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GENERALIZED GAMMA APPROXIMATION WITH RATES
FOR URNS, WALKS AND TREES

BY EROL A. PEKÖZ1, ADRIAN RÖLLIN1 AND NATHAN ROSS2

Boston University, National University of Singapore and University of Melbourne

We study a new class of time inhomogeneous Pólya-type urn schemes
and give optimal rates of convergence for the distribution of the properly
scaled number of balls of a given color to nearly the full class of gener-
alized gamma distributions with integer parameters, a class which includes
the Rayleigh, half-normal and gamma distributions. Our main tool is Stein’s
method combined with characterizing the generalized gamma limiting distri-
butions as fixed points of distributional transformations related to the equilib-
rium distributional transformation from renewal theory. We identify special
cases of these urn models in recursive constructions of random walk paths
and trees, yielding rates of convergence for local time and height statistics
of simple random walk paths, as well as for the size of random subtrees of
uniformly random binary and plane trees.

1. Introduction. Generalized gamma distributions arise as limits in a vari-
ety of combinatorial settings involving random trees [e.g., Janson (2006b), Meir
and Moon (1978) and Panholzer (2004)], urns [e.g., Janson (2006a)], and walks
[e.g., Chung (1976), Chung and Hunt (1949) and Durrett and Iglehart (1977)].
These distributions are those of gamma variables raised to a power and notewor-
thy examples are the Rayleigh and half-normal distributions. We show that for a
family of time inhomogeneous generalized Pólya urn models, nearly the full class
of generalized gamma distributions with integer parameters appear as limiting dis-
tributions, and we provide optimal rates of convergence to these limits. Apart from
some special cases, both the characterizations of the limit distributions and the
rates of convergence are new.

The result for our urn model (Theorem 1.2 below) follows from a general ap-
proximation result (Theorem 1.16 below) which provides a framework for bound-
ing the distance between a generalized gamma distribution and a distribution of
interest. This result is derived using Stein’s method [see Ross (2011), Ross and
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Peköz (2007) and Chen, Goldstein and Shao (2011) for overviews] coupled with
characterizing the generalized gamma distributions as unique fixed points of cer-
tain distributional transformations. Similar approaches to deriving approximation
results have found past success for other distributions in many applications: the
size-bias transformation for Poisson approximation by Barbour, Holst and Jan-
son (1992), the zero-bias transformation for normal approximation by Goldstein
and Reinert (1997, 2005) [and a discrete analog of Goldstein and Xia (2006)], the
equilibrium transformation of renewal theory for both exponential and geometric
approximation, and an extension to negative binomial approximation by Peköz and
Röllin (2011), Peköz, Röllin and Ross (2013b) and Ross (2013), and a transforma-
tion for a class of distributions arising in preferential attachment graphs by Peköz,
Röllin and Ross (2013a). Luk (1994) and Nourdin and Peccati (2009) developed
Stein’s method for gamma approximation, though the approaches there are quite
different from ours. Theorem 1.16 is a significant generalization and embellish-
ment of this previous work.

Using the construction of Rémy (1985) for generating uniform random binary
trees, we find some of our urn distributions embedded in random subtrees of uni-
form binary trees and plane trees. Moreover, a well-known bijection between bi-
nary trees and Dyck paths yields analogous embeddings in some local time and
height statistics of random walk. By means of these embeddings, we are able to
prove convergence to generalized gamma distributions with rates for these statis-
tics. These limits and in general the connection between random walks, trees and
distributions appearing in Brownian motion are typically understood through clas-
sical bijections between trees and walks along with Donsker’s invariance principle,
or through the approach of Aldous’ continuum random tree; see Aldous (1991).
While these perspectives are both beautiful and powerful, the mathematical details
are intricate and they do not provide rates of convergence. In this setting, our work
can be viewed as a simple unified approach to understanding the appearance of
these limits in the tree-walk context which has the added benefit of providing rates
of convergence.

In the remainder of the Introduction, we state our urn, tree and walk results in
detail.

1.1. Generalized gamma distribution. For α > 0, denote by G(α) the gamma
distribution with shape parameter α having density xα−1e−x/�(α)dx, x > 0.

DEFINITION 1.1 (Generalized gamma distribution). For positive real numbers
α and β , we say a random variable Z has the generalized gamma distribution with

parameters α and β and write Z ∼ GG(α,β), if Z
D= X1/β , where X ∼ G(α/β).

The density of Z ∼ GG(α,β) is easily seen to be

ϕα,β(x) = βxα−1e−xβ

�(α/β)
dx, x > 0,
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and for any real p > −α, EZp = �((α + p)/β)/�(α/β); in particular EZβ =
α/β . The generalized gamma family includes the Rayleigh distribution, GG(2,2),
the absolute or “half” normal distribution, GG(1,2), and the standard gamma dis-
tribution, GG(α,1).

1.2. Pólya urn with immigration. We now define a variation of Pólya’s urn.
An urn starts with black and white balls and draws are made sequentially. After
each draw, the ball is replaced and another ball of the same color is added to the
urn. Also, after every lth draw an additional black ball is added to the urn. Let
P l

n(b,w) denote the distribution of the number of white balls in the urn after n

draws have been made when the urn starts with b ≥ 0 black balls and w > 0 white
balls. Note that for the case l = 1 the process is time homogeneous but for l ≥ 2 it
is time inhomogeneous. Define the Kolmogorov distance between two cumulative
distribution functions P and Q (or their respective laws) as

dK(P,Q) = sup
x

∣∣P(x) − Q(x)
∣∣.

The Kolmogorov metric is a standard and natural metric for random variables
on the real line and is used for statistical inference, for example, in computing
“p-values”.

THEOREM 1.2. Let l,w ≥ 1 and let Nn ∼ P l
n(1,w). Then ENk

n � nkl/(l+1) as
n → ∞ for any integer k ≥ 0, and

ENl+1
n ∼ nlw

(
l + 1

l

)l

.

Furthermore, there are constants c = cl,w and C = Cl,w , independent of n, such
that

cn−l/(l+1) ≤ dK
(
L (Nn/μn),GG(w, l + 1)

) ≤ Cn−l/(l+1),(1.1)

where

μn = μn(l,w) =
(

l + 1

w
ENl+1

n

)1/(l+1)

∼ nl/(l+1) (l + 1)

ll/(l+1)
.(1.2)

REMARK 1.3. A direct application of this result is to a preferential attachment
random graph model [see Barabási and Albert (1999), Peköz, Röllin and Ross
(2013a)] that initially has one node having weight w (thought of as the degree of
that node or a collection of nodes grouped together). Additional nodes are added
sequentially and when a node is added it attaches l edges, one at a time, directed
from it to either itself or to nodes in the existing graph according to the following
rule. Each edge attaches to a potential node with chance proportional to that node’s
weight at that exact moment, where incoming edges contribute weight one to a
node and each node other than the initial node is born having initial weight one.
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The case where l = 1 is the usual Barabasi–Albert tree with loops (though started
from a node with initial weight w and no edges). A moment’s thought shows that
after an additional n edges have been added to the graph, the total weight of the
initial node has distribution P l

n(1,w). Peköz, Röllin and Ross (2014) extend the
results of this paper in this preferential attachment context to obtain limits for joint
distributions of the weights of nodes.

REMARK 1.4. Theorem 1.2 in the case when l = 1 is covered by Example 3.1
of Janson (2006a), but without a rate of convergence. The limit and rate for the
two special cases where w = l = 1 and l = 1, w = 2 are stated in Theorem 1.1 of
Peköz, Röllin and Ross (2013a); in fact the rate proved there is n−1/2 logn (there
is an error in the last line of the proof of their Lemma 4.2), but our approach here
yields the optimal rate claimed there.

REMARK 1.5. For n ≥ l, it is clear that

P l
n(0,w) = P l

n−l(1,w + l),(1.3)

since, if the urn is started without black balls, the progress of the urn is deter-
ministic until the first immigration. P l

n(1,w) is more natural in the context of
the proof of Theorem 1.2 but in our combinatorial applications, P l

n(0,w) can be
easier to work with and so we will occasionally apply Theorem 1.2 directly to
P l

n(0,w) via (1.3). Further, in order to easily switch between these two cases with-
out introducing unnecessary notation or case distinctions, we define, in accordance
with (1.3), P l−i (1,w + l) to be a point mass at w + l − i for all 0 ≤ i ≤ l.

REMARK 1.6. Pólya urn schemes have a long history and large literature. In
brief, the basic model, in which the urn starts with w white and b black balls and
at each stage a ball is drawn at random and replaced with α balls of the same color,
was introduced in Eggenberger and Pólya (1923) as a model for disease conta-
gion. The proportion of white balls converges almost surely to a variable having
beta distribution with parameters (w/α,b/α). A well-known embellishment [see
Friedman (1949)] is to replace the ball drawn along with α balls of the same color
and β of the other color and here if β �= 0 the proportion of white balls almost
surely converges to 1/2; and Freedman (1965) proves a Gaussian limit theorem
for the fluctuation around this limit.

The general case can be encoded by (α,β;γ, δ)b,w where now the urn starts
with b black and w white balls and at each stage a ball is drawn and replaced; if
the ball drawn is black (white), then α (γ ) black balls and β (δ) white balls are
added. As suggested by the previous paragraph, the limiting behavior of the urn
can vary wildly depending on the relationship of the six parameters involved and
especially the Greek letters; even the first-order growth of the number of white
balls is highly sensitive to the parameters.
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A useful tool for analyzing the general case is to embed the urn process into a
multitype branching process and use the powerful theory available there. This was
first suggested and implemented by Athreya and Karlin (1968) and has found sub-
sequent success in many further works; see Janson (2006a) and Pemantle (2007),
and references therein. An alternative approach that is especially useful when α

or δ are negative (under certain conditions this leads to a tenable urn) is the ana-
lytic combinatorics methods of Flajolet, Gabarró and Pekari (2005); see also the
Introduction there for further references.

Note that all of the references of the previous paragraphs regard homogeneous
urn processes and so do not directly apply to the model of Theorem 1.2 with l ≥ 2.
In fact, the extensive survey Pemantle (2007) has only a small section with a few
references regarding time dependent urn models. Time inhomogeneous urn models
do have an extensive statistical literature due to the their wide usage in the experi-
mental design of clinical trials (the idea being that it is ethical to favor experimental
treatments that initially do well over those that initially do not); see Zhang, Hu and
Cheung (2006), Zhang et al. (2011) and Bai, Hu and Zhang (2002). This literature
is concerned with models and regimes where the asymptotic behavior is Gaussian.
As discussed in Janson (2006a), it is difficult to characterize nonnormal asymptotic
distributions of generalized Pólya urns, even in the time homogeneous case.

REMARK 1.7. There are many possible natural generalizations of the model
we study here, such as starting with more than one black ball or adding more than
one black ball every lth draw. We have restricted our study to the P l

n(1,w) urn
because these variations lead to asymptotic distributions outside the generalized
gamma class. For example, the case P1

n(b,w) with integer b ≥ 1 is studied in
Peköz, Röllin and Ross (2013a), where it is shown for b ≥ 2 the limits are powers
of products of independent beta and gamma random variables. Our main purpose
here is to study the generalized gamma regime carefully and to highlight the con-
nection between these urn models and random walks and trees.

1.3. Applications to sub-tree sizes in uniform binary and plane trees. Denote
by T

p
n a uniformly chosen rooted plane tree with n nodes, and denote by T b

2n−1
a uniformly chosen binary, rooted plane tree with 2n − 1 nodes, that is, with n

leaves and n − 1 internal nodes. It is well known that the number of such trees
in both cases is the Catalan number Cn−1 = (2n−2

n−1

)
/n and that both families of

random trees are instances of simply generated trees; see Examples 10.1 and 10.3
of Janson (2012).

For any rooted tree T let spk
Leaf(T ) be the number of vertices in the minimal

spanning tree spanned by the root and k randomly chosen distinct leaves of T , and
let spk

Node(T ) be the number of vertices in the minimal spanning tree spanned by
the root and k randomly chosen distinct nodes of T .
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THEOREM 1.8. Let μn(1,w) be as in (1.2) of Theorem 1.2. Then, for any
k ≥ 1,

(i) dK
(
L

(
spk

Leaf
(
T b

2n−1
)
/μn−k−1(1,2k)

)
,GG(2k,2)

) = O
(
n−1/2)

,

(ii) dK
(
L

(
spk

Node
(
T b

2n−1
)
/μn−k−1(1,2k)

)
,GG(2k,2)

) = O
(
n−1/2)

,

(iii) dK
(
L

(
2 spk

Node
(
T p

n

)
/μn−k−1(1,2k)

)
,GG(2k,2)

) = O
(
n−1/2 logn

)
.

REMARK 1.9. The logarithms in (iii) of the theorem and in (iii) and (iv) of
the forthcoming Theorem 1.11 are likely an artifact of our analysis, specifically in
the use of Lemma 2.5.

REMARK 1.10. The limits in the theorem can also be seen using facts about
the Brownian continuum random tree (CRT) due to Aldous (1991, 1993). Indeed,
the trees T b

2n−1 and T
p
n can be understood to converge in a certain sense to the

Brownian CRT. The limit of the subtrees we study having k leaves can be de-
fined through the Poisson line-breaking construction as described following The-
orem 7.9 of Pitman (2006):

Let 0 < �1 < �2 < · · · be the points of an inhomogeneous Poisson
process on R>0 of rate t dt . Break the line [0,∞) at points �k . Grow
trees Tk by letting T1 be a segment of length �1, then for k ≥ 2
attaching the segment (�k−1,�k] as a “twig” attached at a random
point of the tree Tk−1 formed from the first k − 1 segments.

The length of this tree is just �k which is the generalized gamma limit of the the-
orem (up to a constant scaling). In more detail, if we jointly generate the vector
Uk(n) := (sp1

Leaf(T
b

2n−1), . . . , spk
Leaf(T

b
2n−1)) by first selecting k leaves uniformly

at random from T b
2n−1, then labeling the selected leaves 1, . . . , k, and then setting

spi
Leaf(T

b
2n−1) to be the number of nodes in the tree spanned by the root and the

leaves labeled 1, . . . , i, then the CRT theory implies n−1/2Uk(n) converges in dis-
tribution to (�1, . . . ,�k); see also Peköz, Röllin and Ross (2014) for a proof of
this fact with a rate of convergence.

Panholzer [(2004), Theorem 6] provides local limit theorems for spk
Node(T

b
2n−1)

and spk
Node(T

p
n ), from which the distributional convergence to the generalized

gamma can be seen. It may be possible to obtain such (and other) local limits
results using our Kolmogorov bounds and the approach of Röllin and Ross (2015),
but in any case the convergence rates in the Kolmogorov metric in Theorem 1.8
appear to be new.

1.4. Applications to occupation times and heights in random walk, bridge and
meander. Consider the one-dimensional simple symmetric random walk Sn =
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(Sn(0), . . . , Sn(n)) of length n starting at the origin. Define

Ln =
n∑

i=0

I
[
Sn(i) = 0

]

to be the number of times the random walk visits the origin by time n. Let

Lb
2n ∼ L

(
L2n|S2n(0) = S2n(2n) = 0

)
be the local time of a random walk bridge, and define random walk excursion and
meander by

Se
2n ∼ L

(
S2n|S2n(0) = 0, S2n(1) > 0, . . . , S2n(2n − 1) > 0, S2n(2n) = 0

)
,

Sm
n ∼ L

(
Sn|Sn(0) = 0, Sn(1) > 0, . . . , Sn(n) > 0

)
.

THEOREM 1.11. Let μn(1,w) = μn be as in (1.2) of Theorem 1.2 and let K

be uniformly distributed on {0, . . . ,2n} and independent of (Se
2n(u))2n

u=0. Then

(i) dK
(
L

(
Ln/μ	n/2
(1,1)

)
,GG(1,2)

) = O
(
n−1/2)

,

(ii) dK
(
L

(
Lb

2n/μn−1(1,2)
)
,GG(2,2)

) = O
(
n−1/2)

,

(iii) dK
(
L

(
2Se

2n(K)/μn−2(1,2)
)
,GG(2,2)

) = O
(
n−1/2 logn

)
,

(iv) dK
(
L

(
2Sm

n /μ	(n−1)/2
−1(1,2)
)
,GG(2,2)

) = O
(
n−1/2 logn

)
.

REMARK 1.12. An alternative viewpoint of the limits in Theorem 1.11 is that
they are the analogous statistics of Brownian motion, bridge, meander and ex-
cursion which can be read from Chung (1976) and Durrett and Iglehart (1977);
these Brownian fragments are the weak limits in the path space C[0,1] of the walk
fragments we study; see Csáki and Mohanty (1981). For example, if Bt , t ≥ 0, is
a standard Brownian motion and (Lx

t , t ≥ 0, x ∈ R) its local time at level x up to
time t , then Lévy’s identity implies that L0

1 is equal in distribution to the maximum
of Bt up to time 1, which is equal in distribution to a half normal distribution; see
also Borodin (1987).

To check the remaining limits of the theorem [which are Rayleigh, GG(2,2)],
we can use Pitman (1999), equation (1) [see also Borodin (1989)] which states that
for y > 0 and b ∈ R,

P
[
Lx

1 ∈ dy,B1 ∈ db
]

(1.4)

= 1√
2π

(|x| + |b − x| + y
)

exp
(
−1

2

(|x| + |b − x| + y
)2

)
dy db.

Roughly, for the local time of Brownian bridge at time 1 we set b = x = 0 in (1.4)
and multiply by

√
2π (due to conditioning B1 = 0) to see the Rayleigh density.

For the final time of Brownian meander, we set x = y = 0 in (1.4) and multiply
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by
√

π/2 (due to conditioning L0
1 = 0), and note here that b ∈ R so by symmetry

we restrict b > 0 and multiply by 2 to get back to the Rayleigh density. Finally,
due to Vervaat’s transformation [Vervaat (1979)], the height of standard Brownian
excursion at a uniform random time has the same distribution as the maximum of
Brownian bridge on [0,1]. If we denote by M this maximum, then for x > 0 we
apply (1.4) to obtain

P[M > x] = P
[
Lx

1 > 0|B1 = 0
] =

∫ ∞
0

(2x + y) exp
(
−1

2
(2x + y)2

)
dy = e−2x2

,

which is the claimed Rayleigh distribution.
With the exception of the result for Ln, which can be read from Chung and

Hunt (1949), inequality (1) or Döbler (2013), Theorem 1.2, the convergence rates
appear to be new.

1.5. A general approximation result via distributional transforms. Theo-
rem 1.2 follows from a general approximation result using Stein’s method, a distri-
butional transformation with a corresponding fixed point equation, which we de-
scribe now. We first generalize the size bias transformation used in Stein’s method
and appearing naturally in many places; see Arratia, Goldstein and Kochman
(2013) and Brown (2006).

DEFINITION 1.13. Let β > 0 and let W be a nonnegative random variable
with finite βth moment. We say a random variable W(β) has the β-power bias
distribution of W , if

E
{
Wβf (W)

} = EWβ
Ef

(
W(β))(1.5)

for all f for which the expectations exist.

In what follows, denote by B(a, b) the beta distribution with parameters
a, b > 0.

DEFINITION 1.14. Let α > 0 and β > 0 and let W be a positive random vari-
able with EWβ = α/β . We say that W ∗ has the (α,β)-generalized equilibrium
distribution of W if, for Vα ∼ B(α,1) independent of W(β), we have

W ∗ D= VαW(β).(1.6)

REMARK 1.15. Pakes and Khattree (1992), Theorem 5.1 and Pitman and
Ross (2012), Proposition 9 show that for a positive random variable W with

EWβ = α/β , we have W ∼ GG(α,β) if and only if W
D= W ∗. The (1,2)-

generalized equilibrium distributional transformation is the nonnegative analog of
the zero bias transformation of which the standard normal distributions are unique
fixed points; see Chen, Goldstein and Shao (2011), Proposition 2.3, page 35,
where the 2-power bias transformation is appropriately called “square” biasing;
thus GG(1,2) is the absolute normal distribution.
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THEOREM 1.16. Let W be a positive random variable with EWβ = α/β for
some integers α ≥ 1 and β ≥ 1. Let W ∗ be a random variable constructed on
the same probability space having the (α,β)-generalized equilibrium distribution
of W . Then there is a constant c > 0 depending only on α and β such that, for all
0 < b ≤ 1,

dK
(
L (W),GG(α,β)

) ≤ c
(
b + P

[∣∣W − W ∗∣∣ > b
])

.(1.7)

REMARK 1.17. Let X and Y be two random variables and let

dLP
(
L (X),L (Y )

) = inf
{
b : P[X ≤ t] ≤ P[Y ≤ t + b] + b for all t ∈ R

}
be the Lévy–Prokohorov distance between L (X) and L (Y ). A theorem due to
Strassen [see, e.g., Dudley (1968), Theorem 2] says that there is a coupling (X,Y )

such that P[|X − Y | > ρ] ≤ ρ, where ρ = dLP(L (X),L (Y )). Hence, since (1.7)
holds for all b and all couplings of W and W ∗, it follows in particular that

dK
(
L (W),GG(k, r)

) ≤ 2cdLP
(
L (W),L

(
W ∗))

.

The paper is organized as follows. In Section 2, we embed our urn model into
random trees via Rémy’s algorithm and prove Theorem 1.8. In Section 3, we de-
scribe the various connections between trees and walk paths and then prove The-
orem 1.11. In Section 4, we use Theorem 1.16 to prove Theorem 1.2, and finally
in Section 5 we develop a general formulation of Stein’s method for log concave
densities and prove Theorem 1.16.

2. Random trees: Proof of Theorem 1.8.

2.1. Rémy’s algorithm for decorated binary trees. Rémy (Rémy) introduced
an elegant recursive algorithm to construct uniformly chosen decorated binary
trees, where by “decorated” we mean that the leaves are labeled. This algorithm is
the key ingredient to our approach as it relates to the urn schemes of Theorem 1.2.
All trees are assumed to be plane trees throughout, and we will think of the tree as
growing downward with the root at the top. We will refer to the “left” and “right”
child of a node as seen from the readers point of view looking at the tree growing
downward.

Rémy’s algorithm for decorated binary trees (see Figure 1). Let n ≥ 1 and as-
sume that T b

2n−1 is a uniformly chosen decorated binary tree with n leaves, labeled
from 1 to n. To obtain a uniformly chosen decorated binary tree T b

2n+1 with n + 1
leaves do the following:

Step 1. Choose a node uniformly at random; call it X. Remove X and its sub-
tree, insert a new internal node at this position, call it Y , and attach X and its
sub-tree, to Y .
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A
1

B
1

1 2

C
1

1 2

2 3

D
1

1 3

2

2 3

4

E
1

1 3

4

5 2

2 3

4

F
1

5

6 1

3

4

5 2

2 3

4

G

6 1

5

2 3

4

FIG. 1. Illustration of Rémy’s algorithm to construct decorated binary trees. Internal nodes are
represented by black circles, and leaves by white circles. For the sake of clarity, we keep the internal
nodes labeled, but these labels will be removed in the final step. We start with Tree A, the trivial tree.
The step from Tree A to Tree B is 1 L, where “ 1 ” indicates the node that was chosen, and “L”
indicates that this node, along with its sub-tree, is attached to the new node as the left-child. Using
this notation, the remaining steps to get to Tree F are 2 L, 2 L, 2 R, 1 R. Then remove the labels
of the internal nodes to obtain Tree G, the final tree.

Step 2. With probability 1/2 each, do either of the following:

(a) Attach new leaf with label n + 1 as the left-child to Y (making X the right-
child of Y ).

(b) Attach new leaf with label n + 1 as the right-child to Y (making X the
left-child of Y ).

This recursive algorithm produces uniformly chosen decorated binary trees,
since every decorated binary tree can be obtained in exactly one way, and since
at every iteration every new tree is chosen with equal probability. By removing the
labels, we obtain a uniformly chosen undecorated binary tree.

Figure 1 illustrates the algorithm by means of an example. We have labeled the
internal nodes to make the procedure clearer, but it is important to note that these
internal labels are not chosen uniformly among all such labelings and, therefore,
have to be removed at the final step (to see this, note that Tree C in Figure 1 cannot
be obtained through Rémy’s algorithm if the labels of the two internal nodes are
switched).

2.2. Sub-tree sizes.

Spanning trees in binary trees. Rémy’s algorithm creates a direct embedding
of a Pólya urn into a decorated binary tree. The following result is the key to
our tree and walk results and is utilized via embeddings and bijections in this
section and the following. The result is implicit in a construction of Pitman (2006),
Exercise 7.4.11.

PROPOSITION 2.1. For any n ≥ k ≥ 1,

spk
Leaf

(
T b

2n−1
) ∼ P1

n−k(0,2k − 1) = P1
n−k−1(1,2k).
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PROOF. Since the labeling is random, we may consider the tree spanned by
the root and the leaves labeled 1 to k of a uniformly chosen decorated binary
tree, rather than the tree spanned by the root and k uniformly chosen leaves of
a random binary tree, cf. Pitman (2006), Exercise 7.4.11. Start with a uniformly
chosen decorated binary tree T b

2k−1 with k leaves and note that the tree spanned
by the root and leaves 1 to k is the whole tree. Now identify the 2k − 1 nodes of
T b

2k−1 with 2k − 1 white balls in an urn that has no black balls. If the randomly
chosen node in a given step in Rémy’s algorithm is outside the current spanning
tree, two nodes will be added outside the current spanning tree and we identify this
as adding two black balls to the urn. If the randomly chosen node is in the current
spanning tree, one node will be added to the current spanning tree and another
outside of it, and we identify this as adding one black and one white ball to the
urn.

Since we started with a tree of 2k − 1 nodes, we need n − k steps to obtain a
tree with 2n − 1 nodes. Hence, the size of the spanning tree is equal to the number
of white balls in the urn, which follows the distribution P1

n−k(0,2k − 1). �

As a consequence of Proposition 2.1, whenever a quantity of interest can be cou-
pled closely to spk

Leaf(T
b
2n−1), rates of convergence can be obtained if the closeness

of the coupling can be quantified appropriately. In this section, we give two tree
examples of this approach. Since the distribution P1

n−k(0,2k − 1) will appear over
and over again, we set N∗

j,k ∼ P1
j (0,2k − 1) in what follows. We use the notation

Ge0(p), Ge1(p), Be(p), Bi(n,p) to, respectively, denote the geometric with sup-
ports starting at zero and one, Bernoulli and binomial distributions. For a nonneg-
ative integer-valued random variable N , we also use the notation X ∼ Bi(N,p)

to denote that X is distributed as a mixture of binomial distributions such that
L (X|N = n) = Bi(n,p).

We now make a simple, but important observation about the edges in the span-
ning tree.

LEMMA 2.2. Let 1 ≤ k ≤ n and T b
2n−1 be a uniformly chosen binary tree with

n leaves and consider the tree spanned by the root and k uniformly chosen distinct
leaves. Let Mk,n be the number of edges in this spanning tree that connect a node
to its left-child (“left-edges”). Conditional on the spanning tree having N∗

n−k,k

nodes,

Mk,n − (k − 1) ∼ Bi
(
N∗

n−k,k − (2k − 1),1/2
)
.(2.1)

PROOF. We use Rémy’s algorithm and induction over n. Fix k ≥ 1. For n = k

note that the spanning tree is the whole tree with N∗
0,k = 2k −1 nodes and 2(k −1)

edges. Since half of the edges must connect a node to the left-child, Mk,k = k − 1
which is (2.1) and this proves the base case. Assume now that (2.1) is true for some
n ≥ k. Two things can happen when applying Rémy’s algorithm: either the current
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spanning tree is not changed, in which case N∗
n−k+1,k = N∗

n−k,k and Mk,n+1 =
Mk,n, and hence (2.1) holds by the induction hypothesis, or one node and one
edge are inserted into the spanning tree, in which case N∗

n−k+1,k = N∗
n−k,k + 1 and

Mk,n+1 = Mk,n + J with J ∼ Be(1/2) independent of all else. In the latter case,
using the induction hypothesis, Mk,n + J − (k − 1) ∼ Bi(N∗

n−k,k − (2k − 1) +
1,1/2) = Bi(N∗

n−k+1,k − (2k − 1),1/2), which is again (2.1). This concludes the
induction step. �

PROPOSITION 2.3. Let n ≥ k ≥ 1 and let N∗
j,k ∼ P1

j (0,2k − 1). There exist
nonnegative, integer-valued random variables Y1, . . . , Yk such that, for each i,

P
[
Yi > m|N∗

n−k,k

] ≤ 2−m for all m ≥ 0,(2.2)

and such that for

Xn,k := N∗
n−k,k −

k∑
i=1

Yk(2.3)

we have

dTV
(
L

(
spk

Node
(
T b

2n−1
))

,L (Xn,k)
) ≤ k

2n
+ (k − 1)2

2n − k + 1
,(2.4)

where dTV denotes total variation distance.
For k = 1 we have the explicit representation

L
(
sp1

Node
(
T b

2n−1
)) = L (Xn,1|Xn,1 > 0),(2.5)

where Y1 ∼ Ge0(1/2) is independent of N∗
n−1,1.

PROOF. We first prove (2.5). We start by regarding T b
2n−1 as being “planted”,

that is, we think of the root node as being the left-child of a “ground node” (which
itself has no right-child). We also think of the ground node as being internal. Fur-
thermore, we think of the minimal spanning tree between the ground node and the
root node as being empty, hence its size as being 0. We first construct a pairing
between leaves and internal nodes as follows (see Figure 2). Pick a leaf and follow
the path from that leaf toward the ground node and pair the leaf with the first par-
ent of a left-child encountered in that path. Equivalently, pick an internal node and,
in direction away from the ground node, first follow the left child of that internal
node, and then keep following the right child until reaching a leaf. In particular,
with this algorithm, if a selected leaf is a left-child it is assigned directly to its
parent and the right-most leaf is assigned to the ground node. The fact that this
description is indeed a pairing follows inductively by considering the left and right
subtrees connected to the root, whereby the left subtree uses the root of the tree as
its ground node.
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FIG. 2. Pairing up leaves and internal nodes in planted binary trees. Note that the right-most leaf
in the tree is paired up with the “ground node”.

Recall that we are considering the case k = 1. Now, instead of choosing a node
uniformly at random among the 2n nodes of the planted tree (the ground node
included), we may equivalently choose Leaf 1 with probability 1/2, or choose the
internal node paired with Leaf 1 with probability 1/2. Denote by Xn the number of
nodes in the path from the chosen node to the root, denote by J the indicator of the
event that we choose an internal node, and denote by N∗

n−1,1 the number of nodes
in the path from Leaf 1 up to the root. From Proposition 2.1 with k = 1, we have
that N∗

n−1,1 ∼ P1
n−1(0,1). If J1 = 0, then Xn,1 = N∗

n−1,1. If J1 = 1, the number
of nodes in the path to the root is that of Leaf 1 minus the number of nodes until
the first parent of a left-child in the path is encountered. Considering Lemma 2.2,
given N∗

n−1,1, the number of left-edges are N∗
n−1,1 independent coin tosses with

success probability 1/2, hence, if Ỹ1 is the time until the first parent of a left-child
is encountered, we have Ỹ1 ∼ Ge1(1/2), truncated at N∗

n−1,1. Thus, if J1 = 1, we

have Xn,1 = N∗
n−1,1 − Ỹ1 ∧ N∗

n−1,1. Putting the two cases together we obtain the

representation Xn = N∗
n−1,1 − (J1Ỹ1)∧N∗

n−1,1, which has the same distribution as

N∗
n−1,1 − Y1 ∧ N∗

n−1,1,(2.6)

since J1Ỹ1 ∼ Ge0(1/2). As Xn,1 is zero if and only if the ground node was paired
with Leaf 1 (i.e., Leaf 1 being the right most leaf) and J1 = 1, conditioning on
Xn,1 being positive is equivalent to conditioning on choosing any node apart from
the ground node, which concludes (2.5).

Now, let k be arbitrary. In a first step, instead of choosing k distinct nodes at
random, choose k distinct leaves at random and, for each leaf, toss a fair coin Ji ,
i = 1, . . . , k, to determine whether to choose the leaf or its internal partner, similar
to the case k = 1. Denote by N∗

n−k,k the number of nodes in the minimal spanning
tree spanned by Leaves 1 to k and the root, and denote by Xn,k the number of nodes
in the minimal spanning tree spanned by the leaves or paired nodes and the root (if
one of the chosen nodes is the ground node, then ignore that node in determining
the minimal spanning tree). It is easy to see through two coupling arguments that
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choosing the nodes in this different way introduces a total variation error of at most

[
1 −

(
2n − 1

k

)/(
2n

k

)]
+

[
1 −

k−1∏
i=1

(
1 − i

2n − i

)]
;

the first term stems from the possibility of choosing the ground node, and the
second term from restricting the k nodes to be from different pairings. From this,
(2.4) easily follows.

It remains to show (2.2) and (2.3). For (2.3), for each i = 1, . . . , k, let N
(i)
n−1 be

the number of nodes in the path from leaf i up to the root, and let Y ′
i = JiỸi be the

geometric random variable from the representation (2.6). With Yi = Y ′
i ∧N

(i)
n−1, we

hence have

Xn,k = N∗
n−k,k −

k∑
i=1

Y ′
i ∧ N

(i)
n−1 = N∗

n−k,k −
k∑

i=1

Yi.

It is not difficult to check that Yi and N∗
n−k,k −N

(i)
n−1 are conditionally independent

given N
(i)
n−1. For (2.2), notice that P[Yi > m|N(i)

n−1] = I[m < N
(i)
n−1]2−m. Hence,

P
[
Yi > m|N∗

n−k,k

] = E
{
P

[
Yi > m|N∗

n−k,k,N
(i)
n−1 − N∗

n−k,k

]|N∗
n−k,k

}
= E

{
P

[
Yi > m|N(i)

n−1

]|N∗
n−k,k

} ≤ 2−m. �

Uniform plane tree. It is well known that there are n!Cn−1 decorated binary
trees of size 2n−1 as well as labeled plane trees of size n nodes, where C1,C2, . . .

are the Catalan numbers. There are various ways to describe bijections between the
two sets. We first give a direct algorithm to construct a plane tree from a binary
tree; see Figure 3.

Given a binary tree, we do a depth-first exploration, starting from the root and
exploring left-child before right-child. We construct the plane tree as we explore
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FIG. 3. Bijection between a decorated binary tree of size 2n − 1 (on the left), and a rooted labeled
plane tree of size n (on the right).
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the binary tree, starting with an unlabeled root node. Whenever a left-edge in the
binary tree is visited for the first time, we add one new unlabeled child to the
current node in the plane tree to the right of all existing children of that node, and
move to that new child. If a right-edge is visited for the first time, we move back
to the parent of the current node in the plane tree. Whenever we encounter a leaf
in the binary tree, we copy that label to the node in the plane tree.

Another way to describe the bijection, initially described between unlabeled
objects, is by means of Dyck paths of length 2(n − 1). These are syntactically
valid strings of n − 1 nested bracket pairs. To go from a Dyck path to a binary
tree, we parse the string from left-to-right and at the same time do a depth-first
construction of the binary tree. Start with one active node. Any opening bracket
corresponds to adding a left-child to the currently active node and then making
that child the active node, whereas a closing bracket corresponds to adding a right-
child as sibling of the left-child that belongs to the opening bracket of the current
closing bracket, and then making that right child the active node. The labeling is
added by inserting n − 1 of the n leaf labels in front of the n − 1 closing brackets,
as well as one label at the end of the string in any of the n! possible orderings.
When converting the labeled Dyck path into a binary tree, every time a label is
encountered that label is copied to the currently active node in the tree. The Dyck
path corresponding to the tree in Figure 3 would be “((()))(()())”, respectively,
with the labeling, “(((7)6)1)((5)(2)3)4”.

To obtain a labeled plane tree from a labeled Dyck path, again do a depth-first
construction, starting with one active node. An opening bracket corresponds to
adding a new child to the currently active node to the right of all already present
siblings and then making that child the new active node, whereas a closing bracket
represents making the parent of the currently active node the new active node. If a
label is encountered in the string, the label is copied to the currently active node.

PROPOSITION 2.4. Let n ≥ k ≥ 1 and N∗
j,k ∼ P1

j (0,2k − 1). Assume that
Xn,k ∼ Bi(N∗

n−k,k − (2k − 1),1/2). Then

spk
Node

(
T p

n

) D= Xn,k + k.

PROOF. We use the bijection between binary and plane trees. The number of
edges in the spanning tree of k nodes in the plane tree is equal to the number of
left-edges in the spanning tree of the corresponding k leaves in the binary tree
(note that in the spanning tree of the binary tree, we count left-edges both between
internal nodes as well as between internal nodes and leaves). This is because only
left-edges in the binary tree contribute to the number of edges in the plane tree.
The proof is now a simple consequence of Proposition 2.1 and Lemma 2.2 and the
fact that the number of nodes in any spanning tree is equal to one plus the number
of edges in that spanning tree. �



GENERALIZED GAMMA APPROXIMATION WITH RATES 1791

It is illuminating to see how Rémy’s algorithm acts on plane trees by means of
the bijection described above (see Figure 4). Apart from adding new edges to ex-
isting nodes, we also observe an operation that “cuts” existing nodes. The trees T

p
n

and T b
2n−1 are special cases of Galton–Watson trees (respective offspring distribu-

tions geometric and uniform on {0,2}) conditioned to have n and 2n − 1 nodes,
respectively. As noted by Janson (2006c), such conditioned trees cannot in general
be grown by only adding edges. Hence, it is tempting to speculate whether there is
a wider class of offspring distributions for which conditional Galton–Watson trees
can be grown using only local operations on trees such as those in Figure 4.

Before proceeding with the proof of Theorem 1.8, we need an auxiliary lemma
used to transfer rates from our urn model to the distributions in Propositions 2.3
and 2.4. Here and below ‖ · ‖ denotes the essential supremum norm.

a
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c

z
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b

c

(a) Part of a binary tree

z

a b c

(b) Same part of plane tree

z

x
a b c

(c)Attach at pos. 0
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(e)Attach at pos. 2
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b c
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a b
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(i) Cut at pos. 2

x

z
a b c

(j) Cut at pos. 3

FIG. 4. Rémy’s algorithm acting on plane trees by means of the bijection given in Figure 3. We
leave it to the reader to find the operations in the binary tree as given in (a) that correspond to the
operations (c)–(j).



1792 E. A. PEKÖZ, A. RÖLLIN AND N. ROSS

LEMMA 2.5. Let α ≥ 1 and β ≥ 1. There is a constant C = Cα,β , such that
for any positive random variable X and any real-valued random variable ξ ,

dK
(
L (X + ξ),GG(α,β)

)
(2.7)

≤ C
(
dK

(
L (X),GG(α,β)

) + ∥∥E(
ξ2|X)∥∥1/2)

.

If X and ξ satisfy

P
[|ξ | ≥ t |X] ≤ c1e

−c2t
2/X(2.8)

for some constants c1 > 0 and c2 > 1, then

dK
(
L (X + ξ),GG(α,β)

)
(2.9)

≤ C

(
dK

(
L (X),GG(α,β)

) + 1 + c1 + log c2√
c2

)
.

PROOF. The proofs of (2.7) and (2.9) follow along the lines of the proof of
Lemma 1 of Bolthausen (1982). Once one observes that GG(α,β) has bounded
density, the modifications needed to prove (2.7) are straightforward, and hence
omitted. The modifications to prove (2.9), however, are more substantial, hence
we give a complete proof for this case. Let Z ∼ GG(α,β), and let

F(t) = P[X ≤ t], F ∗(t) = P[X + ξ ≤ t],
G(t) = P[Z ≤ t], δ = sup

t>0

∣∣F(t) − G(t)
∣∣.

If t > ε > 0, then

F ∗(t) = E
{
P[ξ ≤ t − X|X]} ≥ E

{
I[X ≤ t − ε]P[ξ ≤ t − X|X]}

= F(t − ε) −E
{
I[X ≤ t − ε]P[ξ > t − X|X]}.

Let t0 = log c2 and ε = log c2√
c2

, and observe that, since c2 > 1, we have t0 > ε > 0.

Also note that one can find a constant c3 such that 1 −G(t) ≤ c3e
−t/2. Using (2.8)

and setting Mα,β the maximum of the density of GG(α,β) (defined explicitly in
Lemma 5.12 below),

E
{
I[X ≤ t − ε]P[ξ > t − X|X]}

≤ E
{
I[X ≤ t ∧ t0 − ε]P[ξ > t ∧ t0 − X|X]} + P[X > t0 − ε]

≤ c1E
{
I[X ≤ t ∧ t0 − ε]e−c2(t∧t0−X)2/X} + P[Z > t0 − ε] + δ

≤ c1e
−c2ε

2/t0 + P[Z > t0] + δ + εMα,β

≤ c1e
− log c2 + δ + c3 + Mα,β log c2√

c2
≤ δ + c1 + c3 + Mα,β log c2√

c2
.
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Therefore,

F ∗(t) − G(t) ≥ F(t − ε) − G(t − ε) − εMα,β − δ − c1 + c3 + Mα,β log c2√
c2

≥ −2δ − c1 + c3 + 2Mα,β log c2√
c2

.

On the other hand,

F ∗(t) ≤ F(t + ε) +E
{
I[t + ε < X ≤ t0]P[ξ ≤ t − X|X]} + P[X > t0].

Since

E
{
I[t + ε < X ≤ t0]P[ξ ≤ t − X|X]}

≤ c1E
{
I[t + ε < X ≤ t0]e−c2(t−X)2/X} ≤ c1e

−c2ε
2/t0 ≤ c1

c2

and P[X > t0] ≤ δ + c3/
√

c2, by a similar reasoning as above,

F ∗(t) − G(t) ≤ F(t + ε) + G(t − ε) + εMα,β + δ + c1 + c3√
c2

≤ 2δ + c1 + c3 + Mα,β log c2√
c2

.

Hence,

∣∣F ∗(t) − G(t)
∣∣ ≤ 2δ + c1 + c3 + 2Mα,β log c2√

c2
.(2.10)

From this, one easily obtains (2.9). �

PROOF OF THEOREM 1.8. Case (i). This follows directly from Proposition 2.1
and (1.1) of Theorem 1.2.

Case (ii). Let Wn = spk
Node(T

b
2n−1)/νn with νn = μn−k−1(1,2k), let Xn,k be as

in Proposition 2.3. Applying the triangle inequality, we obtain

dK
(
L (Wn),GG(2k,2)

)
(2.11)

≤ dK
(
L (Wn),L (Xn,k/νn)

) + dK
(
L (Xn,k/νn),GG(2k,2)

)
.

Since the total variation distance is an upper bound on the Kolmogorov dis-
tance, (2.4) yields that the first term in (2.11) is of order O(n−1). To bound
the second term in (2.11), let N∗

n−k,k and Y1, . . . , Yk be as in Proposition 2.3;
set X := N∗

n−k,k/νn and ξ := (Y1 + · · · + Yk)/νn. From (2.2) and recalling that

(
∑k

i=1 Yk)
2 ≤ k

∑k
i=1 Y 2

i , it is easy to see that E(ξ2|X) ≤ 6k/νn almost surely.
Applying (2.7) from Lemma 2.5, we hence obtain that

dK
(
L (Xn,k/νn),GG(2k,2)

) ≤ C
(
dK

(
L

(
N∗

n−k,k/νn

)
,GG(2k,2)

) + ν−1/2
n

)
.



1794 E. A. PEKÖZ, A. RÖLLIN AND N. ROSS

Combining this with Theorem 1.2 and (2.11), the claim follows.
Case (iii). Let N∗

n−k,k and Xn,k be as in Proposition 2.4 and let again νn =
μn−k−1. We may consider 2Xn,k/μn in place of 2 spk

Node(T
p
n )/νn, since by (1.2)

of Theorem 1.2, the constant shift 2k/νn is of order n−1/2, which, by Lemma 2.5,
translates into an error of order at most n−1/2. Let X := N∗

n−k,k/νn and ξ :=
(2Xn − N∗

n−k,k)/νn and note that 2Xn/νn = X + ξ . From Chernoff’s inequal-
ity, it follows that (2.8) holds with c1 = 2 and c2 = ν2

n/4. For n large enough,
c2 > 1 [again using (1.2)] and applying (2.9) from Lemma 2.5 and (1.1) from The-
orem 1.2, the claim follows. �

3. Random walk: Proof of Theorem 1.11. That random walks and random
trees are intimately connected has been observed in many places; see, for example,
Aldous (1991) and Pitman (2006). The specific bijections between binary trees
and random walk, excursion, bridge and meander which we will make use of were
sketched by Marchal (2003) and see also the references therein. It is clear that
for each such bijection Rémy’s algorithm can be translated to recursively create
random walk, excursion, bridge and meander of arbitrary lengths.

Random walk excursion. The simplest bijection is that between a binary tree
of size 2n − 1 and a (positive) random walk excursion of length 2n, as illustrated
in Figure 5. Note first that the first and last step of the excursion must be +1 and
−1, respectively, that is, Se

2n(1) = Se
2n(2n − 1) = 1. To map the tree to the path

from 1 to 2n − 1, we do a left-to-right depth-first exploration of the tree (i.e.,
counterclockwise): starting from the root, each time an edge is visited the first
time (out of a total of two times that each edge is visited), the excursion will go
up by one if the edge is a left-edge and go down by one if the edge is a right-edge.
By means of the Dyck path representation of the binary tree, we conclude that in
this exploration process, the number of explored left edges (“opening brackets”) is
always larger than the number of explored right edges (“closing brackets”), hence

+1

+1

+1

−1

−1

−1

+1

+1

−1

+1

−1

−1

+1

+1

+1 −1

−1

−1 +1

+1 −1 +1 −1

−1

0 1 2 · · · 2n

FIG. 5. Illustration of the bijection between a binary tree with n leaves (on the left), and random
walk excursions of length 2n (on the right).
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2n-1 2n

FIG. 6. Pairing up the points in the random walk excursion. Note that we pair up time point 2n− 1
with time point 0, whereas time point 2n is left without a partner.

the random walk stays positive. Furthermore, since the number of left- and right-
edges is equal, the final height is the same as the starting height. It is not hard to see
that the height of a time point in the excursion corresponds to one plus the number
of left-edges from the corresponding point in the binary tree up to the root.

Furthermore, the pairing between leaves and internal nodes in the (planted) bi-
nary tree induces a pairing between the time points in the random walk excursion
(the pairing in Figure 2, by means of the bijection in Figure 5, results in the pairing
in Figure 6). Note that all time points can be paired except for the final time point
2n for which, however, we know the height.

PROPOSITION 3.1 (Height of an excursion at a random time). If n ≥ 1,
N∗

n−1 ∼ P1
n−1(0,1) and K ′ ∼ U{0,1, . . . ,2n − 1} independent of N∗

n−1 and the
excursion (Se

2n(u))2n
u=0, then

Se
2n

(
K ′) ∼ Bi

(
N∗

n−1,1/2
)
.

PROOF. Mapping the pairing of leaves and internal nodes from the planted
binary tree to the excursion, we have that the heights in each pair differ by exactly
one because, by definition of the pairing, each leaf has one more left edge in its
path up to the root as compared to the internal node it is paired with.

Let J ∼ Be(1/2) independent of all else. Instead of choosing a random time
point K ′, we may as well choose with probability 1/2 the time point corresponding
to Leaf 1 (J = 0), and choose with probability 1/2 the time point paired with
the time point given by Leaf 1 (J = 1). Recall that the height of a time point
corresponding to a leaf is just one plus the number of left-edges M1,n in the path
to the root in the corresponding binary tree. From Lemma 2.2 with k = 1, we have
M1,n ∼ Bi(N∗

n−1 − 1,1/2). Let Xn be the height of the excursion at the time point
corresponding to the node chosen in the binary tree; we have Xn = 1 + M1,n − J .
Since J is independent of the tree and since 1 − J ∼ Be(1/2), we have Xn ∼
Bi(N∗

n−1,1/2), which proves the claim. �
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FIG. 7. Illustration of the bijection between a decorated binary tree of size 2n+ 1 with a spine and
random walk bridge of length 2n. Note that within sub-trees that grow to the left of the spine, the
depth-first exploration is done counterclockwise, whereas within sub-trees that grow to the right it is
done clockwise.

Random walk bridge. We now discuss the bijection between decorated binary
trees and random walk bridges; see Figure 7 for an example. We first mark the path
from Leaf 1 to the root. We call all the internal nodes along this path, including the
root, the spine (the trivial tree of size one has no internal node and, therefore, an
empty spine). As before, a left edge represents “+1” and a right-edge represents
“−1”. The exploration starts at the root. Whenever a spine node is visited, explore
first the child (and its subtree) that is not part of the spine, and then the child that is
next in the spine. Also, if the right child of a spine node is being explored and if that
child is not itself a spine node do the exploration clockwise, until the exploration
process is back to the spine. This makes each sub-tree to the left of the spine a
positive excursion and each sub-tree to the right a negative excursion; cf. Pitman
(2006), Exercise 7.4.14.

PROPOSITION 3.2 (Occupation time of bridge). If n ≥ 0, then

Lb
2n ∼ P1

n(0,1).

PROOF. The proof is straightforward by observing that the number of visits to
the origin Lb

2n is exactly the number of nodes in the path from Leaf 1 to the root
and then applying Proposition 2.1 with k = 1 and n replaced by n + 1. �

Random walk meander. We use a well-known bijection between random walk
bridges of length 2n and meanders of length 2n + 1; see Figure 8. Start the me-
ander with one positive step. Then, follow the absolute value of the bridge, except
that the last step of every negative excursion is flipped. Alternatively, consider the
random walk bridge difference sequence. Leave all the steps belonging to positive
excursions untouched, and multiply all steps belonging to negative excursions by
−1, except for the last step of each respective negative excursion (which must nec-
essarily be a “+1”). Now, start the meander with one positive step and then follow
the new difference sequence.
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0 1 2 · · · · · · 2n

0 1 2 · · · 2n + 1

FIG. 8. Illustration of the bijection between a random walk bridge of length 2n (above) and a
meander of length 2n + 1 (below).

PROPOSITION 3.3 (Final height of meander). If n ≥ 0, N∗
n ∼ P1

n(0,1), Xn ∼
Bi(N∗

n − 1,1/2) and Yn ∼ Bi(N∗
n ,1/2), then

Sm
2n+1(2n + 1) ∼ L (2Xn + 1), Sm

2n+2(2n + 2) ∼ L (2Yn|Yn > 0).

PROOF. It is clear that every negative excursion in the random walk will in-
crease the final height of the meander by two. Since the number of negative excur-
sions equals the number of left-edges in the spine of the corresponding binary tree,
the first identity follows directly from Lemma 2.2 for k = 1. To obtain a meander
of length 2n + 2, proceed as follows. First, consider a meander of length 2n + 1,
let 2Xn + 1 be its final height, and then add one additional time step to the mean-
der by means of an independent fair coin toss. The resulting process is a simple
random walk, conditioned to be positive from time steps 1 to 2n+1. The height of
this process at time 2n + 2 has distribution 2Yn, where we can take Yn = Xn + J

and where J ∼ Be(1/2) independent of Xn. However, the final height of this pro-
cess may now be zero. Hence, conditioning on the path being positive results in a
meander of length 2n + 2. This proves the second identity. �

Unconditional random walk. In order to represent an unconditional random
walk of length 2n+1, we use two decorated binary trees, the first tree representing
the bridge part of the random walk (i.e., the random walk until the last return to the
origin) and the second tree representing the meander part (i.e., the random walk
after the last return to the origin); see Figure 9. Note that every random walk of
odd length has a meander part. First, with equal probability, start either with the
two trivial trees 1 and + or with the two trivial trees 1 and − [representing
the random walk S1 with S1(1) = 1, resp., S1(1) = −1]. Then, perform Rémys
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FIG. 9. Bijection between a pair of decorated binary trees with a total size of 2n + 2 and an
unconditional random walk of length 2n + 1. The meander part of the walk is constructed through a
random walk bridge, which is plotted in dashed lines.

algorithm in exactly the same way as for a single tree. That is, at each time step,
a random node is chosen uniformly among all nodes of the two trees and then an
internal node as well as a new leaf are inserted. From these two trees, the random
walk is constructed in a straight forward manner: the first tree represents the bridge
part, whereas the second tree represents the meander part (if the initial second tree
was − , then the whole meander is first constructed as illustrated in Figure 8 and is
then flipped to become negative).

PROPOSITION 3.4 (Occupation time of random walk). If n ≥ 0, then

L2n ∼ P1
n(1,1), L2n+1 ∼P1

n(1,1).

PROOF. Note that the number of visits to the origin is exactly the number of
nodes in the path from Leaf 1 (which is always in the first tree) to the root. Hence,
we can use a similar urn embedding as for Proposition 2.1 with k = 1, except that
at the beginning the urn contains one black ball and one white ball (the black ball
representing the leaf of the second tree).

This proves the second identity of the proposition. To obtain the first identity,
take a random walk of length 2n + 1 and remove the last time step, obtaining
a random walk of length 2n. Since the number of visits to the origin cannot be
changed in this way, the first identity follows. �
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REMARK 3.5. Proposition 3.2 is implicitly used in Pitman (2006), Exer-
cise 7.4.14. The other propositions do not appear to have been stated explicitly
in the literature.

PROOF OF THEOREM 1.11. Cases (i) and (ii) are immediate from Theo-
rem 1.2 in combination with Proposition 3.4 and Proposition 3.2, respectively.
Using Proposition 3.1, case (iii) is proved in essentially the same way as case (iii)
of Theorem 1.8, also noting that the total variation error introduced by using K

instead of K ′ is of order O(n−1). Using Proposition 3.3, case (iv) for odd n is also
proved in essentially the same way as case (iii) of Theorem 1.8.

In order to prove case (iv) for even n, note that the total variation distance be-
tween L (Yn) and L (Yn|Yn > 0) is P[Yn = 0] = E2−N∗

n . Let Z ∼ GG(2,2); using
Theorem 1.2,

E2−N∗
n ≤ P

[
Nn < 1

2 log2 n
] + 2−1/2 log2 n

≤ P
[
Z < 1

2μ−1
n log2 n

] + dK
(
L (Nn/μn),L (Z)

) + n−1/2 = O
(
n−1/2)

.

Now, estimating dK(L (2Yn),GG(2,2)) again follows the proof of case (iii) of
Theorem 1.8. �

4. Proof of urn Theorem 1.2. In order to prove Theorem 1.2, we need a few
lemmas.

LEMMA 4.1. Let b ≥ 0, w > 0, Nn = Nn(b,w) ∼ P l
n(b,w) and let ni =

ni(b,w) = w + b + i + 	i/ l
 be the total number of balls in the P l
n(b,w) urn

after the ith draw. If m ≥ 1 is an integer and Dn,m(b,w) := ∏m−1
i=0 (i + Nn(b,w)),

then

EDn,m(b,w) =
m−1∏
j=0

(w + j)

n−1∏
i=0

(
1 + m/ni(b,w)

)
(4.1)

and for some positive values c := c(b,w, l,m) and C := C(b,w, l,m) not depend-
ing on n we have

cnml/(l+1) < E
[
Nn(b,w)m

]
< Cnml/(l+1).(4.2)

PROOF. Fix b,w and write Dn,m = Dn,m(b,w). We first prove (4.1). Condi-
tioning on the contents of the urn after draw and replacement n−1, and noting that
at each step, the number of white balls in the urn either stay the same or increase
by exactly one, we have

E{Dn,m|Nn−1} = Nn−1

nn−1

Dn−1,m(Nn−1 + m)

Nn−1
+ nn−1 − Nn−1

nn−1
Dn−1,m

= (1 + m/nn−1)Dn−1,m,
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which when iterated yields (4.1).
By the definition of ni ,

i + w + b − 1 + i/ l ≤ ni ≤ i + w + b + i/ l,

and now setting x = l/(l + 1) and y = (w + b − 1)l/(l + 1), we find for some
constants c,C not depending on n that

cnmx ≤ c
�(mx + y + x + n)

�(y + x + n)
≤ EDn,m ≤ C

�(mx + y + n)

�(y + n)
≤ Cnmx.(4.3)

The upper bound follows from this and the easy fact that ENm
n ≤ EDn,m. The

lower bound follows from (4.3) and the following inequality which follows from
Jensen’s inequality ENm

n = EDm
n,1 ≥ (EDn,1)

m. �

Our next result implies that biasing the distribution P l
n(b,w) against the r rising

factorial is the same as adding r white balls to the urn before starting the process,
and then removing r white balls at the end. We will only use the lemma for r =
l + 1, but state and prove it for general r because it is an interesting result in its
own right.

LEMMA 4.2. Let Nn(b,w) and Dn,m(b,w) be as in Lemma 4.1 and let r ≥ 2.
If N [r]

n = N [r]
n (b,w) is a random variable such that

P
[
N [r]

n = k
] = [∏r−1

i=0 (k + i)]P[Nn(b,w) = k]
EDn,r(b,w)

,(4.4)

then

Nn(b,w + r)
D= N [r]

n (b,w) + r.(4.5)

PROOF. Since Nn(b,w + r) and N [r]
n (b,w) + r are bounded variables, the

lemma follows by verifying their factorial moments are equal. With ni(b,w) as in
Lemma 4.1, for any m ≥ 1 we have

E

m−1∏
i=0

(
N [r]

n (b,w) + r + i
) = EDn,m+r (b,w)

EDn,r(b,w)

=
m−1∏
j=0

(w + r + j)

n∏
i=1

ni−1(b,w) + m + r

ni−1(b,w) + r

= EDn,m(b,w + r) = E

m−1∏
i=0

(
i + Nn(b,w + r)

);
the second and third equalities follow by (4.1) and the definition of ni(b,w), and
the last follows from the definition of Dn,m(b,w). �
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LEMMA 4.3. For Nn(1,w) ∼ P l
n(1,w) and l ≥ 1, there is a coupling of

N
(l+1)
n (1,w), a random variable having the (l + 1)-power bias distribution of

Nn(1,w), with a variable Nn−l(1,w + l + 1) ∼ P l
n−l(1,w + l + 1) such that for

some constant C := C(w, l),

P
[∣∣Nn−l(1,w + l + 1) − N(l+1)

n (1,w)
∣∣ > 2l + 1

] ≤ Cn−l/(l+1).

PROOF. Obviously, we can couple Nn(1,w + l + 1) ∼ P l
n(1,w + l + 1) with

Nn−l(1,w + l + 1) so that∣∣Nn−l(1,w + l + 1) − Nn(1,w + l + 1)
∣∣ ≤ l,

and then Lemma 4.2 implies that we may couple Nn(1,w + l + 1) with
N [l+1]

n (1,w) [with distribution defined at (4.4)] so that almost surely∣∣Nn−l(1,w + l + 1) − N [l+1]
n (1,w)

∣∣
≤ ∣∣Nn−l(1,w + l + 1) − (

N [l+1]
n (1,w) + l + 1

)∣∣ + l + 1

= ∣∣Nn−l(1,w + l + 1) − Nn(1,w + l + 1)
∣∣ + l + 1 ≤ 2l + 1.

And we show

dTV
(
L

(
N [l+1]

n (1,w)
)
,L

(
N(l+1)

n (1,w)
)) ≤ Cn−l/(l+1),(4.6)

where dTV is the total variation distance, which for integer-valued variables X and
Y can be defined in two ways:

dTV
(
L (X),L (Y )

) = 1

2

∑
z∈Z

∣∣P[X = z] − P[Y = z]∣∣ = inf
(X,Y )

P[X �= Y ];

here, the infimum is taken over all possible couplings of X and Y . Due to the latter
definition, (4.6) will imply the lemma since

P
[∣∣Nn−l(1,w + l + 1) − N(l+1)

n (1,w)
∣∣ > 2l + 1

]
= P

[∣∣Nn−l(1,w + l + 1) − N(l+1)
n (1,w)

∣∣
> 2l + 1,N [l+1]

n (1,w) �= N(l+1)
n (1,w)

]
≤ P

[
N [l+1]

n (1,w) �= N(l+1)
n (1,w)

]
.

Let νm = ENm
n (1,w) and note that we can write

∏l
i=0(x + i) = ∑l+1

i=0 aix
i for

nonnegative coefficients ai with al+1 = 1 (these coefficients are the unsigned Stir-
ling numbers). Also note that for nonnegative integers k and 0 ≤ i ≤ l +1, we have
ki ≤ kl+1, and hence νi ≤ νl+1. Thus,

2dTV
(
L

(
N [l+1]

n (1,w)
)
,L

(
N(l+1)

n (1,w)
))

= ∑
k≥0

∣∣P[
N [l+1]

n (1,w) = k
] − P[N(l+1)

n (1,w) = k)
∣∣
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= ∑
k

∣∣∣∣
∏l

i=0(k + i)

EDn,l+1(1,w)
− kl+1

νl+1

∣∣∣∣P[
Nn(1,w) = k

]

= ∑
k

∣∣∣∣∣
(
kl+1 +

l∑
i=0

aik
i

)
νl+1 − kl+1

(
νl+1 +

l∑
i=0

aiνi

)∣∣∣∣∣ P[Nn(1,w) = k]
νl+1EDn,l+1(1,w)

≤ Cνl/EDn,l+1(1,w) ≤ Cn−l/(1+l),

where the last line follows from (4.2) of Lemma 4.1. This proves the lemma. �

Below let Pn(b,w) be the distribution of the number of white balls in the clas-
sical Pólya urn started with b black balls and w white balls after n draws. Recall
that in the classical Pólya urn balls are drawn and returned to the urn along with an
additional ball of the same color [the notation is to suggest P∞

n (b,w) = Pn(b,w)].

LEMMA 4.4. There is a coupling (Qw(n), nVw)n≥1 with Qw(n) ∼ Pn(1,w)

and Vw ∼ B(w,1) such that |Qw(n) − nVw| ≤ w + 1 for all n almost surely.

PROOF. Using Feller (1968), equation (2.4), page 121, for w ≤ t ≤ w + n we
obtain

P
[
Qw(n) ≤ t

] =
w−1∏
i=0

t − i

n + w − i
.(4.7)

For U0,U1, . . . ,Uw−1 i.i.d. uniform (0,1) variables, we may set

Qw(n) = max
i=0,1,...,w−1

(
i + ⌈

(n + w − i)Ui

⌉)
,

since it is not difficult to verify that this gives the same cumulative distribution
function as in (4.7). By a well-known representation of the beta distribution, we
can take Vw = max(U0, . . . ,Uw−1), and with this coupling the claim follows. �

LEMMA 4.5. If Nn(0,w + 1) ∼ P l
n(0,w + 1) then

P l
n(1,w) =PNn(0,w+1)−w−1(1,w).

PROOF. Consider an urn with 1 black ball and w white balls. Balls are drawn
from the urn and replaced as follows. After the mth ball is drawn, it is replaced
in the urn along with another ball of the same color plus, if m is divisible by l,
an additional green ball. If H is the number of times a nongreen ball is drawn
in n draws, the number of white balls in the urn after n draws is distributed as
PH(1,w). The lemma follows after noting H +w+1 is distributed as P l

n(0,w+1)

[which by definition is the distribution of Nn(0,w + 1)] and the number of white
balls in the urn after n draws has distribution P l

n(1,w). �
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PROOF OF THEOREM 1.2. The asymptotic ENk
n � nkl/(l+1) is (4.2) of

Lemma 4.1. We now show that

lim
n→∞

ENl+1
n

nl
= w

(
l + 1

l

)l

.

The asymptotic ENk
n � nkl/(l+1) implies that

ENl+1
n

nl
= E

∏l
i=0(i + Nn)

nl
+ o(1).

The numerator in the fraction on the right-hand side of the equality can be written
using (4.1) from Lemma 4.1 with b = 1,w = w and m = l + 1 as

E

l∏
i=0

(i + Nn) = �(w + l + 1)

�(w)

n−1+	(n−1)/ l
∏
i=0

w + 1 + i + l + 1

w + 1 + i

×
	(n−1)/ l
∏

k=1

w + 1 + kl + k − 1

w + 1 + kl + k + l
,

and simplifying, especially noting the telescoping product in the final part of the
term (which critically depends on having taken m = l + 1), we have

E

l∏
i=0

(i + Nn) = �(w + l + 1)

�(w)

�(w + 2 + l + n + 	(n − 1)/ l
)�(w + 1)

�(w + l + 2)�(w + 1 + n + 	(n − 1)/ l
)

× w + 1 + l

w + l + 1 + 	(n − 1)/ l
(l + 1)

= w
�(w + 1 + l + n + 	(n − 1)/ l
)

�(w + 1 + n + 	(n − 1)/ l
)
× w + 1 + l + n + 	(n − 1)/ l


w + l + 1 + 	(n − 1)/ l
(l + 1)
.

The asymptotic for ENl+1
n now follows by taking the limit as n → ∞, using the

well-known fact that, for a > 0, limx→∞ �(x+a)
�(x)xa = 1 with x = w + 1 +n+	n−1

l

.

The claimed asymptotic for μn follows directly from that of ENl+1
n , and with

the order of the scaling μn in hand, the lower bound of Theorem 1.2 follows from
Peköz, Röllin and Ross (2013a), Lemma 4.1, which says that for a sequence of
scaled integer valued random variables (anNn), if an → 0 and ν is a distribution
with density bounded away from zero on some interval, then there is a positive
constant c such that dK(L (anNn), ν) ≥ can.

To prove the upper bound we will invoke Theorem 1.16 and so we want to
closely couple variables having marginal distributions equal to those of Nn/μn
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and N∗ = VwN
(l+1)
n /μn. Lemma 4.4 implies there is a coupling of variables

(Qw(n))n≥1 with corresponding marginal distributions (Pn(1,w))n≥1 satisfying∣∣VwN(l+1)
n − Qw

(
N(l+1)

n

)∣∣ ≤ w + 1 almost surely.

Further, by Lemma 4.3 we can construct a variable Nn−l(1,w + l + 1) ∼
P l

n−l(1,w + l + 1) such that

P
[∣∣Qw

(
Nn−l(1,w + l + 1)

) − Qw

(
N(l+1)

n

)∣∣ > 2l + 1
] ≤ Cn−l/(l+1);

here we used that |Qw(s) − Qw(t)| ≤ |s − t |. Recalling that P l
n−l(1,w + l + 1) =

P l
n(0,w+1), Lemma 4.5 says that we can set Nn = Qw(Nn−l(1,w+ l +1)−w−

1) and it is immediate that∣∣Qw

(
Nn−l(1,w + l + 1) − w − 1

) − Qw

(
Nn−l(1,w + l + 1)

)∣∣ ≤ w + 1

almost surely.

Thus, if we set b = (2w + 2l + 3)/μn then using the couplings above we find

P
[∣∣Nn/μn − VwN(l+1)

n /μn

∣∣ > b
] ≤ Cμ−1

n ≤ Cn−l/(l+1),

where the last inequality follows from (4.2) of Lemma 4.1 which also implies b ≤
Cn−l/(l+1). Using these couplings and the value of b in Theorem 1.16 completes
the proof. �

5. Stein’s method and proof of Theorem 1.16. We first provide a general
framework to develop Stein’s method for log-concave densities. The generalized
gamma is a special case of this class. We use the density approach which is due
to Charles Stein [see Reinert (2005)]. This approach has already been discussed in
other places in greater generality; see, for example, Chatterjee and Shao (2011),
Chen, Goldstein and Shao (2011) and Döbler (2012). However, it seems to have
gone unnoticed, at least explicitly, that the approach can be developed much more
directly for log-concave densities.

5.1. Density approach for log-concave distributions. Let B be a function
on the interval (a, b) where −∞ ≤ a < b ≤ ∞. Assume also B is absolutely
continuous on (a, b), CB = ∫ b

a e−B(z) dz < ∞ and B(a) := limx→a+ B(x) and
B(b) := limx→b− B(x) exist as values in R ∪ {∞} and we use these to extend the
domain of B to [a, b]. Assume that B has a left-continuous derivative on (a, b), de-
noted by B ′. From B , we can construct a distribution PB with probability density
function

ϕB(x) = CBe−B(x), a < x < b where C−1
B =

∫ b

a
e−B(z) dz.

Let L1(PB) be the set of measurable functions h on (a, b) such that∫ b

a

∣∣h(x)
∣∣e−B(x) dx < ∞.
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The distribution PB is log-concave if and only if B is convex. However, before
dealing with this special case, we state a few more general results.

PROPOSITION 5.1. If Z ∼ PB , we have

E
{
f ′(Z) − B ′(Z)f (Z)

} = 0

for all functions f for which the expectations exists and for which

lim
x→a+ f (x)e−B(x) = lim

x→b− f (x)e−B(x) = 0.

PROOF. Integration by parts. We omit the straightforward details. �

Now, for h ∈ L1(PB) and Z ∼ PB , let

h̃(x) = h(x) −Eh(Z)

and, for x ∈ (a, b),

fh(x) = eB(x)
∫ x

a
h̃(z)e−B(z) dz = −eB(x)

∫ b

x
h̃(z)e−B(z) dz.(5.1)

The key fact is that fh satisfies the differential (Stein) equation

f ′
h(x) − B ′(x)fh(x) = h̃(x), x ∈ (a, b).(5.2)

Define the Mills’s-type ratios

κa(x) = eB(x)
∫ x

a
e−B(z) dz, κb(x) = eB(x)

∫ b

x
e−B(z) dz.(5.3)

From (5.1) and (5.2), we can easily deduce the following nonuniform bounds.

LEMMA 5.2. If h ∈ L1(PB) is bounded, then for all x ∈ (a, b),∣∣fh(x)
∣∣ ≤ ‖h̃‖(

κa(x) ∧ κb(x)
)
,(5.4) ∣∣f ′

h(x)
∣∣ ≤ ‖h̃‖{

1 + ∣∣B ′(x)
∣∣(κa(x) ∧ κb(x)

)}
.(5.5)

In the case of convex functions, we can easily adapt the proof of Stein (1986) to
obtain the following uniform bounds.

LEMMA 5.3. If B is convex on (a, b) with unique minimum x0 ∈ [a, b], then
for any h ∈ L1(PB),

‖fh‖ ≤ ‖h̃‖eB(x0)

CB

,
∥∥B ′fh

∥∥ ≤ ‖h̃‖, ∥∥f ′
h

∥∥ ≤ 2‖h̃‖.(5.6)
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PROOF. By convexity, we clearly have

x0 ≤ x ≤ z ≤ b �⇒ B(x) ≤ B(z) and B ′(x) ≤ B ′(z).(5.7)

This implies that for x > x0∫ b

x
e−B(z) dz ≤

∫ b

x

B ′(z)
B ′(x)

e−B(z) dz = e−B(x) − e−B(b)

B ′(x)
≤ e−B(x)

B ′(x)
,

where in the last bound we use (5.7) which implies B ′(x) > 0. So

B ′(x)κb(x) ≤ 1.(5.8)

Now, from this we have for x > x0

κ ′
b(x) = −1 + B ′(x)κb(x) ≤ 0.

Similarly, we have

a ≤ z ≤ x ≤ x0 �⇒ B(z) ≥ B(x) and
∣∣B ′(z)

∣∣ ≥ ∣∣B ′(x)
∣∣.(5.9)

So, using (5.9), for x < x0,∫ x

a
e−B(z) dz ≤

∫ x

a

|B ′(z)|
|B ′(x)|e

−B(z) dz = e−B(x) − e−B(a)

|B ′(x)| ≤ e−B(x)

|B ′(x)| ,
thus ∣∣B ′(x)

∣∣κa(x) ≤ 1,(5.10)

and so for x < x0

κ ′
a(x) = 1 + B ′(x)κa(x) ≥ 0.

From (5.4), we obtain

‖f ‖ ≤ ‖h̃‖ sup
x

{
κa(x), if x < x0,
κb(x), if x ≥ x0.

Hence, having an increasing bound on x < x0 and a decreasing bound on x > x0,
implies that there is a maximum at x0 and

‖f ‖ ≤ ‖h̃‖(
κa(x0) ∨ κb(x0)

)
.

The first bound of (5.6) now follows from the fact that κa(x0)∨ κb(x0) ≤ κa(x0)+
κb(x0). The second bound of (5.6) follows from (5.4) in combination with (5.8)
and (5.10). Using (5.5), the third bound of (5.6) follows in the same way. �

REMARK 5.4. Lemma 5.3 applies to the standard normal distribution in which
case B(x) = x2/2, x0 = 0, and CB = (2π)−1/2 and (5.6) implies

‖fh‖ ≤ ‖h̃‖√2π,
∥∥f ′

h

∥∥ ≤ 2‖h̃‖.
The best-known bounds are given in Chen, Goldstein and Shao (2011), Lemma 2.4,
which improve the first bound by a factor of 2 and match the second. In the special
case of the form h(·) = I[· ≤ t], Chen, Goldstein and Shao (2011), Lemma 2.3,
matches the bound of Lemma 5.3 of |xfh(x)| ≤ ‖h̃‖.
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Though not used below explicitly, we record the following theorem summariz-
ing the utility of the lemmas above.

THEOREM 5.5. Let B be convex on (a, b) with unique minimum x0, Z ∼ PB ,
and W be a random variable on (a, b). If F is the set of functions on (a, b) such
that for f ∈ F

‖f ‖ ≤ eB(x0)

CB

,
∥∥B ′f

∥∥ ≤ 1,
∥∥f ′∥∥ ≤ 2,

then

sup
t∈(a,b)

∣∣P[Z ≤ t] − P[W ≤ t]∣∣ ≤ sup
f ∈F

∣∣E{
f ′(W) − B ′(W)f (W)

}∣∣.
PROOF. For t ∈ (a, b), if ht (x) = I[x ≤ t], then taking the expectation in (5.2)

implies that

P[W ≤ t] − P[Z ≤ t] = E
{
f ′

t (W) − B ′(W)ft (W)
}
,(5.11)

where ft satisfies (5.2) with h = ht . Taking the absolute value and the supremum
over t ∈ (a, b) on both sides of (5.11), we find

sup
t∈(a,b)

∣∣P[W ≤ t] − P[Z ≤ t]∣∣ = sup
t∈(a,b)

∣∣E{
f ′

t (W) − B ′(W)ft (W)
}∣∣.

The result follows since ht (x) ∈ [0,1] implies ‖h̃‖ ≤ 1, and so by Lemma 5.3,
ft ∈ F for all t ∈ (a, b). �

Finally, we will need the following two lemmas to develop Stein’s method. The
proofs are standard, and can be easily adopted from the normal case; see, for ex-
ample, Chen and Shao (2005) and Raič (2003).

LEMMA 5.6 (Smoothing inequality). Let B be convex on (a, b) with unique
minimum x0 and let Z ∼ PB . Then, for any random variable W taking values in
(a, b) and for any ε > 0, we have

dK
(
L (W),L (Z)

) ≤ sup
a<s<b

∣∣Ehs,ε(W) −Ehs,ε(Z)
∣∣ + CBe−B(x0)ε,

where

hs,ε(x) = 1

ε

∫ ε

0
I[x ≤ s + u]du.(5.12)

LEMMA 5.7 (Bootstrap concentration inequality). Let B be convex on (a, b)

with unique minimum x0 and let Z ∼ PB . Then, for any random variable W taking
values in (a, b), for any a < x < b, and for any ε > 0, we have

P[s ≤ W ≤ s + ε] ≤ CBe−B(x0)ε + 2dK
(
L (W),L (Z)

)
.
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5.2. Application to the generalized gamma distribution. We use the general
results of Section 5.1 to prove the following more explicit statement of Theo-
rem 1.16 for the generalized gamma distribution.

THEOREM 5.8. Let Z ∼ GG(α,β) for some α ≥ 1, β ≥ 1 and let W be a non-
negative random variable with EWβ = α/β . Let W ∗ have the (α,β)-generalized
equilibrium transformation of Definition 1.14. If β = 1 or β ≥ 2, then for all
0 < b ≤ 1,

dK
(
L (W),L (Z)

)
≤ b

[
10Mα,β + 2β(β − 1)

(
1 + 2β−2(

EWβ−1 + bβ−1))
M ′

α,β + 4βEWβ−1]
+ 4

(
2 + (β + α − 1)M ′

α,β

)
P

[∣∣W − W ∗∣∣ > b
]
,

where here and below

Mα,β := α1−1/ββ1/βe−4/9+1/(6((α−1)/β)+9/4)

(
2
α − 1

β
+ 1

)−1/2

≤ e1/eα1−1/β

(
2
α − 1

β
+ 1

)−1/2

,

M ′
α,β := √

2πe−1/(6((α−1)/β)+9/4)

(
α − 1

β
+ 1/2

)1/2(
α − 1

β
+ 1

)1/β

α−1

≤ √
2π

(
α − 1

β
+ 1/2

)1/2(
α − 1

β
+ 1

)1/β

α−1.

If 1 < β < 2, then for all 0 < b ≤ 1,

dK
(
L (W),L (Z)

)
≤ b

(
10Mα,β + 4βEWβ−1) + 2βbβ−1M ′

α,β

+ 4
(
2 + (β + α − 1)M ′

α,β

)
P

[∣∣W − W ∗∣∣ > b
]
.

REMARK 5.9. For a given α and β , the constants in the theorem may be sharp-
ened. For example, the case α = β = 1 of the theorem is the exponential approxi-
mation result (2.5) of Theorem 2.1 of Peköz and Röllin (2011), but here with larger
constants. These larger constants come from three sources: first, below we bound
some maximums of nonnegative numbers by sums for the sake of simple formu-
las (only if all but one of the terms in the maximum is positive is there any hope
of optimality in the constants). Second, Mα,β and M ′

α,β arise from bounds on the
generalized gamma density, achieved by using both sides of the inequalities in The-
orems 5.10 and 5.11 below. These inequalities are not optimal at the same value
for each side, so some precision could be gained by using the appropriate exact
bounds on the density which in principle are recoverable from the work below, but
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not particularly informative. Finally, in special cases more information about the
Stein solution may be obtained. For example, in Peköz and Röllin (2011) the term
|g(W) − g(W ∗)| that appears in the proof of Theorem 5.8 is there bounded by 1,
whereas following Lemma 5.16, our general bound specializes to 2‖g‖ ≤ 4.3.

In the notation of Section 5.1, for the generalized gamma distribution we have
ϕα,β(x) = Ce−B(x), x > 0 with a = 0 and b = ∞, and

B(x) = xβ − (α − 1) logx, C = β

�(α/β)
.

If α ≥ 1 and β ≥ 1, then B has nonnegative second derivative and is thus convex.
Since

B ′(x) = βxβ−1 − (α − 1)

x
,

B has a unique minimum at x0 = (α−1
β

)1/β . Hence,

B(x0) = ψ

(
α − 1

β

)
with ψ(x) = x − x log(x),ψ(0) = 0,

and

Ce−B(x0) = Ce−ψ((α−1)/β).(5.13)

In order to apply Lemmas 5.6 and 5.7, we need to bound (5.13), for which we use
the following two results about the gamma function.

THEOREM 5.10 [Batir (2008), Corollary 1.2]. For all x ≥ 0,
√

2e4/9 ≤ �(x + 1)

xxe−x−1/(6x+9/4)
√

x + 1/2
≤ √

2π.

THEOREM 5.11 [Wendel (1948), (7)]. If x > 0 and 0 ≤ s ≤ 1, then(
x

x + s

)1−s

≤ �(x + s)

xs�(x)
≤ 1.

LEMMA 5.12. If C, B , and x0 are as above for the generalized gamma distri-
bution and α ≥ 1, β ≥ 1, then Ce−B(x0) ≤ Mα,β

PROOF. Using Theorem 5.10 with x = (α − 1)/β in the inequality below im-
plies

e−B(x0) =
(

α − 1

β

)(α−1)/β

e−(α−1)/β

(5.14)

≤ �

(
α − 1

β
+ 1

)
e−4/9+1/(6((α−1)/β)+9/4)

(
2
α − 1

β
+ 1

)−1/2

.
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Since C = β/�(α/β), Theorem 5.11 with x = α/β and s = 1 − 1/β yields

C�

(
α − 1

β
+ 1

)
≤ α1−1/ββ1/β,

and combining this with (5.14), the lemma follows. �

We can also now prove the following lemma which is used in applying
Lemma 5.3.

LEMMA 5.13. If B and x0 are as above for the generalized gamma distribu-
tion and β ≥ 1, α ≥ 1, then eB(x0)�(α/β)/β ≤ M ′

α,β .

PROOF. Using Theorem 5.10 with x = (α − 1)/β in the following inequality,
we find

eB(x0) =
(

α − 1

β

)−(α−1)/β

e(α−1)/β

(5.15)

≤ √
2πe−1/(6((α−1)/β)+9/4)

(
α − 1

β
+ 1/2

)1/2

�

(
α − 1

β
+ 1

)−1

.

Now, Theorem 5.11 with x = α/β and s = 1 − 1/β yields

�(α/β)

�(((α − 1)/β) + 1)
≤ r

α

(
α − 1

β
+ 1

)1/β

,

and combining this with (5.15), the lemma follows. �

Before proving Theorem 5.8, we collect properties of the Stein solution for the
generalized gamma distribution, which, according to (5.1) and (5.2) satisfies

f (x) := fh(x) = x1−αexβ
∫ x

0
h̃(z)zα−1e−zβ

dz,

(5.16)

f ′(x) +
(

α − 1

x
− βxβ−1

)
f (x) = h̃(x).

First, we record a straightforward application of Lemmas 5.3 and 5.13.

LEMMA 5.14. If f is given by (5.16), then

‖f ‖ ≤ ‖h̃‖M ′
α,β,

∥∥f ′∥∥ ≤ 2‖h̃‖.
LEMMA 5.15. If f is given by (5.16), x > 0, |t | ≤ b ≤ 1, and x + t > 0, then

for β = 1 and β ≥ 2,∣∣(x + t)β−1f (x + t) − xβ−1f (x)
∣∣

≤ ‖h̃‖b[
(β − 1)

(
1 + 2β−2(

xβ−1 + bβ−1))
M ′

α,β + 2xβ−1] =: ‖h̃‖Cb,α,β(x).
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For 1 < β < 2, we have∣∣(x + t)β−1f (x + t) − xβ−1f (x)
∣∣

≤ ‖h̃‖(
bβ−1M ′

α,β + 2bxβ−1) =: ‖h̃‖Cb,α,β(x).

PROOF. Observe that for all β ≥ 1,∣∣(x + t)β−1f (x + t) − xβ−1f (x)
∣∣

≤ ∣∣(x + t)β−1 − xβ−1∣∣∣∣f (x + t)
∣∣ + xβ−1∣∣f (x + t) − f (x)

∣∣(5.17)

≤ ∣∣(x + t)β−1 − xβ−1∣∣‖f ‖ + bxβ−1∥∥f ′∥∥.
In all cases, we use Lemma 5.14 to bound the norms appearing in (5.17). For the
remaining term, if β = 1, then |(x + t)β−1 − xβ−1| = 0 and the result follows.

If β ≥ 2, then the mean value theorem implies∣∣(x + t)β−1 − xβ−1∣∣ ≤ |t |(β − 1)
(
x + |t |)β−2 ≤ b(β − 1)(x + b)β−2.

Since β ≥ 2,

(x + b)β−2 ≤ max
{
1, (x + b)β−1} ≤ max

{
1,2β−2(

xβ−1 + bβ−1)}
,

where the last inequality is Hölder’s, and the result in this case follows by bounding
the maximum by the sum.

For 1 < β < 2, since xβ−1 is concave and increasing, |(x + t)β−1 − xβ−1| is
maximized when x = 0 and t = b in which case it equals bβ−1. �

LEMMA 5.16. If f is given by (5.16), and we define

g(x) = f ′(x) + α − 1

x
f (x), x > 0,(5.18)

then

g(x) = h̃(x) + βxβ−1f (x),(5.19)

and for β ≥ 1,

‖g‖ ≤ ‖h̃‖max
{
2 + (α − 1)M ′

α,β,1 + βM ′
α,β

} ≤ ‖h̃‖(
2 + (β + α − 1)M ′

α,β

)
.

PROOF. The fact that (5.18) equals (5.19) is a simple rearrangement of the
second equality of (5.16).

For the bounds, if x ≥ 1, then (5.18) implies∣∣g(x)
∣∣ ≤ ∥∥f ′∥∥ + (α − 1)‖f ‖,

and if x ≤ 1, then (5.19) implies∣∣g(x)
∣∣ ≤ ‖h̃‖ + β‖f ‖,
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so that

‖g‖ ≤ max
{∥∥f ′∥∥ + (α − 1)‖f ‖,‖h̃‖ + β‖f ‖}

,

and the result follows from Lemma 5.14. �

The purpose of introducing g in Lemma 5.16 is illustrated in the following
lemma.

LEMMA 5.17. If f is a bounded function on [0,∞) with bounded derivative
such that f (0) = 0, W ≥ 0 is a random variable with EWβ = α/β , and W ∗ has
the (α,β)-generalized equilibrium distribution of W as in Definition 1.14, then for
g(x) = f ′(x) + (α − 1)x−1f (x),

Eg
(
W ∗) = βEWβ−1f (W).

PROOF. If Vα ∼ B(α,1) is independent of W(β) having the β-power bias dis-
tribution of W , then we can set W ∗ = VαW(β) and

Ef ′(W ∗) = Ef ′(VαW(β)) = β

α
EWβf ′(VαW)

(5.20)

= βEWβ
∫ 1

0
uα−1f ′(uW)du.

The case α = 1 easily follows from performing the integration in (5.20), keeping
in mind that f (0) = 0. If α > 1, similar to the computation of (5.20),

(α − 1)E
f (W ∗)

W ∗ = β(α − 1)EWβ−1
∫ 1

0
uα−2f (uW)du.(5.21)

Applying integration by parts in (5.21) and noting f (0) = 0 yields

(α − 1)E
f (W ∗)

W ∗ = βE

{
Wβ−1

(
f (W) − W

∫ 1

0
uα−1f ′(uW)du

)}
,(5.22)

and adding the right-hand sides of (5.20) and (5.22) yields the lemma. �

We are now in a position to prove our generalized gamma approximation result.

PROOF OF THEOREM 5.8. Let δ = dK(L (W),L (Z)) and let hs,ε be the
smoothed indicators defined at (5.12) in Lemma 5.6. From Lemmas 5.6 and 5.12,
we have for every ε > 0,

δ ≤ sup
s>0

∣∣Ehs,ε(W) −Ehs,ε(Z)
∣∣ + Mα,βε.(5.23)
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Fix ε and s, let f solve the Stein equation given explicitly by (5.16) with h := hs,ε

and let g be as in Lemma 5.16. By Lemma 5.17,

Eh(W) −Eh(Z) = E
{
f ′(W) − B ′(W)f (W)

}
= E

{
f ′(W) −

(
βWβ−1 − α − 1

W

)
f (W)

}

= E
{
g(W) − βWβ−1f (W)

} = E
{
g(W) − g

(
W ∗)}

.

And we want to bound this last term since in absolute value it is equal to the first
part of the bound in (5.23). With I1 = I[|W − W ∗| ≤ b],∣∣E{

g(W) − g
(
W ∗)}∣∣

(5.24)
≤ 2‖g‖P[∣∣W − W ∗∣∣ > b

] + ∣∣E{
I1

(
g(W) − g

(
W ∗))}∣∣.

Note from the representation (5.19) of g, if x > 0, |t | ≤ b ≤ 1, and x + t > 0,

g(x + t) − g(x) = h(x + t) − h(x) + β
(
(x + t)β−1f (x + t) − xβ−1f (x)

)
and since |h(x + t) − h(x)| ≤ ε−1 ∫ t∨0

t∧0 I[s < x + u ≤ s + ε]du, we apply
Lemma 5.15 to find∣∣E{

I1
(
g(W) − g

(
W ∗))}∣∣

(5.25)

≤ 1

ε
sup
s≥0

∫ b

0
P[s < W + u ≤ s + ε]du + Cb,α,β,

where Cb,α,β := ECb,α,β(W) and Cb,α,β(x) is defined in Lemma 5.15; and observe
that for 1 < β < 2, Cb,α,β is bounded since EWβ−1 ≤ (EWβ)(β−1)/β .

Now using Lemmas 5.7 and 5.12 to find

P[s < W + u ≤ s + ε] ≤ Mα,βε + 2δ

and combining (5.23), (5.24) and (5.25), we have

δ ≤ Mα,βε + 2‖g‖P[∣∣W − W ∗∣∣ > b
] + Cb,α,β + bMα,β + 2ε−1bδ.

Applying Lemma 5.16 to bound ‖g‖, setting ε = 4b, and solving for δ now yields
the bounds of the theorem. �
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