2
0 0 0 1 0

l3k2
Jm

ρ2 0 −m1gl1
Jm

ρ1 − β1
Jm
− l3k2

Jm
ρ2

0 0 l3ρ1 0 −1

, B1 =


0
0
0

− l2
Jm

ρ2

0Eq.

 and matrix E is defined

in (55).
The Takagi–Sugeno model that reproduces the dynamics of the nonlinear model is

given by:

Eẋ(t) = (w1(t)A1 + w2(t)A2 + w3(t)A3 + w4(t)A4)x(t)+

(w1(t)B1 + w2(t)B2 + w3(t)B3 + w4(t)B4)u(t)

where

A1 = A(ρ1, ρ2), B1 = B2 = B(ρ2)

A2 = A(ρ1, ρ2), B3 = B4 = B(ρ2)

A3 = A(ρ1, ρ2), A4 = A(ρ1, ρ2)

The Takagi–Sugeno model of the single link robot arm is

Eẋ(t) =
κ

∑
i=1

wi(t)(Aix(t) + Biu(t)) (71)

y(t) = Cx(t) (72)



Processes 2023, 11, 1707 12 of 17

Considering a constant input as u(1) = 1N, we can obtain the variation level of x3(t)
that allows us to determine the maximum and minimum of variation of ρ1(t) and ρ2(t), to
finally obtain the local matrices for the T-S model as:

A1 =

 0 1 0 0 0
−3.67 −0.67 0 0 1.67

0 0 0 1 0
0 0 11.57 −12.35 0
0 0 −0.02 0 −1

, A2 =

 0 1 0 0 0
−3.67 −0.67 0 0 1.67

0 0 0 1 0
0 0 −54.22 −12.35 0
0 0 0.1 0 −1


A3 =

 0 1 0 0 0
−3.67 −0.67 0 0 1.67

0 0 0 1 0
3.04 0 11.57 −12.35 −3.04

0 0 −0.02 0 −1

 A4 =

 0 1 0 0 0
−3.67 −0.67 0 0 1.67

0 0 0 1 0
3.04 0 −54.22 −12.35 −3.04

0 0 0.1 0 −1


B1 = B2 =

 0
0
0

−18.24
0

, B3 = B4 =

0
0
0
0
0


and matrix C is given in (56).

8. Results

By following Algorithm 1, a Generalized Functional Observer can be designed. The
matrix L was chosen in order to estimate the non-measurable state of the system.

L =

[
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

]

Considering matrix R =

[
0 1 0 0 0
0 1 0 1 0
1 0 0 0 1

]
, the matrix gains for the GFO are:

N1 = N2 =


−25.62 7.53 5.7 7.33
−11.11 −51.58 −1.32 −2.54
−7.75 −0.18 −50.92 −0.12
−9.27 0.88 −0.88 −51.08

, N3 = N4 =


−25.62 7.3 5.61 8.09
−11.11 −51.8 −1.38 −4.57
−9.27 −0.44 −51.02 −0.79
−9.27 2.95 −0.04 −50.81

,

J1 = J2 =


8.79 8.79 8.79
1.78 1.78 1.78
1.56 1.56 1.56
1.63 1.63 1.63

, J3 = J4 =


8.54 8.54 8.54
1.83 1.83 1.83
1.51 1.51 1.51
1.52 1.52 1.52

, F1 =


570.55 381.86
−2544.23 −57.2

42.8 −1974.86
159.49 −20.02

, F2 =


570.55 382.74
−2544.23 −57.71

42.8 −1908.72
159.49 −26.19

,

F3 =


539.06 370.16
−2558.75 −62.38

25.45 −1975.59
368.69 58.01

, F4 =


539.06 371.14
−2558.75 −63.13

25.45 −1909.9
368.69 51.88

, S1 = S2 = S3 = S4 =

9.91 0 0 0
9.91 0 0 0
9.91 0 0 0

, H1 = H2 =


0

−18.23
0
0

,

H3 = H4 =


0
0
0
0

, G1 = G2 =

−29.2 3.5 3.5
3.5 −29.2 3.5
3.5 3.5 −29.2

, G3 = G4 =

−29.15 3.55 3.55
3.55 −29.15 3.55
3.55 3.55 −29.15

,

M1 = M2 =

−74.55 −56.51
−74.55 −56.51
−74.55 −56.51

, M3 = M4 =

−72.34 −55.56
−72.34 −55.56
−72.34 −55.56

, P =

0 1 0 0
0 0 1 0
0 0 0 1

, Q =

 51.14 1.38
0.44 38.67
−2.95 0.04

.

In order to compare the performance of the GFO, a PFO is also designed as a particular

case. Considering matrix R =

[
0 1 0 0 0
0 1 0 1 0
1 0 0 0 1

]
, the matrix gains for the PFO are:

N1 = N2 =


0 0.5 0 0
−1.83 −0.5 0 0.56
1.52 0 −0.5 −1.01

0 −0.56 1.01 −0.5

, N3 = N4 =


0 0.5 0 0
−1.83 −0.5 0 0.56

0 0 −0.5 0
0 −0.56 0 −0.5

,

F1 =


−0.08 0
−2.36 −0.45
1.72 −47.48
−0.19 −11.45

, F2 =


−0.08 0
−2.36 −0.59
1.72 18.56
−0.19 −11.51

, F3 =


−0.08 0
−2.36 0.11

0 −48.3
−0.19 0.05

, F4 =


−0.08 0
−2.36 −0.02

0 17.49
−0.19 −0.01

,

H1 = H2 =


0
0

−18.24
0

, H3 = H4 =


0
0
0
0

, P =

1 0 0
0 1 0
0 0 1

, Q =

−0.17 0
0 −11.85

0.56 −1.01

.

Considering a constant unit step input u(t) = 1N and, just in simulation, an additive
parameter variation of the rigidity coefficient of spring 2, given as k2 + δ(t), where δ(t)
is presented in Figure 2. It is important to note that the generalized approach to the
functional observer allows it to have different matrices as degrees of freedom as well as
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some robustness to parametric uncertainties. These uncertainties may come as a variation
in the parameter values due to different physical processes, and may or may not be time-
variant. In this example, we choose a time-varying uncertainty with a sinusoidal form.
The generalized observer is capable of estimating the function z(t) with minor impact on
performance.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 2. Parametric uncertainty.

This parameter variation allows us to observe the robustness characteristics of the
GFO compared with a simplest observer structure as the PFO.

The simulation is realized taking the input and output of the nonlinear system (53) and (54)
in face to parametric uncertainty of Figure 2, the T-S system of (71) and (72) is just used
for the observer design. Considering the initial conditions for the nonlinear system as
x(0) =

[
π
12 0 π

6 0 0.09
]

and the initial condition for both observers as ζ(0) = 0 and
v(0) = 0, the results of the simulation are shown in Figures 3–5.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Figure 3. x2(t) and its estimates.
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-3

-2

-1

0

1

2

3

4

Figure 4. x4(t) and its estimates.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Figure 5. x5(t) and its estimates.

As can be seen in Figures 3–5, the generalized observer is capable of estimating the
state of the system even in the presence of parametric uncertainties. This presents an
advantage compared to the classical proportional observers. The comparison between
the performance of the genrealized observer and the Proportional observer is conducted
through the error indexes which provide important information about the estimation error.
For the case of a parametric uncertainty, the generalized approach outperforms the classical
proportional observer. The error indexes of the Integral of the Absolute Error (IAE) and the
Integral of the Time weighted Absolute Error (ITAE) are shown in Table 2.

From Table 2, it can be seen that the proposed GFO exhibits better performance
in comparison to the proportional observer. The generalized approach allows a better
estimation of the function when parametric uncertainties are present in the system.
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Table 2. Error indexes.

GFO PFO

IAE
ez1 = 0.0047
ez2 = 0.0691
ez3 = 0.0024

ez1 = 0.8657
ez2 = 0.8337
ez3 = 1.2966

ITAE
ez1 = 0.0048
ez2 = 0.0031
ez3 = 0.0009

ez1 = 1.5015
ez2 = 0.7656
ez3 = 1.2966

9. Conclusions

In this paper, a method for function estimation based on generalized observer for
descriptor Takagi–Sugeno systems is presented. A function estimation can be used for
two main objectives: The first, and used in the simulation example presented herein, is
the estimation of the non-measurable states that could be considered as a reducer order
observer, although an even smaller number of states could be estimated, given that the
impulse functional observability presented in Assumption 1, is satisfied. The second
objective for the function estimation is to estimate a control law based on the states without
the need to estimate the states independently, but rather the function directly. The design
and conditions of existence of the proposed observer were provided through a stability
analysis based on Lyapunov. An example of a physical system was used to provide a
comparison of the GFO with a PFO, both in the presence of parametric uncertainties. This
paper can be extended in future works to include fault estimation, time delays, or to estimate
a fault-tolerant control law. The descriptor approach of this paper can be used in future
work since it is a powerful tool for representing a large number of mathematical systems.
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