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Abstract The gamut mapping algorithm is one of the most

promising methods to achieve computational color con-

stancy. However, so far, gamut mapping algorithms are re-

stricted to the use of pixel values to estimate the illuminant.

Therefore, in this paper, gamut mapping is extended to

incorporate the statistical nature of images. It is analytically

shown that the proposed gamut mapping framework is able

to include any linear filter output. The main focus is on the

local n-jet describing the derivative structure of an image. It

is shown that derivatives have the advantage over pixel val-

ues to be invariant to disturbing effects (i.e. deviations of the

diagonal model) such as saturated colors and diffuse light.

Further, as the n-jet based gamut mapping has the ability

to use more information than pixel values alone, the combi-

nation of these algorithms are more stable than the regular

gamut mapping algorithm. Different methods of combining

are proposed.

Based on theoretical and experimental results conducted

on large scale data sets of hyperspectral, laboratory and real-

world scenes, it can be derived that (1) in case of deviations

of the diagonal model, the derivative-based approach outper-

forms the pixel-based gamut mapping, (2) state-of-the-art

algorithms are outperformed by the n-jet based gamut map-

ping, (3) the combination of the different n-jet based gamut
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mappings provide more stable solutions, and (4) the fusion

strategy based on the intersection of feasible sets provides

better color constancy results than the union of the feasible

sets.
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1 Introduction

The color of a light source has a significant influence on the

measurements of object colors in a scene. Fortunately, hu-

mans have, to some extent, the ability of color constancy:

they perceive the same color of an object despite large

differences in illumination (Delahunt and Brainard 2004;

Foster et al. 2006). Various computer vision related topics

like human-computer interaction (Yang et al. 1998), color

appearance models (Fairchild 2005) and color feature ex-

traction (Gevers and Smeulders 2000) would benefit from a

similar ability.

Many color constancy algorithms have been proposed,

see (Hordley 2006) for a recent overview. Two widely used

algorithms make use of simple statistics of the image to es-

timate the color of the illuminant. One is based on the as-

sumption that the average color in a scene is achromatic,

called the Grey-World assumption (Buchsbaum 1980), while

the other assumes that the maximum response in a scene is

caused by a perfect reflectance, called the White-Patch as-

sumption (Land 1977). Similar methods are the Shades of

Grey algorithm (Finlayson and Trezzi 2004), which actually

embodies the Grey-World and the White-Patch algorithms

as special cases, and the Grey-Edge algorithm (van de Wei-

jer et al. 2007a), which extends these algorithms to include

higher-order statistics (e.g. edges). Other examples of color
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constancy algorithms include methods that use knowledge

acquired in a learning phase (Brainard and Freeman 1997;

D’Zmura et al. 1995; Gehler et al. 2008; Gijsenij and Gevers

2007; van de Weijer et al. 2007b) and gamut-based methods

(Finlayson et al. 2001; Finlayson et al. 2006; Forsyth 1990;

Gijsenij et al. 2007). Gamut-based methods are very promis-

ing algorithms to achieve color constancy with high accu-

racy. Therefore, in this paper, we focus on this type of algo-

rithm.

Gamut mapping algorithms are restricted to the use of

pixel values to estimate the illuminant. They are based on

the simplifying assumption that in real-world images, un-

der a given light source, only a limited number of colors

are observed. However, because the focus is solely on pixel

values, additional information that is present in higher-order

structures is ignored. Recent work by van de Weijer et al.

(2007a) has shown that image derivatives can be used to

improve color constancy. The Grey-World algorithm is ex-

tended to incorporate derivative information, resulting in the

Grey-Edge algorithm.

In this paper, the aim is to provide a gamut mapping

framework by extending the original gamut mapping ap-

proach to enable the incorporation of any linear filter out-

put. The main focus will be on the local n-jet (i.e. deriv-

ative information). It has been shown that the n-jet com-

pletely describes the derivative structure of an image (Kass

and Witkin 1987; Koenderink and van Doorn 1987). Hence,

instead of using pixel values only, edges and higher-order

structures are included in the n-jet description. As the n-jet

based gamut mapping framework generates a number of al-

gorithms, more stable solutions can be found by using the

additional information simultaneously. Consequently, dif-

ferent ways of combining these algorithms are proposed to

estimate the illuminant. The first approach is by using the

feasible sets obtained by the different algorithms, and com-

bining these sets into a new feasible set. The same estimator

used for the original gamut mapping algorithm is applied to

these new feasible sets which results in the final estimate.

The second fusion approach considers the different gamut

mapping algorithms as independent algorithms and the fu-

sion is at the level of the outputs of the algorithms.

The paper is organized as follows. In Sects. 2 and 3, color

constancy is defined and the original gamut mapping is ex-

plained, respectively. In Sect. 4, the gamut mapping is ex-

tended to incorporate the derivative information in terms of

the n-jet. In Sect. 5, the different combination strategies are

discussed. Finally, in Sects. 6 and 7, the experimental results

and the conclusions are presented.

2 Color Constancy

In this paper, the aim of color constancy is to estimate the

color of the light source. This estimate is used to transform

the original image, so that it appears if it was taken under a

canonical (often white) light source. To model this process,

in this section, image formation and transformation are con-

sidered. Therefore, in Sect. 2.1, the image formation model

is considered first. Then, in Sect. 2.2, the model to transform

images from one light source to another is presented.

2.1 Reflection Model

An image f can be modeled under the assumption of Lam-

bertian reflectance as follows:

f(x) =

∫

ω

e(λ)ρk(λ)s(x, λ)dλ, (1)

where e(λ) is the color of the light source, s(x, λ) is de sur-

face reflectance and ρk(λ) is the camera sensitivity function

(k ∈ {R,G,B}). Further, ω and x are the visible spectrum

and the spatial coordinates respectively.

In order to create a more realistic model, Shafer (Shafer

1985) proposes to add a “diffuse” light term to the model

of (1). The diffuse light is considered to have low intensity

and to be coming from all directions in an equal amount:

f(x) =

∫

ω

e(λ)ρk(λ)s(x, λ)dλ +

∫

ω

a(λ)ρk(λ), (2)

where a(λ) is the term that models the diffuse light. Using

this equation, objects under daylight can be modeled more

accurately, since daylight consists of both a point source (the

sun) and diffuse light coming from the sky. However, the

assumption that diffuse light is equal in all directions does

not often hold in practice. A more realistic approximation is

to consider the diffuse light to be dependent on the position

in the image, according to:

f(x) =

∫

ω

e(λ)ρk(λ)s(x, λ)dλ +

∫

ω

a(x, λ)ρk(λ), (3)

where we assume the dependence of the position to be low-

frequent, which is as indicated by the overline.

By assuming that the color of the light source e depends

on the color of the light source e(λ) as well as the camera

sensitivity function ρk(λ), color constancy is then equivalent

to the estimation of e:

e =

∫

ω

e(λ)ρk(λ)dλ. (4)

Since, in general, only the image values of f are known, this

is an under-constrained problem, and it therefore cannot be

solved without further assumptions.

2.2 Diagonal Model

In this paper, color constancy is achieved by determining

the color of the light source of an input image. However, in
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many cases the color of the light source is of less impor-

tance than the appearance of the input image under a ref-

erence light. Therefore, the aim of most of the color con-

stancy methods is to transform all colors of the input image,

taken under an unknown light source, to colors as they ap-

pear under a reference light source. This transformation can

be modeled by a diagonal mapping or von Kries Model (von

Kries 1970). The diagonal mapping is given as follows:

f c = Du,cfu, (5)

where fu is the image taken under an unknown light source,

f c is the same image transformed, so it appears if it was

taken under the reference light (called canonical illuminant),

and Du,c is a diagonal matrix which maps colors that are

taken under an unknown light source u to their correspond-

ing colors under the canonical illuminant c:

⎛

⎝

Rc

Gc

Bc

⎞

⎠ =

⎛

⎝

α 0 0

0 β 0

0 0 γ

⎞

⎠

⎛

⎝

Ru

Gu

Bu

⎞

⎠ . (6)

However, under some conditions, the diagonal model is

too strict, and no solutions are found (this situation is called

the null solution problem). This could be caused by satu-

rated colors, the presence of surfaces that were not repre-

sented in the canonical gamut or scattering in the lens (veil-

ing illumination), for instance. To overcome this, Finlayson

et al. (2005) accounted for this shortcoming by adding an

offset term to the diagonal model, resulting in the diagonal-

offset model:

⎛

⎝

Rc

Gc

Bc

⎞

⎠ =

⎛

⎝

α 0 0

0 β 0

0 0 γ

⎞

⎠

⎛

⎝

Ru

Gu

Bu

⎞

⎠ +

⎛

⎝

o1

o2

o3

⎞

⎠ . (7)

Deviations from the diagonal model are reflected in the off-

set term (o1, o2, o3)
T . Ideally, this term will be zero, which

is the case when the diagonal model is valid.

Interestingly, by means of the offset, the diagonal model

also takes diffuse lighting into account as approximated

by (2). To obtain position dependent diffuse lighting of (3),

the following model is proposed, called local-diagonal-

offset model:

⎛

⎝

Rc

Gc

Bc

⎞

⎠ =

⎛

⎝

α 0 0

0 β 0

0 0 γ

⎞

⎠

⎛

⎝

Ru

Gu

Bu

⎞

⎠ +

⎛

⎝

o1(x)

o2(x)

o3(x)

⎞

⎠ . (8)

In conclusion, (8) is more robust against deviations from

the diagonal model (e.g. saturated colors), diffuse light (as-

suming that the dependence of the position is low-frequent)

and veiling illumination and hence will be used in the re-

mainder of this paper.

3 Gamut Mapping

The gamut mapping algorithm has been introduced by

Forsyth (1990). It is based on the assumption, that in real-

world images, for a given illuminant, one observes only a

limited number of colors. Consequently, any variations in

the colors of an image (i.e. colors that are different from the

colors that can be observed under a given illuminant) are

caused by a deviation in the color of the light source. This

limited set of colors that can occur under a given illuminant

is called the canonical gamut C , and it is found in a training

phase by observing as many surfaces under one known light

source (called the canonical illuminant) as possible.

In general, a gamut mapping algorithm takes as input an

image taken under an unknown light source (i.e. an image

of which the illuminant is to be estimated), along with the

precomputed canonical gamut. Next, the algorithm consists

of three important steps:

1. Estimate the gamut of the unknown light source by as-

suming that the colors in the input image are represen-

tative for the gamut of the unknown light source. So,

all colors of the input image are collected in the input

gamut I .

2. Determine the set of feasible mappings M, i.e. all map-

pings that can be applied to the gamut of the input im-

age and that result in a gamut that lies completely within

the canonical gamut. Under the assumption of the di-

agonal mapping, a unique mapping exists that converts

the gamut of the unknown light source to the canoni-

cal gamut. However, since the gamut of the unknown

light source is simply estimated by using the gamut of

one input image, in practice several mappings are ob-

tained. Every mapping i in the set M should take the

input gamut completely inside the canonical gamut:

Mi I ∈ C. (9)

3. Apply an estimator to select one mapping from the set of

feasible mappings. The selected mapping can be applied

to the canonical illuminant to obtain an estimate of the

unknown illuminant. The original method (Forsyth 1990)

used the heuristic that the mapping resulting in the most

colorful scene, i.e. the diagonal matrix with the largest

trace, is the most suitable mapping. Alternatives are the

average of the feasible set or a weighted average (Barnard

2000).

These are the basic steps of gamut mapping algorithms.

Several extensions have been proposed. Difficulties in im-

plementation are addressed in (Finalyson 1996; Finlayson

and Hordley 2000), where it is shown that the gamut map-

ping algorithm can also be computed in chromaticity space

(R
B

, G
B

). However, the performance of this 2D approach is

a slightly lower than the performance of the 3D approach.
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Dependency on the diagonal model is addressed in (Barnard

2000), where the canonical gamut is systematically enlarged

by accounting for deviation of the diagonal model. In (Fin-

layson et al. 2005), the diagonal-offset model is introduced

to account for diffuse light. Further, in (Finlayson et al.

2006), the problem of illuminant estimation is effectively re-

duced to the problem of illuminant classification, resulting

in the gamut-constrained illuminant estimation algorithm.

Finally, in (Finlayson and Xu 2003) an efficient implemen-

tation is introduced using convex programming.

4 Gamut Mapping using Derivative Structures

As discussed above, gamut mapping is based on the assump-

tion that only a limited set of colors is observed under a cer-

tain illuminant. Multiple phenomena in nature (e.g. blurring)

and imaging conditions (e.g. scaling) can cause the mix-

ture of colors. Therefore, if two colors are observed under

a certain illuminant, then also all colors in between could

be observed under this illuminant, since the set of all pos-

sible colors which can be seen under a certain illuminant

form a convex hull (i.e. gamut). In this paper, the gamut the-

ory is extended by proving that the above is not only true

for image values but also for every linear combination of

image values. Hence, the correct estimate of an illuminant

will also map every gamut which is constructed by a linear

combination of image values back into the canonical gamut

constructed with the same linear operation.

4.1 Gamut Mapping of Linear Combinations of Pixel

Values

In the previous section, we have shown that the image values

form a gamut, and that the transformations of the gamuts

under illuminant changes follows the models give in (5)–(8).

Here we will look at the image gamuts which are formed by

a linear combination of image values.

Consider a set of image values:

F = {f1, f2, . . . , fn} (10)

were f = {R,G,B}, and a image feature g which is a linear

combination of image values g = wT F.

If we consider the von Kries Model the relation between

the image values of an object taken under two different light

sources is modeled by the diagonal model f = Df ′. Then for

the feature g the following holds:

g = wT F = w1f1 + w2f2 + · · · + wnfn

= w1Df ′
1 + w2Df ′

2 + · · · + wnDf ′
n

= D
(

w1f ′
1 + w2f ′

2 + · · · + wnf ′
n

)

= D
(

wT F′
)

= Dg′, (11)

proving that also for measurements g the diagonal models

holds. The above is of importance, because it shows that

gamut mapping can also be performed on all measurements

g which are a linear combination of the image values f.

Next, if we consider the diagonal-offset model given by

f = Df ′ + o then,

g = wT F = w1f1 + w2f2 + · · · + wnfn

= w1

(

Df ′
1 + o

)

+ · · · + wn

(

Df ′
n + o

)

= D
(

wT F′
)

+

(

n
∑

i=1

wi

)

o = Dg′ +

(

n
∑

i=1

wi

)

o. (12)

Hence, to estimate the illuminant change between g′ an g we

have to estimate both the diagonal matrix D and the offset

o. However, in the special case that
∑n

i=1 wi = 0, the offset

term o cancels out.

A similar reasoning can be applied to the local-diagonal-

offset model of (8). In this case we have to ensure that all

image values fn which are linearly combined in g are taken

from a local neighborhood where the offset o can be consid-

ered constant. Hence, to perform gamut mapping under the

local-diagonal-offset model the linear combination g has to

satisfy two restrictions: (1) the weights w should sum up to

zero, (2) the values fn should come from a local neighbor-

hood. Both these restrictions are satisfied by image deriva-

tive filters: the sum over the weights of filter is equal to zero,

and since it is filter the values are taken from a local neigh-

borhood. This makes image derivatives especially attractive

for gamut mapping since, contrary to zero-order image value

gamuts, they allow to estimate illuminant models under the

more accurate local-diagonal-offset model.

In this paper, we investigate gamut mapping based on the

statistical nature of images in terms of their derivative struc-

ture. The derivative structure of an image is described (in a

complete sense) by means of the n-jet, see (Koenderink and

van Doorn 1987) and (Kass and Witkin 1987). In this paper,

we consider gamuts up to the second order structure, which

is given by

{f, fx, fy, fxx, fxy, fyy}, (13)

where the derivatives are computed for image f by a convo-

lution with a Gaussian at the scale of the derivative filter,

f ⊗
∂

∂x
Gσ =

∂

∂x

(

f ⊗ Gσ
)

. (14)

Since these derivative filters are all linear filters, it follows

from (11) that the gamuts of the n-jet behave similarly under

illuminant variations as a normal zero-order gamut.

4.2 n-jet Gamuts

The basic steps of the gamut mapping algorithm are identi-

cal when using derivative (n-jet) images. However, when us-
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Fig. 1 Examples of the gamuts of the different n-jet images for a scene

taken under two different light sources (images from Barnard et al.

2002). What is shown is the gamut of the corresponding image, using

information that is present in either pixel values (f), edges (fx and fy )

or higher-order statistics (fxx , fxy and fyy ). Comparing the gamuts of

the two images for one type of information (e.g. fx of image (a) with

fx of image (b)) clearly shows the discriminative power of the different

n-jets

ing derivatives, during the construction of the gamuts (both

the canonical gamut and the input gamut), the values that are

captured in the gamut are symmetric (e.g. if a transition from

surface a to surface b is present, then the transition from

surface b to surface a should also be included in the gamut).

Further, note that the diagonal model can consist of strictly

positive elements only. For the pixel-based gamut mapping

this restriction is imposed naturally, but the first and second-

order gamuts can contain negative as well as positive values.

Hence, during implementation one should make sure that the

diagonal mappings that are found contain strictly positive

elements only. Further note that the complexity of the algo-

rithm based on pixel and derivative information remains the

same (and hence the difference in runtime can be neglected).

In Fig. 1, a few examples of gamuts of the different n-jet

images are shown. From these images, it can be derived that

the pixel-based gamut (i.e. the gamut of f), the edge-based

gamuts (i.e. the gamuts of fx and fy ), as well as the gamuts

using higher-order statistics (i.e. the gamuts of fxx , fxy and

fyy ) are considerably different although they were computed

from the same scene where the only difference is a change

in the color of the light source.

5 Combination of Gamut Mapping Algorithms

It is beneficial to incorporate additional information into il-

luminant estimation (Hordley 2006). This can either be done

by means of supplemental algorithms (Bianco et al. 2007;

Schaefer et al. 2005) or by using higher-order statistics in

combination with pixel values (Gijsenij and Gevers 2007).

In this section, the goal is to exploit these two different ways
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of combining derivative-based gamut mapping algorithms to

provide additional information to estimate the illuminant.

The use of additional information introduces two mu-

tually exclusive opportunities to increase the performance.

First, the uncertainty of the estimates of the gamut mapping

algorithm can be reduced. Second, the probability of finding

the correct illuminant estimate can be increased. In general,

the gamut mapping algorithm produces a set of illuminant

estimates, called the feasible set. From this feasible set, one

final illuminant estimate is selected using some method. If

the size of the feasible set is large, then the possibility of

selecting the wrong estimate is relatively large, i.e. the un-

certainty of the final estimate is relatively high. On the other

hand, a smaller feasible set results in a lower probability that

the correct illuminant is contained inside this set. If multi-

ple feasible sets can be found, which are all different from

one another, by using the different n-jet images, then we can

choose to either increase or decrease the size of the final fea-

sible set. Intuitively, a smaller feasible set results in a more

accurate illuminant estimate than a larger feasible set.

The first approach, proposed in Sect. 5.1, is by combining

the feasible sets obtained by the different algorithms. The

second fusion method, described in Sect. 5.2, considers the

different gamut mapping algorithms as separate algorithms

and combines the final estimates of the algorithms.

5.1 Combining Feasible Sets

Each gamut mapping algorithm produces a feasible set

which contains all diagonal mappings that map the gamut of

the input image inside the canonical gamut. Hence, the feasi-

ble set is a set of possible light sources. Since all gamut map-

ping algorithms produce such a set, these sets can be used for

the combination, instead of selecting only one mapping per

algorithm. Since each feasible set represents all illuminant

estimates that are considered possible, a natural approach of

combining the feasible sets is to consider only those esti-

mates that are present in all feasible sets i.e. an intersection

of the feasible sets. Another approach of combining the fea-

sible sets is to consider every estimate that is present in all

feasible sets, i.e. the union of the feasible sets:

M̂intersect =
⋂

i

Mi, (15)

M̂union =
⋃

i

Mi, (16)

where M̂intersect is the intersection of all feasible sets,

M̂union is the union, and Mi is the feasible set produced by

algorithm i. Then, on these combined feasible sets, an esti-

mator is applied similar to step three of the gamut mapping

algorithm.

5.2 Combining Algorithm Outputs

As a second possibility, the use of additional information

is used in a later stage. Several methods can be considered.

Bianco et al. (2007) propose a number of alternatives, of

which a regular average of the outputs is the simplest com-

bination strategy and the No-N-Max-method is the most ef-

fective. The latter method is a simple average of the outputs,

excluding the N estimates that have the largest distance from

the other estimates, where N is an adjustable parameter:

êN =

∑

i=1,...,(N−n) ei

n − N
, (17)

where ei is the ith estimate, ranked according to the average

distance to all other estimates. Further, ê is the result of the

combination of the n algorithms, and N is the number of es-

timates that are excluded. Hence, N = 0 is equal to a simple

average of all estimates.

6 Experiments

This section presents an empirical evaluation of the pro-

posed algorithms. The first experiments are conducted on

hyperspectral data, resulting in a systematic analysis of the

derivative-based gamut mapping. Then, experiments on im-

ages taken under laboratory settings are conducted. Finally,

the proposed methods are evaluated on real-world images.

For all the experiments, we follow the implementation of

(Finlayson and Xu 2003; Finlayson et al. 2005). We use the

L1 norm maximization.

6.1 Performance Measure

For all images in the data set (both hyperspectral and real-

world images), the correct color of the light source el is

known a priori. To measure how close the estimated illumi-

nant resembles the true color of the light source, the angular

error ǫ is used:

ǫ = cos−1(êl · êe), (18)

where êl · êe is the dot product of the two normalized vectors

representing the true color of the light source el and the es-

timated color of the light source ee. To provide more insight

in the evaluation, the median as well as the mean angular

error will be reported.

6.2 Hyperspectral Data

The first data set that is used consists of 1995 surface re-

flectance spectra, taken from several different sources, see

Barnard et al. (2002). These surface reflectance spectra can
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Fig. 2 Results of experiment 1. The first figure shows the mean angular error over 1000 scenes for every number of surfaces, the second figure

shows the median angular error

be converted into (R,G,B)-values by combining them with

an illuminant that is selected from a set of 287 illuminant

spectra (also from Barnard et al. 2002), using (1).

Using this data set, a number of experiments are con-

ducted. The first experiment is concerned with the perfor-

mance of the gamut mapping algorithm as function of the

number of surfaces (edges). The second experiment evalu-

ates the robustness against color clipping, and the third ex-

periment focuses on the robustness of the methods against

deviations from the diagonal model as modeled by the con-

stant offset in the diagonal model.

Note that the first data set consists of (R,G,B)-values,

i.e. surface reflectance spectra in combination with an illu-

minant spectrum, instead of images. For these experiments,

an edge is defined as the difference between two (R,G,B)-

values and there is no distinction between edges in the x-

direction and edges in the y-direction. 2nd-order statistics

are not considered in this experiment. Also note that a scene

with n different surfaces may contain several edges. How-

ever, the lower bound on the number of different edges in a

scene with n surfaces is n − 1 edges, since every surface in

a scene connects to at least one other surface (e.g. the back-

ground, which also is a surface in a scene). The upper bound

on the number of edges is 1
2
n(n − 1) different edges, when

each surface in the scene connects to every other surface.

A transition from surface a to surface b is considered to be

identical to a transitions from surface b to surface a.

Experiment 1. The first experiment is to compute the

color constancy performance as a function of the num-

ber of surface (or edges). Surfaces are randomly selected

from the database of surface reflectance spectra. To com-

pare the performance of the pixel-based gamut mapping

with the edge-based gamut mapping algorithm, two differ-

ent numbers of edges are created for every scene: the lower

bound and the upper bound. Along with a randomly se-

lected illuminant spectrum, a data set is created contain-

ing n (R,G,B)-values (i.e. surfaces). Further, n − 1 (i.e.

lower bound) and 1
2
n(n − 1) (i.e. upper bound) transitions

are generated, and this process is repeated 1000 times, for

n = {4,8,16,32,64,128,256,512,1024}.

In Fig. 2, results are shown for the pixel-based gamut

mapping algorithm and the edge-based gamut mapping al-

gorithm. The median and the mean angular error as function

of the number of surfaces are shown. These graphs show

that the pixel-based gamut mapping slightly outperforms the

edge-based gamut mapping when the number of surfaces

is small (log2(n) < ±6). However, for a larger number of

surfaces (and hence a larger number of edges), the edge-

based gamut mapping outperforms the pixel-based gamut

mapping.

Experiment 2. The second experiment involves the sim-

ulated effect of color clipping. Would a real-world image

be created using the generated (R,G,B)-values, then the

pixel values are often bound to a maximum. This effect is

called color clipping, and to analyze how this affects the

performance, an experiment is performed. For this experi-

ment, the number of surfaces is kept fixed throughout the

test. For each iteration, n = 8 surfaces are generated by ran-

domly selecting 8 reflectance spectra and 1 illuminant spec-

trum. These 8 surfaces are used to generate a scene with

8 edges, which is near the lower-bound on the number of

edges. Since all used illuminants are normalized so that per-

fect white under that illuminant has a maximum value of

255 among the three channels, no values higher than 255

can occur. To simulate the effect of color clipping on the

performance of the gamut mapping algorithms, several dif-

ferent clipping levels are simulated, discarding pixels with

an R, G or B-value higher than that level. If a surface is
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Fig. 3 Results of experiment 2 and 3. The figures show the change in

mean performance of the two algorithms. In figure (a), it can be seen

that the pixel-based gamut mapping is more affected by color clipping

than the edge-based gamut mapping. Further, in figure (b), it can be

seen that the error of the pixel-based gamut mapping algorithm in-

creases as the offset increases, while the edge-based gamut mapping

is not affected

clipped (and consequently discarded from the computation),

then the corresponding edge is discarded as well.

Both methods suffer from the effect of color clipping, see

Fig. 3(a). However, the error of the pixel-based gamut map-

ping increases faster than the error of the edge-based gamut

mapping.

Experiment 3. The third experiment involves the robust-

ness against deviations from the diagonal model, which is

modeled by simulating an offset of the diagonal model, (7).

Again, the number of surfaces is kept fixed throughout the

test. For each iteration, n = 8 surfaces are generated by ran-

domly selecting 8 reflectance spectra. These 8 surfaces are

used to generate a scene with 8 edges, which is near the

lower-bound on the number of edges. Next, instead of ran-

domly selecting one illuminant spectra like the previous ex-

periment, these spectra are combined with the canonical illu-

minant to form (R,G,B)-values. The diagonal-offset model

is used to create the (R,G,B)-values under a different illu-

minant. The color of this illuminant is determined by apply-

ing the diagonal model to the canonical illuminant. The val-

ues of the elements of the diagonal matrix are randomly se-

lected from the range [0.5 . . .1.5], and the offset is gradually

increased, ranging from 0% of the average pixel value in the

scene (i.e. no offset) to 30% of the average pixel value. So,

a new (Rnew,Gnew,Bnew)-value is generated by randomly

selecting a value in the range of:

Rnew =

[(

R −
p

100
x

)

. . .

(

R +
p

100
x

)]

, (19)

Gnew =

[(

G −
p

100
y

)

. . .

(

G +
p

100
y

)]

, (20)

Bnew =

[(

B −
p

100
z

)

. . .

(

B +
p

100
z

)]

, (21)

where (x, y, z) is the average pixel value in the scene (i.e.

the average (R,G,B)-values of the 8 surfaces) and the off-

set is p%.

In Fig. 3(b), the results are shown, relative to the perfor-

mance without the simulation of the disturbing effects. From

this experiment, it can be observed that by adding an offset

to the diagonal model, the performance of the edge-based

gamut mapping algorithm is not affected, whereas the per-

formance of the regular gamut mapping drops dramatically.

The error increases linearly with the increasing offset.

To conclude, pixel-based gamut mapping performs

slightly better than edge-based gamut mapping when the

number of surfaces (and edges) is low. When the number of

surfaces and edges start to increase, edge-based gamut map-

ping starts to perform better than pixel-based gamut map-

ping. However, in case of color clipping or deviations of

the diagonal model, e.g. diffuse light or object reflections,

the edge-based method outperforms the pixel-based gamut

mapping. This indicates that the information that is used by

the edge-based method is supplementary to the pixel values,

and that for real-world images, where the shortcoming of

the diagonal model is often the case, the additional edge-

information could result in an increased performance of the

gamut mapping algorithm.
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Table 1 Angular errors for several versions of the gamut mapping on

the SFU data set, containing 321 images. The images used for the com-

putation of the canonical gamut are left out, leaving 290 images in the

test set. When no solution is found, the white illuminant is taken as the

estimate

Method Mean ǫ Median ǫ

Gσ=3(f) 4.3◦ 2.6◦

Gσ=3(fx) 5.1◦ 3.6◦

Gσ=3(fy) 5.5◦ 3.5◦

Gσ=3(∇f) 4.5◦ 3.0◦

Gσ=5(fxx) 5.5◦ 4.2◦

Gσ=3(fxy) 5.0◦ 3.2◦

Gσ=5(fyy) 6.0◦ 3.5◦

Gσ=3(∇∇f) 5.1◦ 3.7◦

6.3 Images under Laboratory Settings

The next experiments will be conducted on a set of real im-

ages, taken under laboratory settings (Barnard et al. 2002).

The images in this data set are all indoor scenes. There are

31 scenes, taken under 11 different light sources, resulting

in a total of 321 images. For more information on this set,

we refer to (Barnard et al. 2002). The canonical gamuts were

computed by taking one image from every scene. These im-

ages were then left out of the test set, so the algorithms are

tested on 290 images. As a preprocessing step for G(f), i.e.

the regular gamut mapping algorithm, a Gaussian averaging

is used with the same scale that is used to compute the deriv-

atives of f. This procedure was found to improve the pixel-

based gamut results. Further, to suppress high frequency

noise amplification from the derivative operation, the image

derivatives are computed with Gaussian derivative filters.

n-jet The results of the gamut mapping algorithm on the

different n-jet images are shown in Table 1. The gradient

of the image was computed by taking the correlation of the

color channels into account, see (Di Zenzo 1986). It can be

seen that the regular gamut mapping performs best on this

data set, with a mean and median angular error of 4.3◦ and

2.6◦, respectively. Using higher-order statistics, the best per-

formance is obtained using the gradient of the image.

Combination As explained in Sect. 5, one of the main ad-

vantages of using the n-jet in combination with the gamut

mapping is the possibility of information fusion. In Table 2,

the results of different combination strategies are shown. In

this table, the results for the Leave-N -out algorithm are ob-

tained using the chromaticity-values of the estimates of the

different gamut-mapping algorithms. Further, the combina-

tion of f, fx , fy and ∇f denotes the 1-jet, and the 1-jet in

combination with fxx , fxy , fyy and ∇∇f denotes the 2-jet.

Table 2 Angular errors for several fusion strategies using the different

versions of the gamut mapping on the SFU data set, containing 321

images. The images used for the computation of the canonical gamut

are left out, leaving 290 images in the test set. When no solution is

found, the white illuminant is taken as the estimate

Method Mean ǫ Median ǫ

Gσ=3(f) 4.3◦ 2.6◦

Leave-N-out, N = 0 4.0◦ 2.5◦

Leave-N-out, N = 1 3.9◦ 2.4◦

Leave-N-out, N = 2 3.9◦ 2.3◦

Leave-N-out, N = 3 3.9◦ 2.3◦

Intersection: Complete 1-jet 4.2◦ 2.1◦

Intersection: Complete 2-jet 4.2◦ 2.2◦

Intersection: Only 1-order 5.0◦ 2.9◦

Intersection: Only 2-order 4.7◦ 2.8◦

Union: Complete 1-jet 4.8◦ 2.9◦

Union: Complete 2-jet 5.0◦ 3.0◦

Union: Only 1st-order 4.6◦ 3.4◦

Union: Only 2nd-order 6.1◦ 4.6◦

Finally, the combination of fx , fy and ∇f expresses the first-

order, and fxx , fxy , fyy and ∇∇f the second-order versions.

Using the intersection to combine the feasible sets results

in more accurate estimations that when using the union of

the feasible sets. The best results are obtained when inter-

secting the feasible sets of the 1-jet, but results with the

2-jet are small. Notice that error when using only the 1st

or 2nd-order are higher, indicating that the pixel values de-

pict valuable information. Moreover, the median error of the

combination of the 1-jet is much lower than when only pixel

values are used, which indicates that the stability of the re-

sults is increased by using the combination instead of one

single source of information.

The results for combination using the outputs, i.e. leave-

N -out as shown in Table 2, are comparable to combination

using the intersection of the feasible sets. Improved results

are obtained when the 2 or 3 most distant estimates are ex-

cluded. In this case, the mean angular error is slightly lower

than when using the intersection of the feasible sets, while

the median angular error is slightly higher.

Comparison to the State-of-the-Art Now, the n-jet based

gamut mapping algorithm is compared to other algorithms,

which can be considered state-of-the-art. The results of the

gamut mapping with a diagonal-offset model (Finlayson et

al. 2005) are obtained by using the L1 norm maximization

of the diagonal transform, while minimizing the L1 norm of

the offset. In Table 3, the results are shown. It can be de-

rived that when using the intersection of the feasible sets

of f and fx this will outperforms all other methods. The
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Fig. 4 Examples of the results of the pixel-based gamut mapping and

the edge-based gamut mapping. The original image is shown on the

left, followed by the result of perfect correction (using the ground

truth), the result of the pixel-based gamut mapping (gamut mapping

on f), the result of the edge-based gamut mapping (gamut mapping

on fx ) and the result of the intersection of f and fx , respectively. The

angular errors are displayed in the bottom right corner of the images

Table 3 Angular errors for several color constancy algorithms on the

SFU data set. The images used for the computation of the canonical

gamut are left out, leaving 290 images in the test set

Method Mean ǫ Median ǫ

Intersection: Complete 1-jet 4.2◦ 2.1◦

Regular gamut with offset-model 4.7◦ 3.1◦

Grey-World 9.8◦ 7.0◦

White-Patch 9.2◦ 6.5◦

Shades of Grey 6.3◦ 3.9◦

Color by Correlation 9.9◦ 6.8◦

method nearest in performance is the gamut mapping with a

diagonal-offset model, with a mean and median angular er-

ror of 4.7◦ and 3.1◦, respectively. Note that the results of the

Grey-World,1 White-Patch,1 Shades-of-Grey1 and Color by

Correlation2 are obtained using the software that is available

on the web.

In conclusion, using the combined n-jet approach im-

proves the performance of single gamut mapping algorithms

on this data set, especially in terms of stability. Further, cur-

rent state-of-the-art algorithms are outperformed using the

n-jet based gamut mapping. Finally, examples of results are

shown in Fig. 4. The first image shows the original un-

processed image. The second image shows how the image

1http://lear.inrialpes.fr/people/vandeweijer/software.

2http://kobus.ca/research/programs/colour_constancy.

where the illuminant is perfectly estimated (for this pur-

pose, the ground truth is used). The third, fourth and fifth

image depict the result of the pixel-based gamut mapping

(i.e. gamut mapping using f), edge-based gamut mapping

(i.g. gamut mapping using fx ) and the combination of the

two methods (i.e. G(f)∩ G(fx)). The combination of the two

methods results in an estimate that is almost close to the

best performance that is obtained by either of the two algo-

rithms. Obviously, the combination of the two methods does

not improve results for every image, as can be derived from

by example at the bottom.

6.4 Real-World Images

The last experiment is performed on a set of real-world im-

ages (Ciurea and Funt 2003). This set consists of images

that are captured using a camera with a grey sphere mounted

on top. There are 15 different scenes, both indoor and out-

door, resulting in a total of 11346 image (see Ciurea and

Funt 2003 for more information). Note that the images in

this set are not linear, as they were gamma-corrected (with

unknown value for gamma) after capturing. Since the value

of gamma is unknown, we did not correct for this before

estimating the illuminants.

For this set, the canonical gamuts were computed us-

ing 14 of the 15 categories, and the algorithms are tested

on the remaining category. This procedure was repeated 15

times, leaving every category out for testing once. Same as

for the previous data set, for the regular gamut mapping

http://lear.inrialpes.fr/people/vandeweijer/software
http://kobus.ca/research/programs/colour_constancy
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Table 4 Angular errors for the real-world data set containing 11346

images, both indoor and outdoor. Note that when no solution could be

found, then a white illuminant was taken as estimate

Method Mean ǫ Median ǫ

Gσ=5(f) 7.1◦ 5.8◦

Gσ=3(fx) 7.1◦ 5.9◦

Gσ=3(fy) 7.0◦ 6.0◦

Gσ=3(∇f) 6.8◦ 5.8◦

Gσ=3(fxx) 7.6◦ 6.1◦

Gσ=1(fxy) 7.5◦ 5.8◦

Gσ=5(fyy) 7.0◦ 6.1◦

Gσ=5(∇∇f) 7.0◦ 6.3◦

algorithm, i.e. G(f), a Gaussian averaging is used as pre-

processing step, and the derivative operation is computed

with Gaussian derivative filters.

n-jet The results of the gamut mapping algorithm on the

different n-jet images for this data set are shown in Table 4.

It can be seen that the median angular error of the gamut

mapping applied to 0th-order data (i.e. pixel values) is sim-

ilar to the performance of the gamut mapping applied to

1st-order data (i.e. edges). However, the mean angular er-

ror when using edges is lower than when using pixel values.

This indicates that it is better to use edges than pixel values

for real-world images. The performance of the gamut map-

ping algorithm using 2nd-order information is significantly

worse that both pixel values and edges.

Combination Combining the results of the n-jet approach

slightly improves the performance, see Table 5.

For this data set, the same trend as for the previous data

set is observed: the combination of the different methods

results in more stable solutions than when using a single

algorithm, and the intersection of the feasible sets is bet-

ter than the union. The best performance, in terms of mean

as well as median angular error, is obtained by simply av-

eraging the estimates of the different n-jet based meth-

ods.

Comparison Finally, results of a few other color constancy

algorithms are shown in Table 6. The n-jet based gamut

mapping outperforms the regular gamut mapping with the

diagonal-offset model on this data set, even when the n-

jet information is not used. This indicates that the diagonal

model does not fail often for the images that are in this data

set.

For this real-world data set, the same trend as for the

images under laboratory settings can be observed, namely

that the additional information that is provided by using the

n-jet improves the performance and stability of the gamut

Table 5 Angular errors for several combination strategies using the

different versions of the gamut mapping on the real-world data set con-

taining 11346 images, both indoor and outdoor. Note that when no so-

lution could be found, then a white illuminant was taken as estimate

Method Mean ǫ Median ǫ

Gσ=5(fy) 6.9◦ 5.6◦

Leave-N-out, N = 0 6.5◦ 5.5◦

Leave-N-out, N = 1 6.5◦ 5.5◦

Leave-N-out, N = 2 6.5◦ 5.5◦

Leave-N-out, N = 3 6.5◦ 5.6◦

Intersection: Complete 1-jet 6.9◦ 5.8◦

Intersection: Complete 2-jet 6.9◦ 5.9◦

Intersection: Only 1st-order 6.8◦ 5.7◦

Intersection: Only 2nd-order 7.1◦ 6.2◦

Union: Complete 1-jet 7.1◦ 5.8◦

Union: Complete 2-jet 7.3◦ 5.9◦

Union: Only 1st-order 6.9◦ 5.8◦

Union: Only 2nd-order 7.7◦ 6.5◦

Table 6 Angular errors for several algorithms on the real-world data

set

Method Mean Median

Leave-N-out 6.5◦ 5.5◦

Regular gamut with offset-model 7.2◦ 5.7◦

Grey-World 7.9◦ 7.0◦

White-Patch 7.1◦ 6.7◦

Color-by-Correlation 8.1◦ 6.5◦

mapping algorithm. The intersection of the feasible sets pro-

vides better results than the union of the feasible sets. Fur-

ther, results, for this data set, are also better than when us-

ing the Leave-N -out strategy. Finally, a few example im-

ages of this data set are shown in Fig. 5. Again the un-

processed and the perfectly corrected images are show first,

but now they are followed by the result of the pixel-based

gamut mapping (i.e. gamut mapping using f), the result of

the intersection of the gamut mapping on the edges in the

x and y-direction (i.e. G(fx) ∩ G(fy)) and the result of the

union of the same two algorithms (i.e. G(fx) ∪ G(fy)). On

average, the intersection provides the best results, but for

some images the union provided better results. In general,

it can be seen that the combination of the different algo-

rithms result in more stable solutions, i.e. the variation of

the performance between the images in one data set is less

for the combination of algorithms than for the single algo-

rithms.
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Fig. 5 Examples of the results of the pixel-based gamut mapping and

the edge-based gamut mapping. The original image is shown on the

left, followed by the result of perfect correction (using the ground

truth), the result of the pixel-based gamut mapping (gamut mapping

on fx ), the result of the intersection of fx and fy and the result of the

union of fx and fy , respectively. The angular errors are displayed in the

bottom right corner of the images

7 Conclusion

In this paper, gamut mapping has been extended to incor-

porate the statistical nature of images. It has been analyti-

cally shown that the proposed gamut mapping framework is

able to include any linear filter output. However, the main

focus was on the local n-jet describing the derivative struc-

ture of an image. As the n-jet based gamut mapping frame-

work generates a number of algorithms, more information

becomes available and different ways of combining are pro-

posed to increase the performance and stability of the gamut

mapping algorithm.

Experiments on large scale data sets of hyperspectral,

laboratory and real-world scenes showed that (1) in case of

deviations of the diagonal model, e.g. diffuse light or ob-

ject reflections, the edge-based method outperformed the

pixel-based gamut mapping, (2) state-of-the-art algorithms

are outperformed by the n-jet based gamut mapping, (3) the

combination of the different n-jet based gamut mappings

provide more stable solutions, and (4) the fusion strategy

based on intersection provides better color constancy results

than the strategy based on the union of the feasible sets.
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