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ABSTRACT

In this paper we propose novel algorithms for image restoration and

parameter estimation with a Generalized Gaussian Markov Random

Field prior utilizing variational distribution approximations. The re-

stored image and the unknown hyperparameters for both the image

prior and the image degradation noise are simultaneously estimated

within a hierarchical Bayesian framework. We develop two algo-

rithms resulting from this formulation which provide approxima-

tions to the posterior distributions of the latent variables. Experi-

mental results are provided to demonstrate the performance of the

algorithms.

Index Terms— Image restoration, Generalized Gaussian Markov

Random Fields , variational methods, parameter estimation, Bayesian

methods.

1. INTRODUCTION

A standard formulation of the image degradation model is given in

matrix-vector form by

y = Hx + n, (1)

where the N × 1 vectors x, y, and n represent respectively the orig-

inal image, the available noisy and blurred image, and the noise, all

ordered lexicographically. The noise is assumed Gaussian with in-

dependent elements of variance σ2
n = β−1, and H represents the

known blurring matrix.

The image restoration problem is to find an estimate of x given

y, H, and knowledge about n and possibly x [1]. In a Bayesian for-

mulation, knowledge about the unknown parameters are introduced

in the estimation process by incorporating prior image and observa-

tion models. Examples of such prior models include Simultaneous

Autoregression (SAR), Conditional Autoregression (CAR), or Total

Variation (TV). In this paper we propose to use a Generalized Gaus-

sian Random Markov Fields (GGMRF) [2][3] as the image prior. In

addition to the unknown image and noise, their prior models intro-

duce parameters that are related to their variances. These parame-

ters, denoted as hyperparameters, determine the performance of the

restoration algorithm significantly and therefore play an important

role in Bayesian image restoration.

Recently, there has been a growing interest in variational meth-

ods, where the posterior distribution is approximated with the use

of the Kullback-Leibler cross-entropy [4]. Several methods tackle

the deconvolution problem using the variational approach (see, for

example, [5][6][7][8]).

Using the variational framework we utilize a hierarchical Bayesian

paradigm (see, for example, [7][9]) to jointly provide estimates of

the posterior distributions of the restored image and the hyperpa-

rameters when a GGMRF prior is used. We develop two algorithms

using our framework.

This paper is organized as follows. The hierarchical Bayesian

model is presented in Sec. 2. Section 3 describes the variational

approach to distribution approximation and the derivation of our al-

gorithms. We present the experimental results in Sec. 4 and conclude

in Sec. 5.
2. BAYESIAN MODELING

The Bayesian modeling of the GGMRF restoration problem requires

first the definition of a joint distribution p(α, β,x,y) of the obser-

vation, y, the unknown image, x, and the hyperparameters α and

β. We utilize the hierarchical Bayesian paradigm where in the first

stage we form prior distributions p(y|x, β) and p(x|α) for the un-

knowns, and in the second stage we define hyperpriors on the hyper-

parameters. The joint probability model is shown in graphical form

in Fig. 1(a) using a directed acyclic graph.

2.1. First stage: prior models on image and observation

The probability distribution corresponding to the observation model

in Eq. (1) is given by

p(y|x, β) ∝ βN/2 exp

[

−
β

2
‖ y − Hx ‖2

]

(2)

As the image model we use the GGMRF prior, given by

p(x|α) ∝
1

ZGG(α)
exp [−αGG(x)] , (3)

where ZGG(α) is the partition function and

GG(x) =
∑

i

4
∑

d=1

[

|∆d
i (x)|p

]

,

where the first summation is over all pixels i and ∆d
i (x) denotes the

first order difference in the d direction, such that

∆d
i (x) = xi − xi:+d, d = 1, . . . , 4

Figure 1(b) shows the directions d = 1, . . . , 4 along which the first

order differences are taken. In this work we are considering the case

where p ∈ [1, 2].
Using up = v and taking into account that

∫

∞

0

exp [−αup] du =
1

p

∫

∞

0

exp [−αv] v
1−p

p dv ∝ α
−

1
p ,
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Fig. 1. (a) Graphical model showing relationships between vari-

ables, (b) the directions for the first order differences around the

pixel i.

we use the approximation α−N/p to the partition function to obtain

p(x|α) ∝ αN/p exp [−αGG(x)] . (4)

2.2. Second stage: hyperprior on the hyperparameters

We use gamma distributions as our model for the hyperparameters

ω ∈ {α, β}, given by

p(ω) = Γ(ω|ao
ω, bo

ω) =
(bo

ω)ao
ω

Γ(ao
ω)

ωao
ω−1 exp [−ωbo

ω] . (5)

Combining the first and second stage, the joint distribution can

be written as

p(α, β,x,y) = p(α)p(β)p(x|α)p(y|x, β). (6)

3. INFERENCE AND VARIATIONAL APPROXIMATION

The Bayesian inference on (α, β,x) should be based on

p(α, β,x | y) =
p(α, β,x,y)

p(y)
. (7)

However, since the posterior p(α, β,x | y) cannot be found

in closed form, we approximate it by a simpler parametric form

q(α, β,x) = q(α, β)q(x). This distribution can be found in a vari-

ational framework by minimizing the Kullback-Leibner (KL) dis-

tance, that is,

CKL(q(α, β)q(x) ‖ p(α, β,x|y)

=

∫

α

∫

β

∫

x

q(α, β)q(x) log

(

q(α, β)q(x)

p(α, β,x|y)

)

dαdβdx

=

∫

α

∫

β

∫

x

q(α, β)q(x) log

(

q(α, β)q(x)

p(α, β,x,y)

)

dαdβdx + const,

(8)

which is always non negative and equal to zero only when q(α, β)q(x) =
p(α, β,x|y).

Due to the form of our image prior, the KL distance cannot be

minimized directly. We define the functional M(α,x,v) for α, x
and v ∈ (R4+)N , with components (vi,1, , vi,4), i = 1, , N

M(α,x,v) = αN/p exp

[

−
αp

2

∑

i

4
∑

d=1

[

(∆d
i (x))2 + 2−p

p
vi,d

v
1−p/2
i,d

]]

.

Next, using the following inequality for w ≥ 0, z > 0, and

p ∈ [1, 2]

wp/2 ≤ zp/2 +
p

2z1−p/2
(w − z) =

p

2

(w + 2−p
p

z)

z1−p/2
, (9)

we find a lower bound for the image prior, given by

p(x|α) ≥ c · M(α,x,v),

where c is a constant. This inequality can be used to find a lower

bound for the joint probability distribution

p(α, β,x,y) ≥ c · p(α)p(β)M(α,x,v)p(y|x, β)

= F(α, β,x,v,y). (10)

Using these lower bounds in Eq. (8), we can find an upper bound for

the KL distance as follows:

CKL(q(α, β)q(x) ‖ p(α, β,x|y)

≤ min
v

∫

α

∫

β

∫

x

q(α, β)q(x) log

(

q(α, β)q(x)

F(α, β,x,v,y)

)

dαdβdx.

(11)

Finally, we employ a minimization of the right-hand side of

Eq. (11) and obtain the following iterative procedure to estimate the

unknowns:

Algorithm 1 Posterior parameter and image distributions estima-

tion by approximating p(α, β,x | y) by q(α, β)q(x).

Given v1 ∈ (R4+)N and q1(α, β),

For k = 1, 2, . . . until convergence:

1. Find

q
k(x) = arg min

q(x)

∫

x

∫

α

∫

β

q
k(α, β)q(x)

× log

(

qk(α, β)q(x)

F(α, β,x,vk,y)

)

dαdβdx (12)

2. Find

v
k+1 = arg min

v

∫

α

∫

β

∫

x

q
k(α, β)q

k(x)

log

(

qk(α, β)qk(x)

F(α, β,x,v,y)

)

dαdβdx (13)

3. Find

q
k+1(α, β) = arg min

q(α,β)

∫

α

∫

β

∫

x

q(α, β)q
k(x)

log

(

q(α, β)qk(x)

F(α, β,x,vk+1,y)

)

dαdβdx (14)



Now we proceed to give the explicit solutions at each step of the

algorithm. Note that in the first step we have

q
k(x) ∝ exp

{

Eqk(α,β)[ln F(α, β,x,vk)]
}

, (15)

which corresponds to a multivariate Gaussian distribution with the

mean and the covariance given by

Eqk(x)[x] = covqk(x)[x]Eqk(β)[β]Ht
y, (16)

covqk(x)[x]

=
(

Eqk(β)[β]Ht
H + pEqk(α)[α]

4
∑

d=1

(∆d)
t
Wd(vk)(∆d)

)

−1

= [Ck(vk)]−1, (17)

where

Wd(vk) = diag

(

1

v
1−p/2
i,d

)

, d = 1, . . . , 4, i = 1, . . . , N,

In the second step, we have

v
k+1
d = arg min

vd

∑

i

Eqk(x)[(∆
d
i (x))2] + 2−p

p
vi,d

v
1−p/2
i,d

d = 1, . . . , 4

and therefore

v
k+1
i,d = Eqk(x)[(∆

d
i (x))2], i = 1, . . . , N d = 1, . . . , 4 (18)

where

Eqk(x)[(∆
d
i (x))2] = (∆d

i (Eqk(x)[x]))2

+
1

N
trace

[

covqk(x)[x] ×
(

(∆d)
t
(∆d)

)]

.

Finally to find qk+1(α, β) we differentiate the integral on the

right hand side of Eq. (14) with respect to q(α, β) and set it equal to

zero to obtain

q
k+1(α, β) ∝ exp

{

Eqk(x))[ln F(α, β,x,vk+1)]
}

Therefore, qk+1(α) and qk+1(β) are both Gamma distributions, given

by

q
k+1(α) ∝ αN/p+ao

α−1 exp

[

−α

(

∑

i

4
∑

d=1

([vk+1
i,d ]p/2) + bo

α

)]

,

q
k+1(β) ∝ βN/2+ao

β−1 exp

[

−β

(

Eqk(x) ‖ y − Hx ‖2

2
+ bo

β

)]

.

As the estimates to these hyperparameters, we use the means of

these distributions, which can be given as

(Eqk+1(α)[α])−1 = γα
1

αo +(1−γα)
p
∑4

d=1

∑

i[v
k+1
i,d ]p/2

N
, (19)

(Eqk+1(β)[β])−1 = γβ
1

β
o + (1 − γβ)

Eqk(x)

[

‖ y − Hx ‖2
]

N
,

(20)

where αo = ao
α/bo

α, β
o

= ao
β/bo

β , γα =
ao

α

ao
α+ N

p

, and γβ =
ao

β

ao
β
+ N

2

.

The parameters γα and γβ , both taking values in the interval [0, 1),

can be understood as normalized confidence parameters. According

to Eqs. (19) and (20), when they are equal to zero, no confidence is

placed on the inverse of the mean of the corresponding hyperprior,

while when they are asymptotically equal to one, the prior knowl-

edge of the mean is fully enforced, i.e., no estimation of the hyper-

parameters is performed.

The only remaining task is the calculation of Eqk(x)

[

‖ y − Hx ‖2
]

which can be given as

Eqk(x)

[

‖ y − Hx ‖2] = ‖ y − HEqk(x)[x] ‖2

+ trace
(

covqk(x)[x]Ht
H
)

.

The estimate qk(x) in Algorithm 1 is the best approximation to

the posterior in KL divergence sense. However, we can also con-

sider a suboptimal case where we assume a degenerate distribution

for q(x), that is, q(x) takes one value, xk, with probability one and

the rest of the values with probability zero. This approach leads

to an alternative algorithm, denoted by Algorithm 2, where the ex-

pectations involving the parameter qk(x) are removed. Thus, the

covariances in Eqs. (18), (19) and (20) are set equal to zero.

As the estimate to the unknown image x, we use the mean of

qk(x) shown in Eq. (16) in both algorithms, which requires the in-

version of a very large matrix Ck(vk). This, however, introduces

a big computational challenge since the last terms in Eq. (17) can-

not be represented as block-circulant matrices with circulant blocks

(BCCB), and therefore the inverse cannot be computed in Fourier do-

main. We therefore employ a gradient descent approach to compute

the image estimates without explicitly calculating the image covari-

ance.

Note, however, that the explicit form of covqk(x)[x] is needed

in Eqs. (19)-(20) in Algorithm 1. To overcome this computational

difficulty, we use the following approximation

covqk(x)[x]

≈
(

Eqk(β)[β]Ht
H + pEqk(α)[α]

4
∑

d=1

zd(vk)(∆d)
t
(∆d)

)

−1

= B
−1.

where Wd(vk) ≈ zd(vk)I and zd(vk) = 1
N

∑

i
1

[vk
i,d

]1−p/2 . Note

that in this approximation, the matrix B is BCCB, and therefore its

inversion can be carried out very efficiently in Fourier domain.

4. EXPERIMENTAL RESULTS

We performed a number of experiments with the proposed algo-

rithms using several images and several types of blurring functions.

The results of some of them are presented here. Since we devel-

oped two different algorithms resulting from our framework, we will

present results for both of them.

For the experiments presented here, the “Lena” image (shown in

Fig. 2(a)) is blurred with a Gaussian shaped blur with variance 9 and

a 9x9 uniform blur. Gaussian noise is added to the blurred images to

obtain degraded images with blurred-signal-to-noise (BSNR) ratios

of 20 and 40dB. An example degraded image is shown in Fig. 2(b)

where the blur is Gaussian-shaped with variance 9 and BSNR =

40dB.

The parameters of both algorithms are initialized as follows:

The observed image is used as initial estimation for the unknown



(a) (b)

(c) (d)
Fig. 2. (a) Original Lena Image, (b) Image degraded by a Gaussian

shaped PSF with variance 9 and Gaussian noise of variance 0.16
(BSNR=40dB), (c) Restored image using Algorithm 1 with p = 1.8

(ISNR = 4.15dB), (c) Restored image using Algorithm 2 with p =

1.6 (ISNR = 3.78dB).

image x. The initial values of the hyperparameters and v are ini-

tialized using this initial x and Eqs. (18)-(20). Note that all pa-

rameters of the algorithms are initialized using the observation y

so that no manual input is needed, i.e., both algorithms are ini-

tialized and run automatically. For all experiments, the criterion

‖ xk − xk−1 ‖2 / ‖ xk−1 ‖2< 10−4 is used to terminate the

iterative procedure.

The restoration results of the Lena image in the case of Gaussian

blur with 40dB BSNR are shown in Fig. 2(c) for Algorithm 1 and

2(d) for Algorithm 2. Note that Algorithm 1 is more successful at re-

moving the blur whereas the restored image has less ringing artifacts

in Algorithm 2. In both cases the restoration quality is good con-

sidering that the parameters of both algorithms are estimated using

only the degraded observation without any prior knowledge about

the noise.

Figure (3) shows ISNR evolution in the case of Gaussian and

uniform blurs with Algorithm 1 and BSNR = 40dB and 20dB with

varying p-values, where ISNR is defined as 10 log10(‖ x − y ‖2 /
‖ x − x̂ ‖2), where x̂ is the estimated image. As can be seen from

Fig. (3), the highest ISNR values are achieved with different p-values

for different noise levels and blur functions.

5. CONCLUSIONS

A novel GGMRF based image restoration methodology has been

proposed to simultaneously estimate the reconstructed image and

the hyperparameters of the Bayesian formulation. We have adopted

a variational approach to approximate the posterior distributions of

the unknown parameters to estimate the posterior distributions of un-

knowns so that the uncertainty of the estimates can be evaluated and

different values from these distributions can be used in the restora-

tion process. Two algorithms are provided resulting from this ap-

proach. We have shown that the unknown parameters of the Bayesian

formulation can be calculated automatically using only the observa-

tion or initial knowledge can be incorporated with different confi-

(a)

(b)
Fig. 3. ISNR values obtained by different p values with Lena im-

age degraded by (a) a Gaussian blur with variance 9 and (b) a 9x9

uniform blur with Gaussian noise (BSNR = 40dB and 20dB).

dence value. Experimental results demonstrated the performance of

the proposed algorithms.
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