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Abstract This paper describes a generalized axiomatic

scale-space theory that makes it possible to derive the

notions of linear scale-space, affine Gaussian scale-space

and linear spatio-temporal scale-space using a similar

set of assumptions (scale-space axioms).

The notion of non-enhancement of local extrema

is generalized from previous application over discrete

and rotationally symmetric kernels to continuous and

more general non-isotropic kernels over both spatial and

spatio-temporal image domains. It is shown how a com-

plete classification can be given of the linear (Gaus-

sian) scale-space concepts that satisfy these conditions

on isotropic spatial, non-isotropic spatial and spatio-

temporal domains, which results in a general taxonomy

of Gaussian scale-spaces for continuous image data. The

resulting theory allows filter shapes to be tuned from

specific context information and provides a theoreti-

cal foundation for the recently exploited mechanisms of

shape adaptation and velocity adaptation, with highly

useful applications in computer vision.

It is also shown how time-causal spatio-temporal

scale-spaces can be derived from similar assumptions.

The mathematical structure of these scale-spaces is an-

alyzed in detail concerning transformation properties

over space and time, the temporal cascade structure

they satisfy over time as well as properties of the result-

ing multi-scale spatio-temporal derivative operators. It

is also shown how temporal derivatives with respect to

The support from the Swedish Research Council, Veten-
skapsr̊adet, the Royal Academy of Sciences as well as the Knut

and Alice Wallenberg Foundation is gratefully acknowledged.

Tony Lindeberg
School of Computer Science and Communication

KTH (Royal Institute of Technology)

SE-100 44 Stockholm, Sweden
E-mail: tony@csc.kth.se

transformed time can be defined, leading to the formu-

lation of a novel analogue of scale normalized deriva-

tives for time-causal scale-spaces.

The kernels generated from these two types of the-

ories have interesting relations to biological vision. We

show how filter kernels generated from the Gaussian

spatio-temporal scale-space as well as the time-causal

spatio-temporal scale-space relate to spatio-temporal

receptive field profiles registered from mammalian vi-

sion. Specifically, we show that there are close analo-

gies to space-time separable cells in the LGN as well as

to both space-time separable and non-separable cells in

the striate cortex. We do also present a set of plau-

sible models for complex cells using extended quasi-

quadrature measures expressed in terms of scale nor-

malized spatio-temporal derivatives.

The theories presented as well as their relations to

biological vision show that it is possible to describe a

general set of Gaussian and/or time-causal scale-spaces

using a unified framework, which generalizes and com-

plements previously presented scale-space formulations

in this area.

Keywords scale-space, multi-scale representation,

scale-space axioms, non-enhancement of local extrema,

causality, scale invariance, Gaussian kernel, Gaussian
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1 Introduction

When analyzing sensory data, such as images, a fun-

damental issue arises from the fact that real-world ob-

jects may appear in different ways depending upon the
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scale of observation. This insight is a major motiva-

tion for the development of multi-scale representations

such as pyramids [Burt, 1981, Crowley, 1981] and scale-

space representation [Iijima, 1962, Witkin, 1983, Koen-

derink, 1984, Koenderink and van Doorn, 1992, Lin-

deberg, 1994a,b, Sporring et al., 1996, Florack, 1997,

ter Haar Romeny, 2003]. Indeed by studying the prob-

lem of how to construct a multi-scale representation, a

general and multi-purpose theory for early visual oper-

ations can be stated, where the Gaussian kernel and its

derivatives arise as a canonical family of image opera-

tors given natural requirements of a visual front-end .

Complementary works have demonstrated that these

filters can serve as a basis for expressing a large number

of visual operations, including feature detection, stereo

matching, computation of optic flow, tracking, estima-

tion of shape cues and view-based object recognition

[Lindeberg, 2008].

Traditionally, however, most works on multi-scale

representations have been concerned with image data

defined on isotropic spatial domains, characterized by

the fact that image data are accessible in all directions

and moreover that all directions are equally treated.

During recent years, these ideas have been extended to

non-isotropic spatial domains in terms of affine Gaus-

sian scale-space, where different amounts of smooth-

ing may be performed in different directions, for ex-

ample to account for the linear (affine) component of

perspective deformations [Lindeberg, 1994a, Lindeberg

and G̊arding, 1997], as well as to spatio-temporal scale-

space, where space and time are intrinsically different

dimensions and in addition Galilean motions may oc-

cur [Lindeberg, 1997b]. In particular, when dealing with

temporal and/or spatio-temporal data in an on-line sit-

uation, we have to accept the fact that we cannot allow

filters to extend into the future. For this reason, the

smoothing filters have to be time-causal [Koenderink,

1988, Lindeberg and Fagerström, 1996]. The subject of

this article is to show how a previously stated scale-

space formulation in terms of non-enhancement of local

extrema [Lindeberg, 1990, 1996] can be used for de-

riving Gaussian scale-spaces over non-isotropic as well

as time-casual domains in an axiomatic way, by relax-

ing the requirement of rotationally symmetric filters

that has been used in previous applications of non-

enhancement of local extrema as a scale-space axiom.

It will be shown that a parameterized family of lin-

ear scale-spaces is obtained by this construction, in-

cluding (i) the traditional linear scale-space representa-

tion for rotationally symmetric spatial domains, (ii) the

affine Gaussian scale-space for non-isotropic spatial im-

age domains that may be subject to local or global

affine image deformations and (iii) spatio-temporal lin-

ear scale-space for spatio-temporal image domains sub-

ject to local Galilean motions. Spatio-temporal scale-

spaces will be developed for both non-causal and time-

causal spatio-temporal domains. Compared to the iso-

tropic linear scale-space, these affine and spatio-tempo-

ral scale-spaces give rise to non-separable and elon-

gated filter kernels over space and time, which allow

for shape adaptation in space [Lindeberg and G̊arding,

1997, Ballester and Gonzalez, 1998, Baumberg, 2000,

Schaffalitzky and Zisserman, 2001, Mikolajczyk and Schmid,

2004, Tuytelaars and van Gool, 2004] and velocity adap-

tation along the direction of motion [Lindeberg, 1997b,

Nagel and Gehrke, 1998, Laptev and Lindeberg, 2004,

Lindeberg et al., 2004b, Laptev et al., 2007]. Notably

the receptive field profiles generated by this scale-space

concept have high qualitative similarity to receptive

fields profiles recorded from biological vision [DeAn-

gelis et al., 1995, Valois et al., 2000] in analogy with

previously established relations between spatial recep-

tive fields and Gaussian derivative operators [Young,

1985, 1987] with extensions to spatio-temporal data in

[Young et al., 2001, Young and Lesperance, 2001].

1.1 Outline of the presentation

This paper is organized as follows: Section 2 gives a re-

view of related work with emphasis on axiomatic deriva-

tions of linear scale-spaces. Section 3 defines the no-

tion of non-enhancement of local extrema and gives for-

mal proofs showing, by both necessity and sufficiency,

how this requirement in combination with a semi-group

structure implies both existence and a restriction on

a corresponding infinitesimal generator. Specifically, it
is shown how this algebraic structure implies that the

scale-space has to satisfy a family of parabolic differen-

tial equations, where the second-order term is deter-

mined by a positive semi-definite covariance matrix.

The consequences of this result with regard to differ-

ent types of image domains are developed in section 4

with emphasis on either rotationally symmetric, affine

spatially anisotropic or non-causal spatio-temporal do-

mains.

Up to this point, we have throughout assumed non-

causal temporal image data, which is relevant for pro-

cessing static spatial domains or spatio-temporal data

in off-line situations. Then, to be able to handle time-

causal data in on-line scenarios, where information about

the future is not available, section 5 shows how the pre-

viously stated scale-space formulation can be reformu-

lated to handle time-causal data, where we do only have

access to the past.

Interestingly, there are close relations between these

scale-space theories and biological vision. Section 6 shows
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how the multi-scale spatio-temporal derivative opera-

tors from the two types of spatio-temporal scale-spaces

relate to receptive fields registered in mammalian vi-

sion. Finally, section 7 concludes with a summary and

discussion about some of the main results.

Since the mathematical structure of the resulting

time-causal scale-space turns out to be more compli-

cated than for the Gaussian scale-space, we find it im-

portant to analyze and describe its properties in more

detail. Therefore, appendix D includes a brief review

of closely related theory for heat conduction in solids,

which is then transferred to spatio-temporal scale-space.

To simplify the flow through the presentation, we

have also put some other more technical material in ap-

pendix sections. Appendix A develops the specific reg-

ularity properties of the scale-space kernels over scales

that are used when deriving formal necessity results.

Appendix B describes relations between the proposed

notion of non-enhancement of local extrema and the

maximum principle. Appendix C gives a theory for how

Galilean invariant fixed points can be constructed in a

spatio-temporal scale-space representation as a way of

interpreting the output from an ensemble of velocity-

adapted scale-space filters. Finally, appendix E gives

the formal definitions and proofs regarding the axiomatic

derivation of the time-causal spatio-temporal scale-space.

2 Related work on axiomatic scale-space

formulations

The Gaussian scale-space concept satisfies a number of

useful properties1 that make it particularly attractive

for generating a scale-space representation; (i) linearity,

(ii) shift invariance, (iii) semi-group property, (iv) exis-

tence of an infinitesimal generator, (v) non-creation of

local extrema or zero-crossings in the one-dimensional

case, (vi) non-enhancement of local extrema in any num-

ber of dimensions, (vii) rotational symmetry, (viii) pos-

itivity, (ix) unit normalization, and (x) scale invariance.

In fact, it can be shown that the Gaussian kernel by ne-

cessity is a unique choice for a number of different com-

binations of subsets of these scale-space axioms [Koen-

derink, 1984, Babaud et al., 1986, Yuille and Poggio,

1986, Lindeberg, 1990, 1994a, Pauwels et al., 1995, Lin-

deberg, 1996, Florack, 1997, Weickert et al., 1999, ter

Haar Romeny, 2003, Lindeberg, 2008]

g(x; s) =
1

(2πs)N/2
e−(x2

1+···+x2
N )/2s (1)

The Gaussian function is also special in the respect that

it (xi) minimizes the uncertainty relation and (xii) is the

1 Please, refer to Lindeberg [2010] for detailed mathematical

definitions of these scale-space properties.

probability density function with maximum entropy.

The maximum entropy result can be interpreted as the

Gaussian kernel making minimal use of information.

These properties are also desirable when constructing

a scale-space representation, since the uncertainty rela-

tion makes the smoothing operation well localized over

space and scales, while the maximum entropy result

means that the Gaussian kernel is maximally uncom-

mitted .

When Witkin [1983] coined the term “scale-space”,

he was concerned with one-dimensional signals and ob-

served that new local extrema cannot be created un-

der Gaussian convolutions. Specifically, he applied this

property to zero-crossings of the second-order deriva-

tive to construct so-called “fingerprints”. This observa-

tion shows that Gaussian convolution satisfies certain

sufficiency results for being a smoothing operation. The

first proof in the Western literature of the necessity of

Gaussian smoothing for generating a scale-space was

given by Koenderink [1984], who also gave a formal

extension of the scale-space theory to higher dimen-

sions. He introduced the concept of causality , which

means that new level surfaces must not be created in

the scale-space representation when the scale parameter

is increased. By combining causality with the notions of

isotropy and homogeneity , which essentially mean that

all spatial positions and all scale levels must be treated

in a similar manner, he showed that the scale-space rep-

resentation must satisfy the diffusion equation

∂tL =
1

2
∇2L. (2)

Related necessity results were given by Babaud et al.

[1986] and by Yuille and Poggio [1986].

Lindeberg [1990] considered the problem of charac-

terizing those kernels in one dimension that share the

property of not introducing new local extrema or new

zero-crossings in a signal under convolution. Such scale-

space kernels can be completely classified using clas-

sical results by Schoenberg [1950, 1953]. For continu-

ous signals, it can be shown that all such non-trivial

scale-space kernels can be decomposed into Gaussian

kernels and truncated exponential functions. By impos-

ing a semi-group structure on scale-space kernels, the

Gaussian kernels will then be singled out as a unique

choice. For discrete signals, the corresponding result

is that all discrete scale-space kernels can be decom-

posed into generalized binomial smoothing, moving av-

erage or first-order recursive filtering and infinitesimal

smoothing with the discrete analogue of the Gaussian

kernel. To express a corresponding theory for higher-

dimensional signals, Lindeberg [1990] reformulated Koen-

derink’s causality requirement into non-enhancement of
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local extrema and combined this requirement with a

semi-group structure as well as an infinitesimal gen-

erator and showed that all such discrete scale-spaces

must satisfy semi-discrete diffusion equations. A corre-

sponding scale-space formulation for continuous signals

based on non-enhancement of local extrema for rota-

tionally symmetric smoothing kernels was presented in

[Lindeberg, 1996].

A formulation by Florack et al. [1992] with contin-

ued work by Pauwels et al. [1995] shows that the class

of allowable scale-space kernels can also be restricted by

combining a semi-group structure of convolution oper-

ations with scale invariance and rotational symmetry.

When Florack et al. [1992] studied this approach, they

used separability in Cartesian coordinates as an addi-

tional constraint and showed that this lead to the Gaus-

sian kernel. If the requirement about separability on the

other hand is relaxed, Pauwels et al. [1995] showed that

this leads to a one-parameter family of scale-spaces,

with Fourier transforms of the form

ĥ(ω; s) = e−α|σω|
p

. (3)

where σ =
√
s. Within this class, it can furthermore be

shown that only the exponents p that are even integers

lead to differential equations that have local infinitesi-

mal generators of a classical form.2 Specifically, out of

this countable set in turn, only the choice p = 2 gives

rise to a non-negative convolution kernel, which leads

to the Gaussian kernel.

There are, however, also possibilities of defining scale-

space representations for other values of p. The spe-

cific case with p = 1 has been studied by Felsberg

and Sommer [2004], who show that the correspond-

ing scale-space representation is in the two-dimensional

case given by convolution with Poisson kernels of the

form

P (x; s) =
s

2π(
(
s
2

)2
+ |x|2)3/2

(4)

Duits et al. [2003, 2004] have investigated the cases

with other non-integer values of p in the range ]0, 2[ and

showed that such families of self-similar α-scale-spaces

(with α = p/2) can be modelled so-called pseudo-partial

differential equations of the form

∂sL = −1

2
(−∆)p/2L (5)

These scale-spaces can be related to the theory of Lévy

processes and infinitely divisible distributions. For ex-

ample, according to this theory a non-trivial probabil-

ity measure on RN is α-stable with 0 < α ≤ 2 if and

2 Of the form stated in equation (11) and made more precise

in section 3.

only if its Fourier transform is of the form (3) with

p = α [Sato, 1999, page 86]. These scale-space do, how-

ever, not obey non-enhancement of local extrema, and

we will not consider such self-similar scale-spaces with

non-classical infinitesimal generators further, since the

main subject of this article is to develop a more gen-

eral theory for Gaussian scale-spaces corresponding to

p = 2.

For the specific family of Gaussian scale-space rep-

resentations Koenderink and van Doorn [1992] carried

out a closely related study, where they showed that

Gaussian derivative operators are natural operators to

derive from a scale-space representation, given the as-

sumption of scale invariance. Axiomatic derivations of

image processing operators based on scale invariance

have also been given in earlier Japanese literature [We-

ickert et al., 1999].

With regard to temporal data, the first proposal

about a scale-space for temporal data was given by

Koenderink [1988] by applying Gaussian smoothing to

a logarithmically transformed time axes. Such tempo-

ral smoothing filters have been considered in follow-up

works by Florack [1997] and ter Haar Romeny et al.

[2001]. These approaches, however, require infinite mem-

ory of the past and have so far not been developed for

computational applications. To handle time-causality in

a manner more suitable for real-time implementation,

Lindeberg and Fagerström [1996] expressed a strictly

time-recursive space-time separable spatio-temporal scale-

space model based on cascades of temporal scale-space

kernels in terms of either truncated exponential func-

tions or first-order recursive filters. These temporal scale-

space models also had the attractive and memory sav-

ing property that temporal derivatives could be com-

puted from differences between temporal channels at

different scales, thus eliminating the need for compli-

mentary time buffering. A similar computation of tem-

poral derivatives has been used by Fleet and Langley

[1995]. Early work on non-separable spatio-temporal

scale-spaces with velocity adaptation was presented in

Lindeberg [1997b, 2002] with applications to Galilean

invariant image descriptors and recognition of activities

in [Laptev and Lindeberg, 2004, Lindeberg et al., 2004b,

Laptev et al., 2007]. More recently, Fagerström [2005,

2007] has studied scale-invariant continuous scale-space

models that allows for the construction of continuous

semi-groups over the internal memory representation

and in a special case lead to a diffusion formulation.

Outside the class of linear operations, there is also a

large literature on non-linear scale-spaces [ter Haar Romeny,

1994]. In particular, the works by Alvarez et al. [1993]

and Guichard [1998] have many structural similarities

to the linear/affine/spatio-temporal scale-space formu-
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lations in terms of semi-group structure, infinitesimal

generator and invariance to rescalings and affine or Galilean

transformations. Non-linear scale-space that obey sim-

ilar properties as non-enhancement of local extrema

have been studied in particular by Weickert [1998]. With

close relationship to non-enhancement of local extrema,

the maximum principle has been used as a sufficient

condition for defining linear or non-linear scale-space

representations [Hummel and Moniot, 1989, Alvarez et al.,

1993].

3 Generalizing non-enhancement to

non-isotropic domains

Out of the above mentioned large family of possibilities,

we shall here start by exploring the richer structure

that can be obtained from a scale-space family if the

requirements about rotational symmetry are relaxed.

To begin the treatment, let us start by restating the set

of scale-space axioms that the analysis will be based on:

3.1 Structural scale-space axioms

We would like to model an uncommitted visual front-

end, that performs linear and shift-invariant operations.

Hence, we assume that each scale level L(·; s) is gener-

ated by convolving the original signal f with a convo-

lution kernel T (·; s),

L(·; s) = T (·; s) ∗ f(·), (6)

in operator form written

L(·; s) = Tsf(·). (7)

Then, to ensure regularity with respect to scale, we as-

sume that the family of scale-space kernels T (·; s) forms

a semi-group

T (·; s1) ∗ T (·; s2) = T (·; s1 + s2). (8)

This condition means that all scale levels are computed

from conceptually similar operations and that, in ad-

dition, the transformation from any fine scale level to

any coarser scale level is of the same form as the trans-

formation from the original signal

L(·; s2) = T (·; s2 − s1) ∗ L(·; s1). (9)

Another important consequence of imposing the semi-

group requirement on the family of convolution kernels

is that if we assume reasonable continuity requirements

of T with respect to variations of the scale parameter

s (see below), then it follows from a general result in

functional analysis [Hille and Phillips, 1957] that there

exists a limit case operator, the infinitesimal generator

Af = lim
h↓0

T (·; h) ∗ f − f
h

, (10)

such that the scale-space family satisfies a differential

equation of the form

∂sL(·; s) = lim
h↓0

L(·; t+ h)− L(·; s)
h

= AL(·; s). (11)

With regard to differential equations, it is natural to

formalize the non-enhancement requirement of local ex-

trema in terms of a sign condition on the derivative

of the scale-space family with respect to the scale pa-

rameter. Hence, at any non-degenerate extremum point

over the image domain, in other words for each local ex-

tremum at which the determinant of the Hessian ma-

trix is non-zero, we require the following conditions3 to

hold:

∂sL ≤ 0 at any non-degenerate local maximum,

(12)

∂sL ≥ 0 at any non-degenerate local minimum.

(13)

z

x

Fig. 1 The non-enhancement condition of local extrema means
that the grey-level value of a local maximum must not increase

with scale and that the grey-level of a local minimum must not

decrease.

3.2 Formal definitions

To be able to use tools from functional analysis, we will

initially assume that both the original signal f and the

3 The careful reader may note that this formulation of non-

enhancement of local extrema is expressed in terms of “vertical

derivatives” ∂s in scale-space. When the signal is subject to scale-
space smoothing, however, the positions of the local extrema may

change with scale by a drift velocity v. Hence, one could find it
more natural to consider derivatives along such extremum paths

∂s̄ = ∂s+v ∂x instead of “vertical derivatives” ∂s with respect to

scale. At the position of a local extremum, however, the ”horizon-
tal component” v ∂x will be zero, and the two types of definitions

are therefore equivalent.
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family of convolution kernels T (·; s) are in the Banach

space L2(RN ), i.e., f, T (·; t) ∈ L2(RN ), with the norm

‖f‖22 =

∫
x∈RN

|f |2 dx. (14)

Then also the scale-space representations L(·; s) will

be in the same space, and we can define a family of

scale-space smoothing operators T (s) from L2(RN ) to

itself by

L(·; s) = T (s) f. (15)

The semi-group structure under convolution transfor-

mations in equation (8) in combination with the initial

condition L(·; 0) = f imply that we require a semi-

group structure on the smoothing operators{
T (s1) T (s2) = T (s1 + s2),

T (0) = I,
(16)

and in order to ensure sufficient regularity with respect

to the scale parameter, we assume the semi-group to be

strongly continuous (C0) in the sense that

lim
s↓s0
‖(T (s)− T (s0))(f)‖2 = 0 (17)

should hold for each f ∈ L2(RN ) and for any s0 ≥ 0

[Hille and Phillips, 1957, page 59] [Goldstein, 1985, page

14] [Pazy, 1983, page 4]. In terms of explicit convolution

kernels, this requirement corresponds to continuity at

the origin in the sense that

lim
s↓0
‖T (·; s) ∗ f − f‖2 = 0 (18)

should hold for every f ∈ L2(RN ). Given these as-

sumptions, it follows from a general result in functional

analysis [Hille and Phillips, 1957, page 308] [Goldstein,

1985, page 14] [Pazy, 1983, page 5] that there exists a

limit case operator, the infinitesimal generator

Af = lim
s↓0

T (s) f − f
s

= ∂sT (s) f |s=0 , (19)

such that the scale-space family satisfies a differential

equation of the form

∂sL(·; s) = lim
h↓0

L(·; s+ h)− L(·; s)
h

= A(T (s) f(·)) = AL(·; s). (20)

The set of elements f ∈ L2(RN ) for which A exists is

denoted D(A). This set is not empty and never reduces

to the zero element. Actually, D(A) is even dense in

L2(RN ) [Hille and Phillips, 1957, page 308] [Pazy, 1983,

page 5]. Hence, the scale-space family will satisfy a first-

order differential equation with respect to scale.

To ensure sufficient regularity, we will also assume

that the convolution kernels T (·; s) ∈ L1(RN ). This

assumption implies that for all smooth functions f ∈
C∞(RN ) with compact support, spatial derivatives of

the scale-space representation L do always exist by

∂xjL(·; s) = ∂xj (T (·; s)∗f(·) = T (·; s)∗(∂xjf)(·) (21)

even at s = 0. By applying this property recursively,

the scale-space representation of a smooth signal with

compact support will also be guaranteed to be smooth,

i.e., L(·; s) ∈ C∞(RN ), also at s = 0.4

In the following, we will show that the requirement

of non-enhancement of local extrema combined with

semi-group structure and regularity properties with re-

spect to the scale parameter imply that the scale-space

family must satisfy a family of parabolic differential

equations, in which the second-order terms are deter-

mined by a positive semi-definite covariance matrix,

while the first-order terms may be arbitrary. Specifi-

cally, the result that we shall derive implies that (i) the

infinitesimal operator A must be a local operator that

depends on local derivatives only, (ii) we cannot allow

for derivatives of higher order than two, and (iii) we

cannot allow for any zero-order term either.

To be able to express the non-enhancement condi-

tion in a context where derivatives of the scale-space

representation with respect to the scale parameter are

well-defined pointwise and not only almost everywhere,

we will make a further requirement explained in more

detail in appendix A that the semi-group T should obey

the following regularity requirements with respect to

variations of the scale parameter

lim
h↓0

∥∥∥∥∥ 1

h

∫ h

s=0

T (s)f ds− f

∥∥∥∥∥
Hk(RN )

=

= lim
h↓0

∥∥∥∥∥ 1

h

∫ h

s=0

(T (s)− I) f ds

∥∥∥∥∥
Hk(RN )

= 0 (22)

for some k > N/2 and for all smooth functions f ∈
L1(Rn) ∩ C∞(RN ), where

‖u‖Hk(RN ) =

(∫
ω∈RN

(
1 + |ω|2

)k |û(ω)|2dω
)1/2

(23)

4 Usually, one otherwise uses a family of smooth and rapidly
decreasing smooth convolution kernels for defining derivatives of

non-differentiable functions f , by the theory of Schwartz distri-

butions ∂xjL(·; s) = ∂xj (T (·; s) ∗ f(·) = (∂xjT (·; s)) ∗ f(·).
Here, however, we start by initially weaker assumptions on the

family of convolution kernels, with the aim that the requirement
of non-enhancement of local extrema will then imply stronger re-
strictions on the scale-space representation when combined with

with a semi-group structure and rather modest regularity require-
ments on the semi-group with respect to variations of the scale
parameter s.
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This continuity condition is referred to as C1 continuity

and is a stronger condition than the more commonly

used C0 continuity of semi-groups [Hille and Phillips,

1957, page 322].

As pre-requisites to the treatment that shall be per-

formed, let us first summarize the basic algebraic struc-

ture in terms of a definition and a lemma.

Definition 1 (Continuous pre-scale-space representa-

tion) Let f ∈ L2(RN ) be a continuous signal and let

T (s) with s ∈ R+ be a strongly continuous semi-group

of linear and shift-invariant operators from L2(RN ) to

L2(RN ) according to (16) and (18), where the convolu-

tion kernels T (·; s) are also required to be in L1(RN )

and the semi-group is also for some value k > N/2

required to be C1 continuous with respect to the L2-

based Sobolev norm ‖ · ‖Hk(RN ) for all smooth func-

tions f ∈ L1(RN )∩C∞(RN ). Then, the one-parameter

family of signals L : RN × R+ → R given by

L(·; s) = T (s) f (24)

is said to be the continuous pre-scale-space representa-

tion of f generated by T (s).

As we have described in connection with equations (19)

and (11), this algebraic structure implies that the pre-

scale-space representation will be differentiable with re-

spect to the scale parameter and will possess an in-

finitesimal generator.

Lemma 2 (A continuous pre-scale-space representation

is differentiable) Let L : RN × R+ → R be the con-

tinuous pre-scale-space representation of a signal f ∈
L2(RN ). Then, L satisfies the differential equation

∂sL = AL (25)

for some linear and shift-invariant operator A from

L2(RN ) to L2(RN ). The scale-space representation L(·; s)
of a smooth function f ∈ C∞(RN ) of compact sup-

port is smooth as function over the spatial domain, and

smooth functions f of compact support are in the sup-

port D(A) implying that for smooth functions of com-

pact support the partial derivatives ∂sL(x; s) are well-

defined for every (x; s) ∈ RN × R.

Proof: The basic structure follows from [Hille and Phillips,

1957, page 308] and our previous treatment. Since L

is generated from f by convolutions, it follows that A
must also be shift-invariant and commute with the shift

operator (S∆xf)(x) = f(x−∆x). The operator A does,

however, not need to be bounded.

The smoothness of L with respect to space follows

from the assumption of the convolution kernels T (·; s) ∈

L1(RN ) and the discussion in connection with equa-

tion (21). As shown in appendix A, the regularity re-

quirements on the semi-group imply that smooth func-

tions of compact support are in the domain D(A) of

A implying that the partial derivatives ∂sL(x; s) are

well-defined for every (x; s) ∈ RN × R+. �

This property makes it possible to formulate the previ-

ously indicated scale-space property in terms of deriva-

tives of the scale-space representation with respect to

the scale parameter, such that the grey-level value in

every local maximum point must not increase, whereas

the grey-level value in every local minimum point must

not decrease.

Definition 3 (Pre-scale-space property: Non-enhance-

ment of local extrema) A continuous pre-scale-space

representation L : RN × R+ → R of a smooth signal

f ∈ L2(RN ) ∩ C∞(RN ) is said to possess continuous

non-enhancement pre-scale-space properties, or equiv-

alently not to enhance local extrema, if for every value

of the scale parameter s0 ∈ R+ it holds that if x0 ∈ RN
is a critical point for the mapping x 7→ L(x; s0) and

if the Hessian matrix at this point is non-degenerate,

then the derivative of L with respect to s at this point

has the same sign as the Hessian matrix, i.e.,

sign ∂sL = sign traceHL. (26)

This condition is closely related to the maximum prin-

ciple for elliptic and parabolic equations, however, it is

not identical. The maximum principle refers to global

property of a function concerning the global maximum

(or minimum), while non-enhancement of local extrema

refers to a local property concerning every local extremum

(see appendix B).

Now we can state that a semi-group of operators

generates is a scale-space family representation if it

leads to non-enhancement of local extrema for any in-

put signal.

Definition 4 (Continuous non-enhancement scale-space

representation) Let T be a strongly continuous semi-

group of linear and shift-invariant operators from L2(RN )

to L2(RN ). Given a signal f ∈ L2(RN ), the pre-scale-

space representation L : RN×R+ → R of f is said to be

a continuous scale-space representation of f if and only

if it for every smooth function f ′ ∈ L2(RN )∩C∞(RN )

of compact support it holds that the pre-scale-space

representation L′ : RN × R+ → R of f ′ generated by

the semi-group T (s) obeys non-enhancement of local

extrema.



viii

3.3 Necessity and sufficiency

We shall first show that these conditions by necessity

imply that the scale-space family L must satisfy the

diffusion equation.

Theorem 5 (Non-enhancement scale-space for contin-

uous signals: Necessity) A continuous non-enhancement

scale-space representation L : RN ×R+ → R of a signal

f ∈ L2(RN ) satisfies a parabolic differential equation

∂sL =
1

2
∇T (Σ0∇L)− δT0 ∇L. (27)

with initial condition L(·; 0) = f(·) for some positive

semi-definite covariance matrix Σ0 and some vector δ0.

Proof: The proof consists of two parts. The first part

has already been presented in lemma 2, where it was

shown that a pre-scale-space family obeys a linear dif-

ferential equation, where the infinitesimal generator is

shift-invariant. Given the regularity requirements of the

semi-group, lemma 2 also implies that the scale-space

representation is guaranteed to be smooth as function

over the spatial domain and that smooth functions of

compact support are in D(A) implying that the partial

derivatives ∂sL(x; s) are well-defined for every (x; s) ∈
RN ×R+. In the second part, a set of counterexamples

L(x; 0) = f at s = 0 will be constructed from vari-

ous simple smooth functions f of compact support to

delimit the class of possible operators.

C.1. The extremum point condition (12) in combina-

tion with definition 4 means that A must be a pure

differential operator. This can be easily understood by

studying the following class of counterexamples: Con-

sider a smooth (C∞) function f1 = fI : RN → R such

that (i) fI has a maximum point at the origin and the

Hessian matrix is negative definite at the origin, and

(ii) for some ε > 0 the test function is zero fI(x) = 0

outside a smaller circle around the origin with |x| ≥ ε
2 .

Then, we must have Af1 = AfI = C1 ≤ 0. Fixate this

function fI , the value of ε and the operator A. Consider

next the test function

f2 = fI + fE (28)

where

∇fI(0) = 0, (29)

signHfI(0) < 0, (30)

fI = 0 when |x| ≥ ε/2, (31)

fE = 0 when |x| ≤ ε. (32)

while the function fE may now assume non-zero values

outside the circular region |x| ≤ ε. Let us initially as-

sume that AfE = C2 6= 0. Then, if we consider a third

test function of the form f3 = fI + β1fE , we get

∂sf3 = AfI + β1AfE = C1 + β1 C2. (33)

Obviously, the sign of this expression can be made pos-

itive and (12) be violated by a suitable choice of β1.

Hence, for any ε > 0 we have to require that AfE must

be identically zero for all functions that assume non-

zero values outside the region |x| < ε. In other words,

A must be a local operator and Af can only exploit in-

formation from f at the central point. This means that

for any smooth function Af must be of the form

Af =
∑
ξ∈ZN+

aξLxξ (34)

where ξ = (ξ1, ξ2, . . . , ξN ) is a multi-index, aξ ∈ R ∀ξ
and Lxξ = L

x
ξ1
1 x

ξ2
2 ...x

ξN
N

.

C.2. The extremum point condition (12) also means

that AL must not contain any term proportional to L

or derivatives of order higher than two. This can be

seen by considering a test function of the form

f4(x) = (x2
1 + x2

2 + · · ·+ x2
N + β2 x

η)χ(x) (35)

for some η = (η1, η2, . . . , ηN ) ∈ ZN with |η| = |η1| +
|η2|+· · ·+|ηN | > 2 where χ(x) ≥ 0 is a smooth function

of compact support identically equal to one χ(x) = 1 in

the disk |x| ≤ 1 and identically equal to zero χ(x) = 0

outside the disk |x| ≤ 2. If aξ 6= 0 for some ξ ∈ ZN , it is

clear that we can choose η = ξ and by a suitable choice

of β2 we can make the sign of Af4 arbitrary and hence

violate (12). Similarly, by considering a test function of

the form

f5(x) = (x2
1 + x2

2 + · · ·+ x2
N + β3)χ(x) (36)

it follows that a0 must be zero. Thus, A can only con-

tain derivatives of order one and two.

C.3. Concerning the remaining first- and second-order

terms, let us first note that the non-enhancement con-

dition of local extrema does not impose any constraints

on the first-order terms, since the influence of the first-

order terms vanishes at critical points.

Regarding the second-order terms, we can next ob-

serve that without loss of generality, the influence of

the second-order terms can be written

∂sL =
1

2
∇T (Σ0∇L) (37)

for some symmetric matrix Σ0. Let us next show by

counter-example thatΣ0 must be positive semi-definite,
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i.e., if Σ0 would have a strictly negative eigenvalue,

then the non-enhancement property of local extrema

would be violated. Such a violation occurs if we can find

a positive definite matrix H such that ∂sL(0; 0) < 0

for L(x; 0) = xTHx, i.e., if for a given Σ0 with both

positive and negative eigenvalues, we could find some

positive definite H such that

∂sL =
1

2
∇T (Σ0∇L) = ∇T (Σ0Hx) = trace(Σ0H) < 0.

(38)

To construct such a H, let us assume that Σ0 has eigen-

vectors e1 . . . eN with associated eigenvalues λ1 . . . λN
and choose H to have the same set of eigenvectors while

having different eigenvalues µ1 . . . µN . Then, from

∂sL = trace(Σ0H) =

N∑
i=1

µiλi (39)

where all µi > 0 and at least one λi < 0, it is clear that

we can find a suitable combination of µi > 0 such that

∂sL < 0 and we would thus violate the requirement of

non-enhancement of local extrema. Hence, to guaran-

tee that the requirement of non-enhancement of local

extrema can be valid, we have to require that all the

eigenvalues of Σ0 are positive. �

Remark: Equation (27) can also be written on the

more common form

∂sL =

N∑
i=1

N∑
j=1

aij Lxixj −
∑

bi Lxi (40)

where the coefficients aij form a positive semi-definite

matrix. The reason why we have chosen a parameteriza-

tion in terms of Σ0 and δ0 here is because of the close

connections to Gaussian kernels and velocity adapta-

tion that will be developed later in sections 4–5. �

To prove sufficiency, i.e., the reverse statement of theo-

rem 5, is straightforward and a basic property of parabolic

equations. For completeness, we give the result with an

explicit proof.

Theorem 6 (Non-enhancement scale-space for contin-

uous signals: Sufficiency) Given a semi-definite covari-

ance matrix Σ0, an arbitrary vector δ0 and any twice

continuously differentiable function f ∈ L2(RN ), the

solution of the diffusion equation

∂sL =
1

2
∇T (Σ0∇L)− δT0 ∇L. (41)

with initial condition L(·; 0) = f constitutes a contin-

uous non-enhancement scale-space representation of f .

Specifically, L obeys

∂sL ≤ 0 at any non-degenerate local maximum,

(42)

∂sL ≥ 0 at any non-degenerate local minimum.

(43)

Proof: The regularity properties of the solution are ap-

parent from the regularity properties of parabolic dif-

ferential equations. To verify non-enhancement of local

extrema, consider any non-degenerate local extremum

x0 of L at scale s0 with Hessian matrix H0. Using the

fact that ∇T (Σ0∇L) = trace(Σ0H0), we have ∂sL =

trace(Σ0H0) at the critical point. If x0 is a local mini-

mum then H0 is positive semi-definite. Since the trace

of the product of two positive semi-definite matrices is

greater or equal to zero, it follows that trace(Σ0H0) ≥
0. If x0 is a local maximum, we can apply similar rea-

soning to −L. �

To conclude, we can take the results in theorems 5–6

as a generalized definition of the notion of Gaussian

scale-space.

Definition 7 (Generalized Gaussian scale-space) The

(non-enhancement) scale-space families that are defined

from the solutions of parabolic differential equations of

the form (27) are referred to as generalized Gaussian

scale-spaces.

Concerning the regularity properties of the input signal

f , it follows from the strong regularizing properties of

the Gaussian kernel that the solution of (27) will be

smooth for k > 0 for any bounded function f : Rn →
R. Hence, for the purpose of generating a scale-space

representation of a real-world signal f , we can relax

the condition on f to f being bounded.

4 Interpretations

In previous section, we showed that for a linear and

shift-invariant infinitesimal generatorA the requirement

of non-enhancement of local extrema in combination

with continuity conditions implies that the scale-space

representation should satisfy a parabolic differential equa-

tion of the form

∂sL =
1

2
∇T (Σ0∇L)− δT0 ∇L (44)

for some positive semi-definite covariance matrix Σ0

and some translation vector δ0. If we take a delta func-

tion as input, the interpretation of this evolution equa-

tion is that at any time moment the solution corre-

sponds to a Gaussian kernel with covariance matrix
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Σs = sΣ0 centered at δs = sδ0. Thus, we can inter-

pret the impulse response as a gradually growing elon-

gated Gaussian kernel that moves with velocity δ0 with

respect to the evolution parameter s. In terms of filter-

ing operations, this scale-space can equivalently be con-

structed by convolution with affine and velocity-adapted

Gaussian kernels

g(x; Σs, δs) =
1

(2π)N/2
√

detΣs
e−(x−δs)TΣ−1

s (x−δs)/2,

(45)

which for a given Σs = sΣ0 and a given δs = s δ0 satisfy

the diffusion equation (44). The Fourier transform of

this shifted Gaussian kernel is

ĝ(ω; Σs, δs) =

∫
x∈RN

g(x; Σs, δs) e
−iωT x dx

= eiω
T δs−ωTΣsω/2. (46)

From the diffusion equation formulation or the Fourier

transform, it can be seen that these shifted and shape-

adapted kernels satisfy the following generalized semi-

group property

g(·; Σ1, v1) ∗ g(·; Σ2, v2) = g(·; Σ1 +Σ2, v1 + v2). (47)

Transformation property under linear transformations.

This scale-space concept has the attractive property

that it is closed under affine transformations: If two

image patterns fL and fR are related by an affine trans-

formation

fL(ξ) = fR(η) where η = Aξ + b, (48)

and if linear scale-space representations of these images

are defined by

L(·; ΣL, δL) = g(·; ΣL, δL) ∗ fL(·), (49)

R(·; ΣR, δR) = g(·; ΣR, δR) ∗ fR(·), (50)

then L and R are related by

L(x; ΣL, δL) = R(y; ΣR, δR), (51)

where the covariance matrices ΣL and ΣR satisfy [Lin-

deberg and G̊arding, 1997]

ΣR = AΣLA
T , (52)

and the velocity terms δL and δR in the Gaussian ker-

nels can be traded against coordinate shifts in x and y

as long as the following relation is satisfied:

y − δR = A(x− δL) + b. (53)

This property is highly useful in connection with vi-

sual tasks involving image deformations, such as im-

age matching, flow estimation and shape estimation.

The closedness under affine transformation allows for

perfect modelling and matching of image data under

first-order approximations of image deformations due

to motion or the perspective mapping, and has been ex-

plored by e.g. [Lindeberg and G̊arding, 1997, Ballester

and Gonzalez, 1998, Nagel and Gehrke, 1998, Baum-

berg, 2000, Schaffalitzky and Zisserman, 2001, Mikola-

jczyk and Schmid, 2004, Tuytelaars and van Gool, 2004,

Laptev and Lindeberg, 2004, Lindeberg et al., 2004b,

Laptev et al., 2007].

4.1 Special cases

The above mentioned relations provide a general struc-

ture for linear scale-space concepts on shift-invariant

continuous domains. Specifically, it includes the follow-

ing special cases:

4.1.1 Rotationally symmetric linear scale-space

If we require the covariance matrix Σ0 to be a unit ma-

trix, we obtain the regular (isotropic) Gaussian scale-

space [Witkin, 1983, Koenderink, 1984, Lindeberg, 1994a,

Florack, 1997].

L(x; s) =

∫
ξ∈RN

f(x− ξ) g(ξ; s) dξ (54)

generated by convolutions with rotationally symmetric

Gaussian kernels

g(x; s) =
1

(2πs)N/2
e−(x2

1+···+x2
N )/2s (55)

From this scale-space, we can define the multi-scale N-

jet by applying partial derivatives to the scale-space

Lxα = ∂xαL = ∂xα1
1 ...x

αN
N
L (56)

where we have introduced multi-index α = (α1, . . . , αN )

to simplify the notation. Due to the linearity of the dif-

fusion equation, all these scale-space derivatives Lxα

satisfy similar scale-space properties in terms of non-

enhancement of local extrema as the original scale-space

L. So do also directional derivatives. In two dimensions,

the M :th order directional derivative in the direction

(cosϕ, sinϕ) is given by

∂ϕML = (cosϕ∂x + sinϕ∂y)ML

=

M∑
k=0

(
M

k

)
cosk ϕ sink ϕLxkyM−k (57)

With regard to image deformations, the closedness prop-

erties of this original scale-space are restricted to trans-

lations, rotations and rescalings. This scale-space con-

cept is on the other hand separable in any orthonormal

coordinate system.
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4.1.2 Affine Gaussian scale-space

If we relax the condition about rotational symmetry,

while keeping a requirement that the corresponding Green’s

function should be mirror symmetric on every line through

the origin (in the sense that the filters h should satisfy

h(−x,−y; s) = h(x, y; s) for every (x, y) ∈ R2), we

obtain the affine Gaussian scale-space representation,

generated by convolution with non-uniform Gaussian

kernels

g(x; Σs) =
1

(2π)N/2
√

detΣs
e−x

TΣ−1
s x/2, (58)

where Σs is a symmetric positive definite (covariance)

matrix. Besides the requirement of rotational symme-

try, the affine Gaussian scale-space basically satisfies

similar scale-space properties as the linear scale-space.

The main difference is that the affine Gaussian scale-

space is closed under the full group of non-singular

affine transformations.

With regard to image processing and computer vi-

sion, this means that image data subjected to affine

transformations can be perfectly captured with the ex-

tended class of affine scale-space operations. Specifi-

cally, for two-dimensional images arising as perspec-

tive projections of three-dimensional scenes, this no-

tion of affine image deformations can be used as a first-

order linear approximation of non-linear perspective ef-

fects. This scale-space concept has been studied by [Lin-

deberg and G̊arding, 1994, Lindeberg, 1994a, Griffin,

1996] and is highly useful when computing surface shape

under local affine distortion [Lindeberg and G̊arding,

1997] and performing affine invariant segmentation [Ballester

and Gonzalez, 1998] and matching [Baumberg, 2000,

Schaffalitzky and Zisserman, 2001, Mikolajczyk and Schmid,

2004, Tuytelaars and van Gool, 2004]. Combined with

derivative operations, it can also serve as a natural ide-

alized model for filter banks [Freeman and Adelson,

1991, Simoncelli et al., 1992] consisting of elongated

directional filters [Perona, 1992].

To parameterize the affine Gaussian kernels, let us

in the two-dimensional case consider the covariance ma-

trix determined by two eigenvalues λ1, λ2 and one ori-

entation β. Then, the covariance matrix can be written

Σ′ =

(
λ1 cos2 β + λ2 sin2 β (λ1 − λ2) cosβ sinβ

(λ1 − λ2) cosβ sinβ λ1 sin2 β + λ2 cos2 β

)
.

(59)

Figure 2 shows a few examples of affine Gaussian filter

kernels obtained in this way. Directional derivative op-

erators of any order or orientation can then be obtained

by combining equations (59) and (57); see figure 3.

When computing directional derivatives from elon-

gated affine Gaussian kernels, it should be noted that

it is natural to align the orientations of the directional

derivative operators (the angle ϕ in equation (57)) with

the orientations of the eigendirections of the covariance

matrix in the affine Gaussian kernels (the angle β in

equation (59)). This is also the most likely model for bi-

ological vision (see figure 18 and figure 19 in section 6).
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Fig. 2 Examples of affine Gaussian kernels in the two-

dimensional case (λ1 = 16, λ2 = 4, β = π/6, π/3, 2π/3).
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Fig. 3 Elongated filters obtained by applying first- and second
order directional derivatives to affine Gaussian kernels (λ1 = 16,

λ2 = 4, β = π/6, π/3, 2π/3, ϕ = β + π/2).

4.1.3 Gaussian spatio-temporal scale-space

While the affine Gaussian scale-space generated by (58)

has essentially the same invariance properties as the

spatio-temporal scale-space representation generated by

(45), one motivation for keeping the velocity term v

in (45) arises when studying time dependent data. On

a temporal domain, the non-zero offset in the Gaus-

sian kernel can be used as a simplified model of the

fact that all computations require non-zero computa-

tion time and time averages can only be computed from

data that have occurred in the past. This requirement

of time causality implies that any temporal receptive
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field has to be associated with a non-zero time delay.

Moreover, on a spatio-temporal domain, we may want

the receptive fields to follow the direction of motion,

in such a way that the centres and the shapes of the

receptive fields are adapted to the direction of motion;

see figure 4 for an illustration. Such velocity adaptation

[Lindeberg, 1997b] is useful for reducing the temporal

blur induced by observing objects that move relative to

the camera and is a natural mechanism to include in

modules for multi-scale motion estimation [Nagel and

Gehrke, 1998, Florack et al., 1998] and for recognizing

spatio-temporal activities or events [Laptev and Linde-

berg, 2004, Laptev et al., 2007]. In particular, invariance

to local Galilean transformations can be achieved if the

filter parameters can be adapted to the local spatio-

temporal image structure [Lindeberg et al., 2004b] (see

also appendix C).

Fig. 4 By adapting the shape and the position of a spatio-
temporal smoothing kernel to the direction of motion, we can
compute image descriptors that are invariant to constant veloc-

ity motion. This property can for example be used for reducing
the effect of motion blur when computing image descriptors of

moving objects at coarse temporal scales.

With respect to temporal implementation, however,

the filters in this Gaussian filter class do not respect

time causality in a strict sense. Although the total mass

of the filter coefficients that imply access to the future

can be made arbitrarily small, by a suitable choice of

time delay associated with the scale parameter in the

scale direction, all filters in this filter class have sup-

port regions that cover the entire time axis and are

not suitable for real-time processing of temporal im-

age data. Nevertheless, they are highly useful as the

simplest possible model for studying properties of tem-

poral and spatio-temporal scale-spaces. They are also

highly useful for off-line processing. We shall later con-

sider the topic of strict temporal causality in detail in

section 5.

Parameterization of shape- and velocity-adapted spatio-

temporal filters. In the case with two spatial dimen-

sions and one temporal dimension, which will be re-

ferred to as 2+1-dimensional space-time, let us consider

a Galilean motion in the image plane
x′ = x+ vxt

y′ = y + vyt

t′ = t

(60)

Then, by transforming the affine covariance matrix in

equation (59) by such a Galilean transformation, we ob-

tain (using equation (52)) a spatio-temporal covariance

matrix of the form

Σ′ =

 λ1 cos2 β + λ2 sin2 β + v2
xλt (λ2 − λ1) cosβ sinβ + vxvyλt vxλt

(λ2 − λ1) cosβ sinβ + vxvyλt λ1 sin2 β + λ2 cos2 β + v2
yλt vyλt

vxλt vyλt λt


(61)

Velocity-adapted spatio-temporal derivatives are then

given by

∂x̄ = ∂x, ∂ȳ = ∂y, ∂t̄ = vx ∂x + vy ∂y + ∂t. (62)

Figures 5–6 show spatio-temporal scale-space kernels

generated in this way. Figure 5 shows space-time sepa-

rable filters corresponding to v = 0, while figure 6 shows

corresponding velocity adapted and non-separable fil-

ters for a non-zero velocity v 6= 0.

For the specific case with one spatial dimension and

one temporal dimension, we obtain

detΣ′ = λxλt = sτ (63)

(X − δ)TΣ′−1
(X − δ) =

(x− vt)2

s
+

(t− δt)2

τ
(64)

which after insertion into equation (45) implies that

these Gaussian spatio-temporal kernels assume the form

g(x, t; s, τ, v, δ) =
1√
2πs

e−
(x−vt)2

2s
1√
2πτ

e−
(t−δ)2

2τ

= g(x− vt; s) g(t; τ, δ). (65)

Figure 7 and figure 8 shows examples of these kernels

over a 1+1-D space-time.

When implementing a velocity-adapted spatio-tem-

poral scale-space representation in practice, there are

different alternatives to consider. The simplest approach

is to use the same velocity vector at all image positions,

and is equivalent to global stabilization. More gener-

ally, one may also consider different image velocities

at different image positions.5 In this way, the corre-

sponding velocity-adapted spatio-temporal scale-space

5 A spatial counterpart of this idea has been developed in Al-

mansa and Lindeberg [2000], where the spatial covariance matrix

in an affine scale-space representation is allowed to vary in space,
to allow for enhancements of local directional image structures in

fingerprint images.
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Fig. 5 Space-time separable Gaussian spatio-temporal scale-space kernels: (top left) Original smoothing kernel g(x, y, t; Σ, v) (top

right) First-order spatial derivative gx(x, y, t; Σ, v) (bottom left) First-order temporal derivative gt(x, y, t; Σ, v) (bottom right) First-
order temporal derivative of the spatial Laplacian gxxt(x, y, t; Σ, v) + gyyt(x, y, t; Σ, v) (λ1 = λ2 = 16, λt = 4, vx = vy = 0). (Bottom
plane: space (x, y). Vertical axis: time t.)
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Fig. 6 Velocity-adapted and non-separable Gaussian spatio-temporal scale-space kernels: (top left) Original smoothing kernel
g(x, y, t; Σ, v) (top right) First-order spatial derivative gx(x, y, t; Σ, v) (bottom left) First-order temporal derivative gt̄(x, y, t; Σ, v)

(bottom right) First-order temporal derivative of the spatial Laplacian gxxt̄(x, y, t; Σ, v) + gyyt̄(x, y, t; Σ, v) (λ1 = λ2 = 16, λt = 4,

vx = 2, vy = 0). (Bottom plane: space (x, y). Vertical axis: time t.)
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Fig. 7 Space-time separable kernels gxαtγ (x, t; s, τ, δ) up to order two obtained from the Gaussian spatio-temporal scale-space in the

case of a 1+1-D space-time (s = 1, τ = 1, δ = 2). (Horizontal axis: space x. Vertical axis: time t.)
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Fig. 8 Velocity-adapted spatio-temporal kernels gx̄α t̄γ (x, t; s, τ, v, δ) up to order two obtained from the Gaussian spatio-temporal

scale-space in the case of a 1+1-D space-time (s = 1, τ = 1, v = 0.75, δ = 2). (Horizontal axis: space x. Vertical axis: time t.)
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representations will for appropriate values of the veloc-

ity parameters correspond to filtering along the particle

trajectories. Thereby, the system will be able to handle

multiple moving objects and will also have the ability

to derive a Galilean invariant representation for each

object (see next section for details). Alternatively, we

may at each image position even consider an ensem-

ble of spatio-temporal filters that are tuned to differ-

ent image velocities — a design with close relations to

velocity-tuned receptive fields biological vision (see sec-

tion 6). Such a parallel treatment of velocity adaption

for different image velocities also has the potential to

handle transparent motion.

4.1.4 Galilean invariant fixed-point property of

spatio-temporal scale-space

This spatio-temporal scale-space concept implies that

spatio-temporal image data can be smoothed by a fam-

ily of spatio-temporal filters that correspond to different

spatial scales s, temporal scales τ and image velocities

v. An underlying intention behind this construction is

that the vision system should be able to handle objects

that move with different velocities relative to the ob-

server. Specifically, if a particular object moves with

image velocity v0, then the spatio-temporal scale-space

representation will for this value of the velocity parame-

ter correspond to filtering along the direction of motion.

In practice, however, we cannot expect the velocity of

the object to be a priori known by the vision system,

which is a major motivation for allowing for a family of

different image velocities in the scale-scale representa-

tion. This idea is also in good agreement with findings

about velocity-tuned cells in biological vision, that give

their strongest responses around a particular stimulus

velocity.

If the image velocity v of the filter does not agree

with the image velocity v0 of the object, it is, however,

not guaranteed that the corresponding filtered data will

be easy to interpret. Therefore one may ask: Is there a

way to determine from the output from a particular

velocity-adapted filter alone if the output can be re-

garded as useful or not?

One way of making such judgements of velocity-

adapted data can be derived from a Galilean-invariant

fixed-point property of a notion referred to as Galilean

block diagonalization of the spatio-temporal second-moment

matrix/structure tensor [Lindeberg et al., 2004a], which

is a generalization of a corresponding affine-invariant

fixed-point property of the spatial second-moment ma-

trix/structure tensor [Lindeberg, 1994a, section 15.4]

[Lindeberg and G̊arding, 1997]. In appendix C, we de-

scribe how such Galilean-invariant fixed points can be

constructed theoretically and be detected computation-

ally.

5 Time-causal spatio-temporal scale-space

While the above mentioned Gaussian spatio-temporal

scale-space model can be successfully used for analyz-

ing off-line data, it is not suitable for a real-time imple-

mentation. In a real-time scenario, we have to require

all scale-space kernels to be strictly time-causal in the

sense that they should not require any access to the fu-

ture. Fortunately, it is rather straightforward to adapt

the above mentioned theories to be truly time-causal.

Time-recursive update rule over time t. Following Lin-

deberg and Fagerström [1996] we would like the scale-

space model to be based on time-causal scale-space ker-

nels that lead to a limited internal memory that is suc-

cessively updated with regard to novel contents. Fur-

thermore, following Fagerström [2007] we are seeking

a scale-space representation that at any time moment

to be computed from a continuous semi-group struc-

ture over time. Thus, given any spatio-temporal signal

f(x, t) over space-time (x, t), we embed this signal into

a scale-space representation L using a complementary

spatial scale parameter s and a complementary tempo-

ral scale parameter τ that it is to be updated according

to the following time-recursive formulation6

L(x, t2; s2, τ) =

=

∫
ξ∈RN

∫
ζ≥0

T (x− ξ, t2 − t1; s2 − s1, τ, ζ)

L(ξ, t1; s1, ζ) dζ dξ (66)

where T now in combination with L generates a two-

parameter cascade structure over both spatial scales s

and time t (however NOT over temporal scales τ). In

analogy with the spatial scale-space concept, we require

the algebraic structure to correspond to convolutions

over the spatial domain (x, ξ) and with regard to spa-

tial scales s. We require the algebraic structure to be

similar to a cascade structure over time t, using the

temporal scales (τ , ζ) as an internal temporal buffer.

For reasons that will be apparent later, however, we

do not require the updating rule over time to be a true

6 Please, note that this formulation is only preliminary. In ad-
dition to an update rule on the scale-space representation L, the

updating relation must also specify how new information from
the input signal f should be incorporated. We will return to this

topic in a more precise manner later, in equation (113). The pur-

pose of this preliminary formulation is to provide a first intuitive
start towards the formalism that will follow in terms of differen-

tial equations.
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convolution over temporal scales, but a more general in-

tegral formulation. Notably, this update rule makes it

possible to compute the representation at any coarser

scale s2 and/or any later time moment t2 from the rep-

resentation at any finer scale s1 and any earlier time

moment t1, with the arguments of the updating kernel

depending only on the differences s2 − s1 in scale and

t2− t1 in time. For the update rule over temporal scales

as referred to by τ and ζ, however, we do not require a

similar structure.

Joint two-parameter semi-group structure over spatial

scales s and time t. Let us now turn to the problem

of expressing a spatio-temporal scale-space representa-

tion L : RN ×R+×R2
+ → R of a spatio-temporal signal

f : RN ×R+ → R defined for all spatial positions x and

all positive times t ≥ 0 and with two scale parameters

(s, τ) ∈ R2
+. As combined boundary and initial condi-

tion, we take L(x, t; 0, 0) = f(x, t), and in terms of

transformations from the original spatio-temporal sig-

nal f , we assume that the spatio-temporal scale-space

can be obtained by a convolution over space x and time

t that respects temporal causality over time.

L(x, t; s, τ) =

∫ t

u=0

∫
ξ∈RN

f(ξ, u)h(x−ξ, t−u; s, τ) dξ du.

(67)

Initially, we assume that both the original signal f and

the convolution kernel h are in the Banach space X =

L2(RN×R+). Then, also all scale-space representations

L will be in this space. To ensure sufficient regular-

ity, we do also assume that the smoothing functions

T (x, t; s, τ, ζ) in the time recursive formulation (66)

and that convolution kernels h(x, t; s, τ) in the trans-

formation (67) from the original spatio-temporal signal

are to be absolute integrable, i.e., in L1(RN × R+).

To describe this algebraic structure in terms of oper-

ators, let us introduce a two-parameter family of bounded

linear operators T (s, t) from X to X, denoted T (s, t) ∈
O(X),

L(·, t; s, ·) = T (s, t)L(·, 0; 0, ·) (68)

where a two-parameter semi-group condition on the op-

erator T over spatial scales s and time t implies that T
must satisfy{
T (s1, t1) T (s2, t2) = T (s1 + s2, t1 + t2),

T (0, 0) = I. (69)

We require this semi-group to be strongly continuous

(C0) in the sense that

lim
(s,t)↓(s0,t0)

‖(T (s, t)− T (s0, t0))(f)‖2 = 0 (70)

should hold for each f ∈ X and for any (s0, t0) ≥ 0,

where the limit operation (s, t) ↓ (s0, t0) should be in-

terpreted so as to hold for all paths ((s − s0)2 + (t −
t0)2)→ 0 to the origin for which s ≥ s0 and t ≥ t0.

For this two-parameter semi-group, we define the in-

finitesimal generator as the linear transformationA : R2
+ →

O(X) that satisfies

A(α1, α2)L = (A1,A2)

(
α1

α2

)
L = α1A1L+ α2A2L

(71)

for all L ∈ X and all (a1, a2) ∈ R2
+, where A1 and A2

are the infinitesimal generators of the one-parameter

semi-groups T (s, 0)s≥0 and T (0, t)t≥0 respectively, de-

fined in turn from

A1L = lim
h↓0

T (h, 0)L− L
h

= ∂sL, (72)

A2L = lim
k↓0

T (0, k)L− L
k

= ∂tL. (73)

Specifically, the directional derivative of the semi-group

in any direction u = (α1, α2) is

DuL = lim
h↓0

T (α1h, α2h)L− L
h

(74)

and for all u = (α1, α2) ∈ R2
+ and all f ∈ X we have

for k > 0 and t > 0 that

Du T (s, t) f = (α1 ∂s + α2 ∂t) T (s, t) f

= (α1A1 + α2A2) T (s, t) f

= A(α1, α2) T (s, t) f (75)

where the domain of the operator Au = α1A1 +α2A2 is

dense in X for all (α1, α2) ∈ R2
+ [Al-Sharif and Khalil,

2004, pages 405, 407, 409].

To ensure that pointwise derivatives with respect to

the scale parameters exist for all points (x, t; s, τ) ∈
RN ×R+×R2

+ given any smooth function f of compact

support as input, we do also require the semi-group

should for some k > (N + 1)/2 be C1 continuous with

respect to the L2-based Sobolev norm ‖ · ‖Hk(RN×R+)

in the sense that for all connected regions Ω ∈ R2
+ that

shrink to zero in such a way that the maximum distance

ρ(Ω) between a point in Ω and the origin tends to zero

lim
ρ(Ω)↓0

∥∥∥∥∥
∫

(s,t)∈Ω T (s, t) f dΩ∫
(s,t)∈Ω dΩ

− f

∥∥∥∥∥
Hk(RN×R+)

= 0 (76)

should be required to hold for all all smooth functions

f ∈ L1(RN × R+) ∩ C∞(RN × R+).

This algebraic structure constitutes a natural gener-

alization of the corresponding framework for one-para-

meter semi-groups in section 3.2; see definition 11 and

lemma 12 in appendix E for more formal statements.
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Evolution properties over time t and scale s. From this

analysis we can in analogy with lemma 2 conclude that

the spatio-temporal scale-space representation L should

be differentiable with respect to scale s and time t and

satisfy the following two differential equations

∂sL = A1L (77)

∂tL = A2L (78)

for some infinitesimal generators A1 and A2. Specifi-

cally, the second equation reflects a time-recursive for-

mulation where the temporal scales τ are now treated

as an internal temporal memory buffer, which is not

explicitly but only implicitly updated by the tempo-

ral evolution. In this respect, the relationship between

time t and temporal scale τ is reversed compared to the

relationship between space x and spatial scale s.

Our next step is to investigate how the notion of

non-enhancement of local extrema affects the choice of

possible infinitesimal generators A1 and A2 and thus

the class of possible operators Ts,t with their associ-

ated admissible spatio-temporal scale-space represen-

tation L. A natural way to formulate the notion of

non-enhancement of local extrema in a time-recursive

spatio-temporal setting is as follows: If a point (x0, t0;

s0, τ0) is a local maximum over the spatial coordinates

x ∈ RN and the temporal scale τ , then the directional

derivative of L in an arbitrary (forward) direction u in

(s, t)-space must be negative. Similarly, if the point is

a local minimum, then the directional derivative must

by positive. In other words:

∂uL ≤ 0 at any non-degenerate local maximum,

(79)

∂uL ≥ 0 at any non-degenerate local minimum.

(80)

Since the directional derivative ∂uL in a direction u =

(α1, α2) in (s, t)-space can be written

∂uL = α1 ∂sL+ α2 ∂tL (81)

and the sign condition on ∂uL is required to hold for

all non-negative α1 and α2, it follows that we have to

require that

∂sL ≤ 0 and ∂tL ≤ 0

at any non-degenerate local maximum, (82)

∂sL ≥ 0 and ∂tL ≥ 0

at any non-degenerate local minimum. (83)

see definition 13 and definition 14 in appendix E for

more detailed statements.

From a similar way of reasoning as in the proof of

theorem 5, we can then conclude that the infinitesimal

generators A1 and A2 must correspond to linear combi-

nations of first- and second-order derivatives, where the

second-order derivatives are determined from positive

semi-definite covariance matrices Σ1 and Σ2. In other

words, the scale-space representation L should satisfy:

∂sL =
1

2
∇Tx,τ (Σ1∇x,τL)− δT1 ∇x,τL, (84)

∂tL =
1

2
∇Tx,τ (Σ2∇x,τL)− δT2 ∇x,τL, (85)

where in this setting, the gradient operator ∇x,τ con-

tains derivatives with respect to both the spatial coor-

dinates x and the temporal scale τ ; see lemma 15 in

appendix E for a proof.

If we want the spatial scale parameter s to be a pure

spatial scale parameter, however, it is natural to require

the first evolution equation for ∂sL to be independent of

explicit derivatives with respect to τ ; otherwise tempo-

ral phenomena would influence the definition of spatial

scales. Thus, we reduce the first term in A1 to

∇Tx,τΣ1∇x,τL = ∇TxΣ1∇x (86)

where the restricted gradient operator ∇x corresponds

to differentiation with respect to the spatial coordinates

x only. To avoid an unessential translation with respect

to the spatial domain, we can apply similar reflection

symmetry arguments as in section 4.1 to set δ1 = 0.

Similarly, if we want the temporal scale parame-

ter τ to correspond to a pure temporal scale param-

eter, it is natural to require those second-order terms

in the second evolution equation that depend on ex-

plicit derivatives with respect to x to be zero. Then,

only one second-order term with derivatives with re-

spect to τ remains non-zero, leading to a single term of

the form 1
2∂ττL. Concerning the first-order terms, we

do not want the temporal evolution to be dependent

on the temporal history and thus not dependent on the

temporal scale τ . Therefore, we set the first-order term

with respect to τ to zero, implying that the first-order

term will only contain partial derivatives with respect

the spatial coordinates x. What will remain of A2 will

therefore be an operator of the form

A2L =
1

2
∂ττL− δT2 ∇xL, (87)

where we in a moment will rename the x component of

δ2 into v. To conclude, we have shown that given the

requirement of non-enhancement of local extrema and

complementary regularity and symmetry requirements,

the spatio-temporal scale-space representation should

satisfy the following evolution equations:

∂sL =
1

2
∇Tx (Σ∇xL), (88)

∂tL = −vT∇xL+
1

2
∂ττL. (89)
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Definition 16 and theorems 17–18 in appendix E give

precise statements of the corresponding necessity and

sufficiency results. Hence, for an original signal of di-

mensionality N + 1, the time-causal scale-space repre-

sentation will (at least) comprise N + 3 dimensions.7

In terms of integral expressions, it can be shown8

that the solutions of these equations with initial con-

dition L(x, 0; 0, τ ; Σ, v) = 0 and combined boundary

and initial condition L(x, t; 0, 0; Σ, v) = f(x, t) can be

written

L(x, t; s, τ ; Σ, v) =

=

∫ t

u=0

∫
ξ∈RN

f(ξ, u)h(x− ξ, t− u; s, τ ; Σ, v) dξ du

(90)

where the notation with double semi-colons in the list

of variables indicates that s and τ are parameters while

Σ and v are meta-parameters. The convolution kernel

h is in turn given by

h(x, t; s, τ ; Σ, v) = gN (x− vt; s; Σ)φ(t; τ) (91)

where

gN (x− vt; s; Σ) =

=
1

(
√

2πs)N
√

detΣ
e−(x−vt)TΣ−1(x−vt)/2s, (92)

φ(t; τ) =
1√

2π t3/2
τ e−τ

2/2t. (93)

This form of time-causal spatio-temporal scale-space

has also been derived by Fagerström [2007] in the spe-

cial case when Σ = I, however, starting from different

arguments of scale invariance. The additional degree

of freedom in the spatial covariance matrix Σ obtained

7 If the full group of spatial covariance matrices Σ and ve-
locity vectors v is considered as well, the dimensionality of the

affine- and velocity-adapted scale-space will be dim(x)+dim(t)+
dim(Σ) + dim(v) + dim(τ) = N + 1 + N(N + 1)/2 + N + 1 =

(N2 +5N+4)/2. To handle such high-dimensional scale-spaces in

practice, some sorts of intelligent search strategies are obviously
required, such as combinations of lower-dimensional subgroups.

The shape adaptation and velocity adaptation algorithms consti-
tute examples of such simplifying search strategies. With a mas-
sively parallel architecture, such as in biological vision, however,

one could afford to represent a richer family of affine-adapted

and/or velocity-adapted filters than would be possible to handle
with a serial computer. We will return to this subject, when we

describe relations to biological vision in section 6.
8 This result follows from the fact that gN (x − vt; s; Σ, δ) in

equation (45) satisfies the differential equation (44), which (with

δ = 0) implies that gN (x − vt; s; Σ)φ(t; τ) in equation (91)

satisfies equation (88). Similarly, since φ(t; τ) according to (205)
is a solution of (201), it follows that gN (x − vt; s; Σ)φ(t; τ) is

a solution of equation (89); see Lindeberg [2010].

here has the additional advantage that it allows for non-

isotropic smoothing kernels over the spatial domain,

which may be useful when dealing with local image

deformations over time and when considering motion

boundaries.

Figure 9 shows examples of the kernel h with spatio-

temporal derivatives computed from it in the space-

time separable case with v = 0. Figure 10 shows corre-

sponding velocity-adapted kernels for non-zero veloci-

ties v with velocity-adapted temporal derivatives com-

puted from a linear combination of temporal derivatives

and spatial derivatives

∂t̄ = ∂t + vT∇x. (94)

Before proceeding with detailed analysis of this scale-

space it can be mentioned that it will be shown in sec-

tion 5.1.4 that the spatial extent of these kernels is de-

termined by the spatial covariance matrix Σ, while the

temporal extent is proportional to τ2.

5.1 Properties of the time-causal spatio-temporal

scale-space.

We can note that there are many structural similarities

between this time-causal spatio-temporal scale-space con-

cept and the previously considered Gaussian spatio-

temporal scale-space. First of all, due to the linearity,

the property of non-enhancement of local extrema car-

ries over to any spatio-temporal derivative. Hence, all

spatio-temporal derivatives satisfy corresponding scale-

space properties as the original scale-space. Further-

more, with the evolution derivatives ∂sL and ∂tL over

spatial scales s and over time t given by (88) and (89),

it holds that the directional derivative ∂uL in any di-

rection u = (α, β) in (s, t) space (according to equa-

tion (81)) can be written

∂uL = α∂sL+β ∂tL =
α

2
∇TxΣ∇xL+

β

2
∂ττL−β vT∇xL

(95)

Thus, there is a very close similarity between these

equations and the differential equations (44) govern-

ing the previously considered Gaussian spatio-temporal

scale-space concept.

With regard to temporal causality, which is neces-

sary in a real-time setting, it follows from equation (89)

in combination with equation (94) that velocity-adapted

temporal derivatives of L, i.e., ∂nt̄ L, can be computed

from derivatives over temporal scales (i.e., the internal

temporal memory) ∂nττL according to

∂t̄ =
1

2
∂ττ , (96)
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Fig. 9 Time-causal and space-time separable spatio-temporal scale-space kernels: (top left) Original smoothing kernel h(x, y, t; Σ, v, τ)
(top right) First-order spatial derivative hx(x, y, t; Σ, v, τ) (bottom left) First-order temporal derivative ht(x, y, t; Σ, v, τ) (bottom
right) First-order temporal derivative of the spatial Laplacian hxxt(x, y, t; Σ, v, τ) + hyyt(x, y, t; Σ, v, τ) (λ1 = λ2 = 16, τ = 2,

vx = vy = 0). (Bottom plane: space (x, y). Vertical axis: time t.)
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Fig. 10 Time-causal and velocity-adapted (non-separable) spatio-temporal scale-space kernels: (top left) Original smoothing kernel
h(x, y, t; Σ, v, τ) (top right) First-order spatial derivative hx(x, y, t; Σ, v, τ) (bottom left) First-order velocity-adapted temporal deriva-
tive ht̄(x, y, t; Σ, v, τ) (bottom right) First-order velocity-adapted temporal derivative of the spatial Laplacian hxxt̄(x, y, t; Σ, v, τ) +

hyyt̄(x, y, t; Σ, v, τ) (λ1 = λ2 = 16, τ = 2, vx = 3/4, vy = 0). (Bottom plane: space (x, y). Vertical axis: time t.)
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thus without need for any additional temporal buffer-

ing than the information already contained in the time-

causal spatio-temporal scale-space.

5.1.1 Relations to regular Gaussian smoothing

We can note that there is also a very close link to reg-

ular Gaussian smoothing. By inspection, it can be seen

that the time-causal spatio-temporal smoothing can be

interpreted as as a first-order derivative with respect

to temporal scale τ of a one-dimensional Gaussian over

temporal scales, i.e.,

φ(t; τ) = −∂τg(τ ; t), (97)

and anN -dimensional Galilean-transformed affine Gaus-

sian kernel

gN (x− vt; Σ) =
1

(
√

2π)M
√

detΣ
e−(x−vt)TΣ−1(x−vt)/2

(98)

over space x. For sake of convenience, we will henceforth

change to the following notation:

L(x, t; Σ, v, τ) =

=

∫ t

u=0

∫
ξ∈RN

f(ξ, u)h(x− ξ, t− u;Σ, v, τ) dξ du

(99)

where

h(x, t; Σ, v, τ) = gN (x− vt; Σ)φ(t; τ) (100)

gN (x; Σ) =
1

(
√

2π)N
√

detΣ
e−x

TΣ−1x/2
(101)

φ(t; τ) = −∂τg1(τ ; t) =
1√

2π t3/2
τ e−τ

2/2t

(102)

Please, note the shift of the order of the arguments

between φ and g1 in equation (102).

5.1.2 Transformation properties

This velocity- and shape-adapted spatio-temporal scale-

space concept is closed under

– rescalings of the spatial and temporal dimensions,

– Galilean transformations in space-time and

– affine transformations in the spatial domain.

Scaling transformations over space and/or time. To ver-

ify the first one of these properties, let us rescale the

spatial and temporal domains by scaling factors a and

b, i.e., given a spatio-temporal signal f(x, t) introduce

a rescaled signal

f ′(x′, t′) = f(x, t) with x′ = a x and t′ = b t.

(103)

where a and b are non-zero scalar entities. Then, with

Σ′ = a2Σ, v′ =
b

a
v and τ ′ =

√
b τ (104)

the time-causal spatio-temporal scale-space representa-

tions of f and f ′ are related according to

L′(x′, t′; Σ′, v′, τ ′) = L(x, t; Σ, v, τ) (105)

with L given by (99) and L′ defined by

L′(x′, t′; Σ′, v′, τ ′) =

=

∫ t′

u′=0

∫
ξ′∈RN

f ′(ξ′, u′) gN (x′ − v′t′; Σ′)φ(t′; τ ′) dξ′ du′

(106)

Galilean transformations in space-time. Concerning the

Galilean transformation property, let us next given any

spatio-temporal signal f(x, t) and any velocity vector

w define a Galilean transformed signal by

f ′′(x′′, t′′) = f(x, t) where x′′ = x−w t and t′′ = t

(107)

Then, provided that

Σ′′ = Σ, v′′ = v + w and τ ′′ = τ (108)

the spatio-temporal scale-space representations of f and

f ′′ are also equal

L′′(x′′, t′′; Σ′′, v′′, τ ′′) = L(x, t; Σ, v, τ). (109)

Affine transformation over the spatial domain. Finally,

concerning the affine transformation property, it follows

from (51) and (52) that if we have two spatio-temporal

signals f ′′′ and f that are related by f ′′′(x′′′, t′′′) =

f(x, t) with x′′′ = Ax and t′′′ = t and where A is a non-

singular N × N matrix, then the time-causal spatio-

temporal scale-space representations of f and f ′′′ are

related according to

L′′′(x′′′, t′′′; Σ′′′, v′′′, τ ′′′) = L(x, t; Σ, v, τ) (110)

if

Σ′′′ = AΣAT , v′′′ = v and τ ′′′ = τ. (111)
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General implications. To conclude, these results show

that this spatio-temporal scale-space satisfies natural

transformation properties that allow it to handle

– image data acquired with different spatial and/or

temporal sampling rates,

– image structures of different spatial and/or tempo-

ral extent,

– objects with different distances from the camera,

– the linear component of relative motions between

the camera and objects in the world, and

– the linear component of perspective deformations.

Similar properties hold also for the Gaussian spatio-

temporal scale-space in section 4.1.3.

5.1.3 Temporal cascade-recursive formulation

When computing a spatio-temporal scale-space repre-

sentation at time t2 > t1, a very attractive property is if

this can be done in a time-recursive manner, such that

it sufficient to use the following sources of information:

– the internal buffer of the spatio-temporal scale-space

representation L at time t1, and

– information about the spatio-temporal input data f

during the time interval [t1, t2].

This property means that it is sufficient to use the inter-

nal states of the spatio-temporal scale-space represen-

tation as internal memory, and we do not need to have
any complementary buffer of what else has occurred in

the past.

Such a property can indeed be established for the

time-causal scale-space representation, based the fact

that the time-causal scale-space kernel φ(t; τ) satisfies

the following time-recursive cascade smoothing prop-

erty over a pure temporal domain (derived in equa-

tion (210) and equation (214) in appendix D.3)

φ(t2; τ) =

=

∫ ∞
ζ=0

φ(t1; ζ) (g(τ − ζ; t2 − t1)− g(τ + ζ; t2 − t1)) dζ

(112)

From this relation it follows that the time-causal spatio-

temporal scale-space representation satisfies the follow-

ing cascade-recursive structure over time t and spatial

scales s:

L(x, t2; s2, τ) =

=

∫
ξ∈RN

∫
ζ≥0

T (x− ξ, t2 − t1; s2 − s1, τ, ζ)

L(ξ, t1; s1, ζ) dζ dξ

+

∫
ξ∈RN

∫ t2

u=t1

B(x− ξ, t2 − u; s2, τ) f(ξ, u) dξ du

(113)

where the kernel T for updating the internal memory

representation L is given by

T (x, t; s, τ, ζ) = gN (x−vt; s) (g(τ − ζ; t)− g(τ + ζ; t))

(114)

and the kernel B for incorporating new knowledge from

the input signalf at the boundary is

B(x, t; s, τ) = gN (x− vt; s)φ(t; τ). (115)

Please, note that we have here dropped the arguments

for the meta-parameters Σ and v in order to simplify

the notation.

5.1.4 Properties of the time-causal smoothing functions

To describe the evolution properties over temporal scales

τ is however somewhat different than for the Gaus-

sian spatio-temporal scale-space. While the integral of

h over space-time is finite∫ ∞
t=0

∫
x∈RN

h(x, t; Σ, v, τ) dx dt = 1, (116)

we cannot compute the first- and second-order moments

of h over time t, since the corresponding integrals do not

converge∫ ∞
t=0

∫
x∈RN

t h(x, t; Σ, v, τ) dx dt→∞, (117)∫ ∞
t=0

∫
x∈RN

t2 h(x, t; Σ, v, τ) dx dt→∞. (118)

Hence, we cannot parameterize the time-causal kernels

h in terms of mean vectors and covariance matrices

over space-time, as is a natural approach for most other

spatio-temporal scale-spaces. Nevertheless, we can com-

pute the position in space-time of the local maximum

of h(x, t; Σ, v, τ)(
x̂

t̂

)
=

1

3

(
v

1

)
τ2 (119)

and make another definition of the effective temporal

extent of the time-causal kernel from the values tt/2,1 <
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t1/2,2 for which the one-dimensional purely temporal

time-causal kernel φ(t; τ) assumes half its maximum

value

φ(tt/2,1; τ) = φ(tt/2,2; τ) =
1

2
φ(t̂; τ) (120)

with the approximate estimates

tt/2,1 ≈ 0.145 τ2, tt/2,2 ≈ 1.046 τ2 (121)

that lead to the following measure of the temporal width

of the one-dimensional time-causal scale-space kernel

∆t = tt/2,2 − tt/2,1 ≈ 0.900 τ2. (122)

We can also define the temporal delay according to

δ =

∫∞
t=0

t φ2(t; τ) dt∫∞
t=0

φ2(t; τ) dt
= τ2. (123)

Both the temporal width and the temporal delay of the

time-causal scale-space kernel are hence proportional

to the square of the temporal scale parameter τ (see

figures 11–12 for illustrations).

To visualize the temporal response properties of the

one-dimensional time-causal kernel φ(t; τ), we can also

compute the response to a step function fstep(t) =

H(t) = 1 for t > 0 and fstep(t) = H(t) = 0 for t < 0

Lstep(t; τ) = erfc

(
τ√
2t

)
(124)

and to a linear ramp framp(t) = t (see figure 13)

Lramp(t; τ) = (t+ τ2) erfc

(
τ√
2t

)
− e− τ

2

2t

√
2

π
τ
√
t.

(125)

We can also compute the spatial mean x̄ and the spa-

tial covariance matrix C(x, x) of the composed spatio-

temporal kernel h(x, t; Σ, v, τ) according to

x̄ =

∫
x∈RN xh(x, t; Σ, v, τ) dx∫
x∈RN h(x, t; Σ, v, τ) dx

= vt, (126)

C(x, x) =

∫
x∈RN xx

T h(x, t; Σ, v, τ) dx∫
x∈RN h(x, t; Σ, v, τ) dx

− x̄x̄T = sΣ.

(127)

In other words, (i) the spatial shape of the spatio-tempo-

ral kernel h(x, t; Σ, v, τ) is described by the spatial

covariance matrix Σ, (ii) the temporal extent is pro-

portional to τ2 and (iii) the velocity vector v specifies

the orientation of the kernel in space-time.
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Fig. 11 Graphs of the one-dimensional time-causal scale-space
kernels φ(t; τ) for τ = 1, 2 and 4.
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Fig. 12 Illustration of the definition of the width of the time-

causal kernel from the values tt/2,1 < t1/2,2 for which the time-
causal kernel (here with τ = 1) assumes half its maximum value.
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Fig. 13 The response dynamics of the one-dimensional time-

causal scale-space kernel φ(t; τ) to (top) a unit step function

and (bottom) a linear ramp at temporal scale τ = 1.
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5.1.5 Behaviour over temporal scales τ

Under variations of the temporal scale parameter τ , it

can be noted that the explicit expression for the time-

causal kernel φ(t; τ) is self-similar with regard to the

ratio τ/
√
t. This means that the time-causal kernels

will be self-similar over temporal scales, as reflected in

the scaling property in equations (104)–(105). With the

Laplace transform of the purely temporal part of the

time-causal kernel defined by

(Lφ)(p; τ) = φ̄(p; τ) =

∫ ∞
t=0

φ(t; τ) e−ptdt =

=

∫ ∞
t=0

1√
2π t3/2

τ e−τ
2/2t e−ptdt = e−

√
2p τ , (128)

it can be seen that the result of multiplying two such

Laplace transforms is of the form

φ̄(p; τ1) φ̄(p; τ2) = e−
√

2p τ1e−
√

2p τ2 = e−
√

2p (τ1+τ2)

= φ̄(p; τ1 + τ2) (129)

corresponding to the linear semi-group structure of φ(t; τ)

under additions of the temporal scale parameter τ . Thus,

the time-causal kernels also form a semi-group over

temporal scales with regard to one-sided and finite sup-

port convolution operations

φ(·; τ1) ∗̃φ(·; τ2) = φ(·; τ1 + τ2). (130)

of the form

(f ∗̃ g)(t) =

∫ t

u=0

f(u) g(t−u) du =

∫ t

u=0

f(t−u) g(u) du.

(131)

This property carries over to a corresponding semi-

group property of the time-causal spatio-temporal ker-

nels under convolutions over space-time

(h(·, ·; Σ1, τ1) ∗ h(·, ·; Σ2, τ2)) = h(·, ·; Σ1+Σ2, τ1+τ2)

(132)

which means that the spatio-temporal derivatives obey

the following cascade smoothing property

L(·, ·; Σ2, τ2) = h(·, ·; Σ2 −Σ1, τ2 − τ1) ∗ L(·, ·; Σ1, τ1)

(133)

Along the direction of temporal scales τ , however, this

semi-group does not obey non-enhancement of local ex-

trema with increasing temporal scales, only scale invari-

ance (see figure 14).

time t

temporal
scale tau

spatial 
scale s

Fig. 14 The spatio-temporal scale-space L representation of an
image is a function over space x ∈ RN , time t ∈ R+, spatial scale

s ∈ R+ and temporal scale τ ∈ R+, with a spatial covariance

matrix Σ ∈ RN2
and an image velocity vector v ∈ RN as meta

parameters. With the temporal scale parameter τ treated as an

internal state variable in addition to (the here invisible) space x,

we can describe this spatio-temporal scale-space representation
as a two-parameter semi-group that obeys non-enhancement of

local extrema over spatial scale s and time t, and with a both

time-causal and time-recursive update rule over time t. If we on
the other hand treat space-time (x, t) as the internal state, we

obtain another two-parameter semi-group over spatial scales s
and temporal scales τ , which obeys non-enhancement of local ex-

trema with increasing spatial scales s while only scale invariance

over temporal scales τ .

5.2 Temporal derivatives with respect to transformed

time

When computing temporal derivatives of time-causal

spatio-temporal kernels, the temporal derivative opera-
tor reduces to temporal derivatives of the one-dimensional

time kernel φ(t; τ). For space-time separable kernels

with v = 0 we have

∂xαtγh(x, t; s, τ) = ∂xαtγ (g(x; s)φ(t; τ))

= gxα(x; s)φtγ (t; τ) (134)

while for velocity-adapted kernels the corresponding velocity-

adapted spatio-temporal derivatives are given by

∂xα t̄γh(x, t; s, τ, v) = ∂xα t̄γ (g(x− vt; s)φ(t; τ))

= gxα(x− vt; s)φtγ (t; τ) (135)

Hence, we can reveal many of the temporal response

properties of the composed spatio-temporal kernels h(x, t;

s, τ) and h(x, t; s, τ, v) by studying the temporal deriva-

tives of the one-dimensional time-causal kernel φ(t; τ).

In this subsection, we shall follow this notion and

extend the regular temporal derivative operator ∂t by

a transformed derivative operator ∂t′ with respect to

a transformed time. The motivation for this extension
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Fig. 15 Temporal smoothing kernels that can be used in the modelling of space-time separable spatio-temporal receptive fields, with

their first- and second-order derivatives displayed as well: (top row) Time-shifted Gaussian kernel g(t; τ, δ) = 1/
√

2πτ exp(−(t−δ)2/2τ)

with τ = 1 and δ = 4. (second row from top) The time-causal kernel φ(t; τ) = 1/
√

2πt3 τ exp(−τ2/2t) with τ = 1. (third row from
top) The time-causal kernel φ(t; τ) = 1/

√
2πt3 τ exp(−τ2/2t) considered in the previous row, but with derivatives computed with

respect to square root time t′ =
√
t. (bottom row) The time-causal kernel φ(t; τ) = 1/

√
2πt3 τ exp(−τ2/2t) considered in the previous

row, but with derivatives computed with respect to logarithmic time t′ = log(t/t0) with t0 = 2.
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Fig. 16 Space-time separable kernels hxαtγ (x, t; s, τ, v) up to order two obtained from the time-causal spatio-temporal scale-space in

the case of a 1+1-D space-time (s = 1, τ = 2) and with temporal derivatives computed with respect to a self-similar transformation

of the temporal axis ∂t′ ∼ tκ ∂t, here with κ = 1/2. (Horizontal axis: space. Vertical axis: time.)
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Fig. 17 Velocity-adapted spatio-temporal kernels hx̄α t̄′γ (x, t; s, τ, v) up to order two obtained from the time-causal spatio-temporal

scale-space in the case of a 1+1-D space-time (s = 1, τ = 2, v = 0.75) and with temporal derivatives computed with respect to
self-similar transformation of the temporal axis ∂t′ ∼ tκ ∂t, here with κ = 1/2. (Horizontal axis: space. Vertical axis: time.)
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is that the time-causal kernels are highly asymmetric

over time, which means that it may be more natural to

consider temporal derivatives with respect to a trans-

formed time axis

t′ = ϕ(t) (136)

where ϕ should be a monotonically increasing function,

we can in particular consider a self-similar logarithmic

transformation

t′ = log

(
t

t0

)
(137)

or a self-similar power law

t′ = tα. (138)

The derivative operation ∂t′ with respect to logarithmic

time will then related to the regular temporal derivative

operator ∂t according to

∂t′ =
1

ϕ′(t)
∂t (139)

which for the logarithmic time transformation implies

∂t′ =
t

t0
∂t (140)

and for the power law t′ = tα

∂t′ =
t1−α

α
∂t. (141)

The third and fourth rows in figure 15 show the result of

computing first- and second-order temporal derivatives

from the time-causal smoothing kernel in this way. For

comparison, we also show derivatives of the Gaussian

temporal kernel and regular temporal derivatives of the

time-causal kernel.

As we can see, the change of temporal variable by

a self-similar monotonically increasing transformation

does not change the position of the zero-crossing for

the first-order derivative; it only leads a multiplica-

tion by linear time-dependent scalar factor. For the

second-order derivative, however, the behaviour is qual-

itatively different. The regular first-order derivative of

the time-causal kernel has two peaks and one interior

zero-crossing, while the second-order derivative with re-

spect to transformed time has three clearly visible peaks

and two internal zero-crossings, as a second-order scale-

space derivative kernel should have.

For these reasons, we will henceforth consider this

generalized notion of temporal derivatives with respect

to transformed time when studying temporal derivative

responses of highly asymmetric smoothing kernels. In-

deed, for both the logarithmic transformation and for

the power law the transformed derivative operator is of

the form

∂t′ ∼ tκ∂t, (142)

and we will refer to this operator as temporal derivatives

with respect to self-similarly transformed time. It can

be shown that this definition is compatible with spatio-

temporal scale invariance for scale selection based on

local extrema over temporal scales of scale-normalized

derivatives (manuscript in preparation). Specifically, the

value κ = 1/2 can be motivated both from theoretical

considerations and agreement with biological receptive

fields. Figure 17 shows corresponding spatio-temporal

derivative operators for a 1+1-D space-time.

6 Relations to biological vision

In a comprehensive review, DeAngelis et al. [1995] present

an overview of temporal response properties of recep-

tive fields in the central visual pathways. Foremost, the

authors point out the limitations of defining receptive

fields in the spatial domain only, and emphasize the

need to characterize receptive fields in the joint space-

time domain, in order to describe how a neuron pro-

cesses the visual image. Then, for basic cell types in

the LGN and the striate cortex, they essentially de-

scribe the spatio-temporal response characteristics as

follows:

LGN neurons: The neurons in the LGN have approxi-

mately circular center-surround organization in the spa-

tial domain (see figure 18(a)) and most receptive fields

are separable in space-time. There are two main classes

of temporal responses for such cells: In a “non-lagged

cell” the first temporal lobe is the largest one (fig-

ure 20(a)) whereas for a “lagged cell” the second lobe

dominates (figure 20(b)). Such temporal response prop-

erties are typical for first- and second-order temporal

derivatives of a time-causal temporal scale-space repre-

sentation (see figure 15).9 The spatial response, on the

other hand, shows a high similarity to a Laplacian of a

Gaussian.

Within the above mentioned spatio-temporal scale-

space theory, we can model the qualitative shape of

these circular center-surround receptive fields in the

LGN as:

hLGN (x, y, t; s, τ) = ±(∂xx + ∂yy) g(x, y; s) ∂t′n h(t; τ)

9 For the first-order temporal derivative of a time-causal tem-

poral scale-space kernel, the first peak is usually strongest,

whereas for certain classes of time-causal temporal smoothing
kernel, the second peak may be the most dominant for second-

order temporal derivatives (see figure 15).
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Fig. 18 Examples of receptive field profiles in the spatial domain as reported by DeAngelis et al. [1995]. (a) Receptive fields in

the LGN have approximately circular center-surround responses in the spatial domain. In terms of Gaussian derivatives, this spatial
response profile can be modelled by the Laplacian of the Gaussian ∇2g(x; t) (see figure 19(a)). (b) Simple cells in the cerebral cortex
do usually have strong directional preference in the spatial domain. In terms of Gaussian derivatives, this spatial response can be

modelled as a directional derivative of an elongated affine Gaussian kernel (see figure 19(b)). (c) Complex cells are non-linear and do
not obey the superposition principle.

∇2g(x, y; s) ∂xg(x, y; Σ)
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Fig. 19 (left) The Laplacian of an isotropic two-dimensional Gaussian smoothing kernel over a spatial domain ∇2g(x, y; s) =

(x2 + y2 − 2s)/(2πs3) exp(−(x2 + y2)/2s) with here s = 0.4 can be used as a model for the circular center-surround responses in
the LGN illustrated in figure 18(a). (right) First-order directional derivatives of anisotropic affine Gaussian kernels, here aligned to
the coordinate directions ∂xg(x, y; Σ) = ∂xg(x, y; λx, λy) = − x

λx
1/(2π

√
λxλy) exp(−x2/2λx − y2/2λy) and here with λx = 0.2 and

λy = 2, can be used as a model for simple cells with a strong directional preference as illustrated in figure 18(b).
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(143)

where

– the sign determines whether the cell is of type “on-

center-off-surround” or “off-center-on-surround”,

– the parameter n = 1, 2 describes the order of differ-

entiation with respect to time,

– g(x, y; s) is an isotropic smoothing kernel in the

spatial domain generated by the rotationally sym-

metric Gaussian scale-space concept with spatial scale

parameter s,

– h(t; τ) is a temporal smoothing kernel over time t

with temporal scale parameter τ ,

– the operator ∂t′ denotes differentiation with respect

to a possibly transformed temporal axis according

to a self-similar transformation ∂t′ ∼ tκ ∂t, where

κ = 0 corresponds to regular temporal derivatives,

κ = 1 corresponds to the computation of temporal

derivatives with respect to logarithmic time, and

κ ∈]0, 1[ corresponds to temporal derivatives with

respect to a power law transformation t′ = tα with

κ = 1− α.

Figure 19(a) shows an illustration of the spatial re-

sponse properties of such a receptive field. Figure 15

shows examples of different kernels that can be used

for modelling the temporal smoothing component for

this class of space-time separable filters.

Note: In all illustrations in section 6, where spatial

and spatio-temporal derivative expressions are aligned

to biological data, the unit for the spatial scale parame-

ter s corresponds to [degrees2] of visual angle, the units

for the temporal scale parameter τ in the Gaussian

spatio-temporal scale-space representation is [milliseconds2],

while the units for the temporal scale parameter τ in the

time-causal spatio-temporal scale-space representation

is [
√

milliseconds]. For image velocities v of velocity-

adapted filters, the units are [degrees/millisecond].

Simple cells: For simple cells in the striate cortex, the

receptive fields are oriented in the spatial domain (see

figure 18(b)). The spatial component of such cells can be

modelled by directional derivatives of affine Gaussian

kernels according to equations (58), (59) and (57); see

figure 19(b):

hspace(x, y; s) =

= (cosϕ∂x + sinϕ∂y)m
(

1

2π
√

detΣs
e−x

TΣ−1
s x/2

)
(144)

In the joint space-time domain, the spatio-temporal re-

sponse properties range from separable (figure 22) to

strongly inseparable (figure 24), where a majority ex-

hibit marked space-time inseparability. The temporal

profile is reported to be typically biphasic, although

some cells are reported to have monophasic or tripha-

sic responses.

In terms of temporal derivatives, a biphasic behaviour

arises from first-order derivatives, a monophasic be-

haviour from zero-order derivatives and a triphasic be-

haviour from second-order derivatives. Concerning the

oriented spatial response characteristics, there is a high

similarity with directional derivatives of Gaussian ker-

nels Young [1987].

In fact, for all these linear receptive fields, spatio-

temporal filters with qualitatively similar response char-

acteristics can be generated by applying Cartesian or

directional partial derivative operators of low orders to

the spatio-temporal filters obtained from the spatio-

temporal scale-space framework outlined in section 4

and section 5.

Figures 21, 23, and 25 show a few examples of sepa-

rable and inseparable kernels obtained in this way for a

1+1-dimensional space-time, based on the general mod-

els

hGaussian(x, t; s, τ, v, δ) = ∂mx̄ ∂
n
t̄ g(x, t; s, τ, v, δ) (145)

htime−causal(x, t; s, τ, v) = ∂mx̄ ∂
n
t̄′h(x, t; s, τ, v) (146)

with space-time tilted spatio-temporal derivative oper-

ators ∂x̄ = ∂x and ∂t̄ = v ∂x + ∂t and with the trans-

formed self-similar temporal derivative operator accord-

ing to ∂t′ ∼ tκ ∂t.

Motion selectivity. Concerning motion selectivity, DeAn-

gelis et al. [1995] report that most cortical neurons are

quite sensitive to stimulus velocity and the speed tun-

ing is more narrow than for LGN cells. Simple cells with

inseparable receptive fields have directional preference

while cells with space-time separable receptive fields do

not. Moreover, the preferred direction of motion corre-

sponds to the orientation of the filter in space-time.

This structure is nicely compatible with velocity

adaptation, as described in sections 4.1.3–4.1.4, sec-

tion 5 and appendix C. Within the above mentioned

terminology, separable receptive fields correspond to

spatio-temporal scale-space kernels without velocity adap-

tation, while inseparable receptive fields correspond to

kernels that are explicitly adapted to non-zero veloci-

ties.

The directional preference of the cells in the spa-

tial domain can, in turn, be controlled by the covari-

ance matrix of the affine Gaussian scale-space concept

as outlined in section 4.1.2. We obtain receptive fields

without directional preference in the spatial domain

if we set the covariance matrix Σ = s I proportional
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Fig. 20 Examples of space-time separable receptive field profiles in the LGN as reported by DeAngelis et al. [1995]. There are two

main categories of such cells; (a) for a non-lagged cell, the first temporal lobe dominates, while (b) for a lagged cell the second temporal

lobe is strongest. In terms of the spatio-temporal receptive field model presented in this paper, non-lagged cells can be modelled by
first-order temporal derivatives, while the shape of lagged cells resembles second-order temporal derivatives (see figure 21). (Horizontal

dimension: space x. Vertical dimension: time t.)
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Fig. 21 Space-time separable kernels obtained from the spatio-temporal scale-space concepts: (upper left) Gaussian spatio-temporal

kernel gxxt(x, t; s, τ, δ) = gxx(x; s) gt(t; τ, δ) with s = 0.4, τ = 302, δ = 60. (upper right) Gaussian spatio-temporal ker-
nel gxxtt(x, t; s, τ, δ) = gxx(x; s) gtt(t; τ, δ) with s = 0.3, τ = 352, δ = 120. (lower left) Time-causal spatio-temporal kernel
hxxt′h(x, t; s, τ) = gxx(x; s)φt′ (t; τ, δ) with s = 0.4, τ = 17. (lower right) Time-causal spatio-temporal kernel hxxt′t′h(x, t; s, τ) =
gxx(x; s)φt′t′ (t; τ, δ) with s = 0.4, τ = 25. For the time-causal kernels, the temporal derivatives have been computed using the

transformed temporal derivative operator ∂t′ ∼ tκ ∂t, here with κ = 1/2. Compare the qualitative shapes of these kernels with the
kernels in with figure 20. (Horizontal dimension: space x. Vertical dimension: time t.)
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Fig. 22 Examples of space-time separable receptive field profiles in the striate cortex as reported by DeAngelis et al. [1995]: (a) a

non-lagged cell reminiscent of a first-order temporal derivative in time and a first-order derivative in space (compare with figure 23(a))

(b) a non-lagged cell reminiscent of a first-order temporal derivative in time and a second-order derivative in space (compare with
figure 23(b)). (Horizontal dimension: space x. Vertical dimension: time t.)
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Fig. 23 Space-time separable kernels obtained from the spatio-temporal scale-space concepts: (upper left) Gaussian spatio-temporal
kernel gxt(x, t; s, τ, δ) = gx(x; s) gt(t; τ, δ) with s = 0.3, τ = 402, δ = 100. (upper right) Gaussian spatio-temporal kernel

gxxt(x, t; s, τ, δ) = gxx(x; s) gt(t; τ, δ) with s = 0.3, τ = 602, δ = 150. (lower left) Time-causal spatio-temporal kernel hxt′ (x, t; s, τ) =

gx(x; s)φt′ (t; τ, δ) with s = 0.4, τ = 17. (lower right) Time-causal spatio-temporal kernel hxxt′ (x, t; s, τ) = gxx(x; s)φt′ (t; τ, δ) with
s = 0.4, τ = 22. For the time-causal kernels, the temporal derivatives have been computed using the transformed temporal derivative

operator ∂t′ ∼ tκ∂t, here with κ = 1/2. Compare the qualitative shapes of these kernels with the kernels in figure 22. (Horizontal
dimension: space x. Vertical dimension: time t.)
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Fig. 24 Examples of non-separable receptive field profiles in the striate cortex as reported by DeAngelis et al. [1995]: (a) a receptive

field reminiscent of a second-order derivative in tilted space-time (compare with the left column in figure 25) (b) a receptive field

reminiscent of a third-order derivative in tilted space-time (compare with the right column in figure 25). (Horizontal dimension: space
x. Vertical dimension: time t.)
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Fig. 25 Non-separable spatio-temporal receptive fields obtained by applying velocity-adapted second- and third-order derivative
operations in space-time to spatio-temporal smoothing kernels generated by the spatio-temporal scale-space concept. (upper left)

Gaussian spatio-temporal kernel gxx(x, t; s, τ, v, δ) with s = 0.5, τ = 502, v = 0.006, δ = 100. (upper right) Gaussian spatio-temporal

kernel gxxx(x, t; s, τ, v, δ) with s = 0.5, τ = 602, v = 0.006, δ = 130. (lower left) Time-causal spatio-temporal kernel hxx(x, t; s, τ, v)
with s = 0.4, τ = 15, v = 0.006. (lower right) Time-causal spatio-temporal kernel hxxx(x, t; s, τ, v) with s = 0.4, τ = 15, v = 0.006.

Compare the qualitative shapes of these kernels with the kernels in figure 24. (Horizontal dimension: space x. Vertical dimension:
time t.)
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to the unit matrix, and space-time separable receptive

fields if we in addition choose the velocity adaptation

vector v equal to zero. Assuming that the influence of Σ

and v can be neglected (e.g. by setting Σ proportional

to the unit matrix and v to zero), the filter shape will

then be determined solely by the spatial scale s and

the temporal scale λ. Conversely, we can construct in-

separable kernels with strong directional preference by

appropriate combinations of the covariance matrix Σ

and the velocity adaptation vector v.

The above mentioned fact that a majority of the

cells are inseparable in space-time is indeed nicely com-

patible with a description in terms of a multi-parameter

scale-space as outlined in section 4. If the vision system

is to give a reasonable coverage of a set of filter pa-

rameters Σ and v, then the set of filters corresponding

to space-time separable receptive fields (corresponding

to the filter parameters v = 0) will be much smaller

than the set of filters allowing for non-zero values of

the mixed parameters over space and time.

Complex cells. Besides the above mentioned linear re-

ceptive fields, there is a large number of early non-linear

receptive fields that do not obey the superposition prin-

ciple and which are referred to as complex cells. The

response profile of such a cell in the spatial domain is

typically of the form illustrated in figure 18(c).

In their study of spatio-temporal receptive field prop-

erties, DeAngelis et al. [1995] also report a large number

of complex cells with non-linear response profiles in the

joint space-time domain; see figure 26 for an example.

Within the framework of the presented spatio-temporal

scale-space concept, it is interesting to note that non-

linear receptive fields with qualitatively similar proper-

ties can be constructed by squaring first- and second-

order derivative responses and summing up these com-

ponents [Koenderink and van Doorn, 1990]. Provided

that the filters are appropriately normalized, we can

then construct a quasi quadrature measure over a one-

dimensional either spatial or temporal domain as [Lin-

deberg, 1997a]

QL = L2
ξ + C L2

ξξ = sL2
x + C s2L2

xx (147)

where ∂ξ =
√
s ∂x denotes normalized derivatives with

respect to normalized coordinates ξ = x/
√
s [Linde-

berg, 1998] and where the constant C can be deter-

mined either to minimize the amount of ripples in the

operator response (C = 2/3 ≈ 0.667) or from scale se-

lection properties (C = e/4 ≈ 0.670). In the case of op-

erating on a 1+1-D space-time with a Gaussian spatio-

temporal scale-space, and with normalized derivatives

over scale-normalized time λ = t/
√
τ according to ∂λ =

√
τ ∂t or more generally ∂λ = τγ/2 ∂t, we can then con-

sider the following generalizations of the quasi quadra-

ture measure: 10

Q1L = L2
ξ + L2

λ + C (L2
ξξ + 2L2

ξλ + L2
λλ)

= sL2
x + τL2

t + C (s2L2
xx + 2sτL2

xt + τ2L2
tt)

(148)

(Q2L)2 = (L2
ξ + C L2

ξξ)(L
2
λ + C L2

λλ)

= (sL2
x + C s2L2

xx)(τL2
t + C τ2L2

tt) (149)

Q3L = L2
ξλ + C L2

ξξλ + C L2
ξλλ + C2 L2

ξξλλ

= sτL2
xt + C s2τL2

xxt

+ C sτ2L2
xtt + C2 s2τ2L2

xxtt (150)

For the time-causal scale-space, we can express corre-

sponding scale-normalized operators as

Q1L = L2
ξ + L2

λ + C (L2
ξξ + 2L2

ξλ + L2
λλ)

= sL2
x + τL2

t + C (s2L2
xx + 2sτL2

xt′ + τ2L2
t′t′)

(151)

(Q2L)2 = (L2
ξ + C L2

ξξ)(L
2
λ + C L2

λλ)

= (sL2
x + C s2L2

xx)(τL2
t′ + C τ2L2

t′t′) (152)

Q3L = L2
ξλ + C L2

ξξλ + C L2
ξλλ + C2 L2

ξξλλ

= sτL2
xt′ + C s2τL2

xxt′

+ C sτ2L2
xt′t′ + C2 s2τ2L2

xxt′t′ (153)

10 In the first spatio-temporal quasi quadrature entity Q1L, the
square of the first-order derivative L2

ξ in the corresponding one-

dimensional measure QL has been replaced by the squared gra-

dient magnitude L2
ξ + L2

λ in space-time, while the square of the

second-order derivative L2
ξξ has been replaced by the Frobenius

norm L2
ξξ + 2L2

ξλ + L2
λλ of the Hessian matrix computed over

a scale-normalized space-time. For this entity to respond, it is

sufficient that there are significant variations in the signal over

either space or time. The second spatio-temporal quasi quadra-
ture measure Q2L has been defined as the product of correspond-

ing quasi quadrature measures over pure space L2
ξ + C L2

ξξ and

pure time L2
λ + C L2

λλ. Therefore, this entity will only generate

responses when there simultaneously occur variations in the sig-
nal over both space and time. Hence, the operator Q2L will be

much more selective than Q1L. Finally, the third entity Q3L has

been defined from spatio-temporal derivative operators with high
degree of qualitative similarity to biological receptive fields, and

with a similar spirit of summing up squares of Gaussian deriva-

tive operator responses that correspond to first- and second-order
derivatives with respect to space and time. Since all the primi-

tives in Q3L contain derivatives with respect to both space and

time, this entity will only generate significant responses if there
are significant variations over both space and time. For all of

these quasi quadrature entities, we can compute the derivatives
either from a space-time separable spatio-temporal scale-space or
a velocity-adapted scale-space. In the latter case, the entire op-

erator will therefore be tuned to a particular stimulus velocity.
The illustrations in figure 27 have, however, been computed with

space-time separable derivative operators.
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Fig. 26 Response profile of a complex cell in the joint space-time domain as reported by DeAngelis et al. [1995]. Within the framework
of the spatio-temporal scale-space framework presented in this paper, such a response property can be obtained by a quasi-quadrature

combination of first- and second-order receptive fields; see figure 27. (Horizontal dimension: space x. Vertical dimension: time t.)
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Fig. 27 The response of different spatio-temporal quasi quadrature measures to a delta function. (left) Computed for a spatio-temporal
Gaussian g(x, t; s, τ, δ) according to (top) Q1 g = s g2

x+τg2
t +C (s2g2

xx+2sτg2
xt+τ2g2

tt) (middle) Q2
2 g = (s g2

x+s2g2
xx)(τg2

t +C τ2g2
tt)

(bottom)Q3 g = (sτg2
xt+C s

2τg2
xxt+C sτ

2τg2
xtt+C

2 s2τ2g2
xxtt) with s = 1.2, τ = 252, δ = 90, C = e/4. (right) Computed for the time-

causal kernel h(x, t; s, τ) according to (top)Q1 h = s h2
x+τh2

t+C (s2h2
xx+2sτh2

xt+τ
2h2
tt) (middle)Q2

2 h = (sh2
x+s2h2

xx)(τh2
t+C τ2h2

tt)

(bottom) Q3 h = (sτh2
xt + C s2τh2

xxt + C sτ2τh2
xtt + C2 s2τ2h2

xxtt) with s = 1.2, τ = 252, δ = 90, C = e/4. (Horizontal dimension:

space x. Vertical dimension: time t.)
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where the temporal derivatives ∂t′ with respect to self-

similarly transformed time are related to derivatives

with respect to regular time according to ∂t′ ∼ tκ∂t.11

Figure 27 shows the result of computing the re-

sponse of these quasi quadrature measures to a delta

function over a 1+1-D space-time. Note that this type

of computational structure is nicely compatible with re-

sults by Valois et al. [2000], who show that first- and

second-order receptive fields typically occur in pairs

that can be modelled as approximate Hilbert pairs.

7 Summary and discussion

We have presented a generalized theory for Gaussian

scale-space representation of spatial and/or spatio-tem-

poral data. Starting from a general condition about

non-creation of spurious structures with increasing scales

formalized in terms of non-enhancement of local ex-

trema, a complete characterization has been given of

the semi-groups of convolution transformations that obey

this requirement on different types of image domains.

The resulting theory comprises the existing continuous

scale-space theory on symmetric spatial domains, with

extensions to non-symmetric spatial domains as well as

spatio-temporal domains. Specifically, we have shown

that this combination of scale-space axioms makes it

possible to axiomatically derive the notions of:

– rotationally symmetric Gaussian scale-space on iso-

tropic spatial domains,

– affine Gaussian scale-space on anisotropic spatial

domains,

– Gaussian spatio-temporal scale-space on non-causal

spatio-temporal domains, and

– time-causal spatio-temporal scale-space on time-causal

spatio-temporal domains.

A main message is that a much richer structure of affine

as well as spatio-temporal filters can be obtained if we

start from a reformulation of Koenderink’s causality re-

quirement into non-enhancement of local extrema, and

then relax the requirement of spatial symmetry that

was prevalent in the earliest scale-space formulations

as well as most follow-up works.

11 In analogy with the computation of multi-scale second-
moment descriptors G̊arding and Lindeberg [1996], we can ap-

ply a second convolution stage determined by integration scale

parameters to the computation of the local pointwise derivative
descriptors Qi in order to suppress local ripples. For the quasi

quadrature entities derived from the Gaussian spatio-temporal
scale-space, we do of course choose a non-causal Gaussian spatio-

temporal kernel, while we for the corresponding entities derived

from the time-causal spatio-temporal scale-space choose a time-
causal spatio-temporal kernel for the second-stage integration

smoothing.

In companion works, such affine and spatio-temporal

scale-spaces have been shown to be highly useful for dif-

ferent tasks in computer vision, by allowing the vision

system to take into explicit account as well as to com-

pensate for the following type of image transformations

that arise when a vision system observes a real world:

– affine transformations arising from the first-order

linearized component of the perspective mapping,

and

– Galilean transformations arising because of relative

motions between the observer and objects in the

world.

Indeed, by considering more general covariance matri-

ces for anisotropic handling of different dimensions and

as well as spatial and/or spatio-temporal derivative op-

erators applied to corresponding filters, a much richer

family of filter shapes can be generated than from ro-

tationally symmetric Gaussian filters. All these gener-

alized derivative filters do also obey non-enhancement

of local extrema as well as a transfer of the semi-group

property into a cascade smoothing property. We have

also showed that the resulting spatial as well as spatio-

temporal derivative operations have high similarities

to receptive fields recorded from biological vision. The

treatment does hence show that a very rich and general

set of visual front-end operations can be obtained from

a unified and generalized Gaussian scale-space theory.

Of course, we do not exclude the possibilities of con-

sidering other types of non-Gaussian scale-space theo-

ries, such as the self-similar scale-space families arising

from equation (3) or its affine generalization ĥ(ω; s) =

e−α|Bω|
p

, where B is a non-singular N × N matrix.

In this context we would, however, like to stress that

the generalized Gaussian scale-space theory presented

in this paper constitutes a particularly convenient class

with most attractive properties. For example, compared

to the Poisson kernel in equation (4), the Gaussian

smoothing filter decreases much faster towards infin-

ity and faster than any polynomial, which implies a

very strong regularizing property for any scale-space

derivative. Compared to the α-scale-spaces, the Gaus-

sian scale-spaces have classical infinitesimal generators,

straightforward closed-form expressions in the spatial

domain and obey non-enhancement of local extrema.

The Gaussian scale-spaces are also maximally uncom-

mitted in the sense that their smoothing kernels have

maximum entropy.

Concerning more technical contributions, we have

also analysed the time-causal spatio-temporal scale-space

in more detail, regarding the temporal cascade struc-

ture it satisfies over time and as well as specific prop-

erties of the corresponding time-causal spatio-temporal

derivative kernels, which differ from the properties of
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the more commonly used Gaussian spatio-temporal deriva-

tives. We have moreover shown how temporal deriva-

tives with respect to self-similarly transformed time can

be defined, resulting in the formulation of a novel ana-

logue to normalized derivatives for time-causal tempo-

ral or spatio-temporal scale-spaces.

We propose that this generalized Gaussian scale-

space framework constitutes both a natural, theoreti-

cally well-founded and general basis to consider (i) when

designing visual front-end operations for computer vi-

sion systems and (ii) when modelling some of the ear-

liest processing stages in biological vision.
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Appendix

A Continuity requirements on the semi-group

with respect to scale

When deriving the necessity of the form of the scale-space rep-

resentation, we use a condition about non-enhancement of local
extrema expressed in terms of a sign condition on the derivative

∂sL(x0; s0) at local extrema x0 of the scale-space representation

L with respect to the scale parameter s at any scale s0. While
the notion of strong C0 continuity of the semi-group T in equa-

tion (17) implies that L(·; s) = T (s) f satisfies the differential

equation ∂sL = AL and that the derivative exists almost ev-
erywhere for a dense subset of functions f in the Banach space

X over which the semi-group is defined, this structure does not
necessarily implies that the partial derivative ∂sL(x0; s0) is well-

defined pointwise for every (x0; s0) ∈ RN×R+. In this appendix,

we will express a sufficient condition on the semi-group T such
that the derivative of the scale-space representation L with re-
spect to the scale parameter is well-defined for smooth functions

f of compact support. We start by expressing a basic lemma that
will make it possible for us to define the infinitesimal generator

for a specific set of functions fr ∈ X. This result will then be

used for approximating general functions f ∈ X using Sobolev
norms.

Lemma 8 (Explicit form of infinitesimal generator for a subset
of functions fr ∈ X) Let X be a Banach space, and let T (s) be

a semi-group of operators from X to X. For any x ∈ X, let

fr = C(r)f =
1

r

∫ r

s=0

T (s)f ds (154)

Then, provided that the semi-group T satisfies the C0 continuity
requirement that

lim
r↓0
‖C(r)f − f‖X = 0 (155)

should hold for every f ∈ X, it follows that for every r > 0,
we have that C(r)f ∈ D(A) for every f ∈ X and the result of

applying the infinitesimal generator of the semi-group to fr is

Afr = lim
h→0

T (h)− I
h

fr =
T (r)f − f

r
(156)

Proof: Consider

T (h)fr − fr

h
=

1

rh

(
T (h)

∫ r

s=0

T (s)f ds−
∫ r

s=0

T (s)f ds

)
=

1

rh

∫ r

s=0

T (s+ h)f ds−
∫ r

s=0

T (s)f ds (157)

Then, by a change of variables in the first integral we have

T (h)fr − fr

h
=

1

rh

(∫ r+h

s=h

T (s)f ds−
∫ r

s=0

T (s)f ds

)
(158)

which by an inspection of the intervals over which the integration
is performed can be written

T (h)fr − fr

h
=

1

r

(
1

h

∫ r+h

s=r

T (s)f ds−
1

h

∫ h

s=0

T (s)f ds

)
(159)

Due to the assumption (155) in combination with (159) it there-

fore follows that

T (h)fr − fr

h
→
T (r)f − f

r
(160)

when h→ 0. Hence, we know for sure that fr ∈ D(A) with

Afr =
T (r)f − f

r
(161)

(Please, note that there is no limit operator in this expression.)

Specifically, it holds that(
T (h)− I

h
−A

)
fr =

=
1

r

(
1

h

∫ h

s=0

T (s+ r)f ds−
1

h

∫ h

s=0

T (s)f ds

)
−
T (r)f − f

r

(162)

�
Our aim is then to use an equality with an L2-based Sobolev

norm12 to estimate the maximum norm of the deviation between
the difference approximation (T (h) − I)/h and the infinitesimal

generator in equation (162).

Lemma 9 (Maximum norm estimate from L2-based Sobolev norm)

Given any function u ∈ L1(RN ) ∩ L2(RN ), define its Fourier

transform by

û(ω) =

∫
x∈RN

u(x) e−iωxdx (163)

and let for any k > N/2 (where k is not required to be an integer)

‖u‖Hk(RN ) =

(∫
ω∈RN

(
1 + |ω|2

)k |û(ω)|2 dω
)1/2

(164)

denote the L2-based Sobolev norm of u of order k. Then, we

can estimate the maximum norm of u from its L2-based Sobolev

norm by

‖u‖L∞(RN ) ≤ C‖u‖Hk(RN ) (165)

where the constant C does only depend on k and N and not on
u.

12 See e.g. [Folland, 1995, chapter 6] for an introduction to

Fourier based Sobolev norms as used here.
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Proof: Consider

|u(x)| =
∣∣∣∣∫
ω∈RN

e−iωx û(ω) dω

∣∣∣∣ ≤ ∫
ω∈RN

|û(x)| dω

=

∫
ω∈RN

(
1 + |ω|2

)−k/2 (
1 + |ω|2

)k/2 |û(ω)| dω (166)

which by the Schwartz inequality and the definition of the L2-

based Sobolev norm ‖u‖Hk(RN ) can be overestimated by

|u(x)| ≤
(∫

ω∈RN

(
1 + |ω|2

)−k
dω

)1/2

(∫
ω∈RN

(
1 + |ω|2

)k |û(ω)|2dω
)1/2

=

(∫
ω∈RN

(
1 + |ω|2

)−k
dω

)1/2

‖u‖Hk(RN )
(167)

provided that the integral∫
ω∈RN

(
1 + |ω|2

)−k
dω =

∫ ∞
R=0

C′(N)RN−1

(1 +R2)k
dR = C2 (168)

converges. By the use of N -dimensional spherical coordinates,

where C′(N) denotes the area of an N − 1-dimensional unit hy-

persphere, it is clear that the latter integral converges provided
that N − 1− 2k < −1, i.e., provided that k > N/2. �

Using this Sobolev inequality, we will estimate∥∥∥∥(T (h)− I
h

−A
)
f

∥∥∥∥
L∞(RN )

≤ C
∥∥∥∥(T (h)− I

h
−A

)
f

∥∥∥∥
Hk(RN )

(169)

and prove differentiability with respect to s and that the infinites-

imal generator A is well-defined for smooth functions f of com-
pact support given certain regularity requirements on the semi-

group T by showing that

lim
h↓0

∥∥∥∥(T (h)− I
h

−A
)
f

∥∥∥∥
Hk(RN )

= 0. (170)

Lemma 10 (Existence of infinitesimal generator for smooth func-

tions with bounded support) Let T be a linear semi-group corre-

sponding to convolution kernels T (·; s) ∈ L1(RN ) that satisfies
the continuity requirement that for some value of k > N/2

lim
h↓0

∥∥∥∥∫ h

s=0

(T (s)− I)
h

f ds

∥∥∥∥
Hk(RN )

= 0 (171)

should hold for all smooth functions f ∈ L1(RN ) ∩ C∞(RN ).
Then, smooth (C∞) functions f with bounded support are in the

domain D(A) and for such functions the derivative ∂sL(x; t) =
(AL)(x; s) exists for every (x; s) ∈ RN × R+.

Proof: Given the estimate (169), let us for any smooth function

f with bounded support consider∥∥∥∥(T (h)− I
h

−A
)
f

∥∥∥∥
Hk(RN )

≤

≤
∥∥∥∥(T (h)− I

h
−A

)
(f − fr)

∥∥∥∥
Hk(RN )

+

∥∥∥∥(T (h)− I
h

−A
)
fr
∥∥∥∥
Hk(RN )

(172)

with fr according to (154), where we from equations (160) and
(161) in combination with the assumption (171) know that

lim
h↓0

∥∥∥∥(T (h)− I
h

−A
)
fr
∥∥∥∥
Hk(RN )

= 0 (173)

for every r > 0. From equation (162) it follows that(
T (h)− I

h
−A

)
(f − fr) =

=
1

h

∫ h

s=0

(T (s+ r)− T (s))(f − fr)
r

ds−
(T (r)− I)(f − fr)

r

=
1

h

∫ h

s=0

T (s)(T (r)− I)(f − fr)
r

ds−
(T (r)− I)(f − fr)

r

=
1

h

∫ h

s=0

(T (s)− I)(T (r)− I)(f − fr)
r

ds (174)

Returning to the definition of fr, we have that

fr − f =
1

r

∫ r

s′=0

T (s′)f ds′ − f =

∫ r

s′=0

T (s′)− I
r

f ds′ (175)

and we can write(
T (h)− I

h
−A

)
(fr − f) =

=
1

h

∫ h

s=0

∫ r

s′=0

(T (s)− I)(T (r)− I)(T (s′)− I)
r2

f ds ds′ (176)

A sufficient condition for

lim
h↓0

∥∥∥∥ 1

h

(
T (h)− I

h
−A

)
f

∥∥∥∥
L∞(RN )

= 0 (177)

in equation (169) and for f to be in D(A) is therefore that

lim
h↓0

∥∥∥∥ 1

h

∫ h

s=0

∫ r

s′=0

(T (s)− I)(T (r)− I)(T (s′)− I)
r2

f ds ds′
∥∥∥∥
Hk(RN )

= 0

(178)

should hold for some k > N/2, some r > 0 and all functions f of
compact support in combination with (171); also for all functions

f of compact support. By rewriting (178) into

lim
h↓0

∥∥∥∥ 1

h

(∫ h

s=0

(T (s)− I) ds
)

(∫ r

s′=0

(T (r)− I)(T (s′)− I)
r2

ds′
)
f

∥∥∥∥
Hk(RN )

= 0 (179)

by noting that T (s) is a bounded operator and r > 0 is not
required to tend to zero, then we can see that the operator

U =

∫ r

s′=0

(T (r)− I)(T (s′)− I)
r2

ds′ (180)

will also be a bounded operator. Since the operator T corresponds

to a convolution kernel T (·; s) ∈ L1(RN ), the operator U does
also preserves smoothness. Given that f has bounded support, it
follows that Uf will be in L1(RN ). Hence, a sufficient condition
for (179) to hold can also be expressed as the requirement that

lim
h↓0

∥∥∥∥ 1

h

(∫ h

s=0

(T (s)− I) ds
)
f ′
∥∥∥∥
Hk(RN )

= 0 (181)

should for some k > N/2 hold for all smooth functions f ′ ∈
L1(RN )∩C∞(RN ). The latter condition is similar to the notion

of C1 continuity of the semi-group, although here being expressed

in terms of the Sobolev norm ‖ · ‖Hk(RN ). For a general Banach
space, the notion of C1 continuity is a stronger condition than

C0 continuity [Hille and Phillips, 1957, page 322]. �
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B Non-enhancement of local extrema vs. the

maximum principle

This appendix describes relationships between non-enhancement
of local extrema as formulated in definition 3 and the maximum

principle.

The strong maximum principle for parabolic or elliptic differ-
ential equations states that if a function assumes its maximum in

the interior of the domain, then the function must be a constant

[Evans, 1998, pages 330–333, 375–377]. The weak maximum prin-
ciple on the other hand says that the maximum of the function is

to be found on the boundary, but may also occur in the interior
[Evans, 1998, pages 327–329, 368–370]. Corresponding results can

be expressed for minima.

For our purpose of defining a scale-space representation, how-
ever, we cannot a priori assume that the scale-space should be

generated by a parabolic or elliptic differential equation. Hence, it

is of general interest to perform a study without a priori precon-
ceptions regarding the form of the evolution equation. Moreover

it should be noted that the maximum principle refers to global

properties of the function, while non-enhancement of local ex-
trema refers to local properties. For a general evolution equation,

one may hence conceive situations where the global maximum of

a function has to occur at the boundary, while some other local
maximum point (which is not the local maximum) may never-

theless be enhanced (see figure 28). Therefore, one may express
maximum principles for differential equations that do not obey

non-enhancement of local extrema, such as the simple differential

equation

∂tL = −L. (182)

with initial condition L(x; 0) = f(x). From the solution L(x; t) =

e−tf(x) it is obvious that at a negative maximum over x will al-
ways increase with t and the value at a positive minimum over

x will always decrease with t. This example hence shows that

the assumption of non-enhancement of local extrema leads to a
different set of smoothing processes than the maximum principle

would lead to.

Fig. 28 For a general evolution process, one may conceive cases

where the global maximum (minimum) always has to decrease

(increase), while local extrema may nevertheless be enhanced.
This figure gives a schematic sketch of the sign of derivative with
respect to the evolution parameter s for an evolution equation

of the form (187), where the central local maximum marked in-
dicated by a bold arrow will violate non-enhancement of local

extrema provided that the support region of the weight function

w is sufficiently wide.

B.1 A formal connection given the assumption of a

local process

Still, however, there is an at least formal connection between
non-enhancement of local extrema and the maximum principle.

If we assume that the scale-space should be governed by a partial

differential equation with a linear operator AL that corresponds
to a local operator (in terms of derivatives at the central point

only), then we can use similar arguments as in step C.2 in the

proof of theorem 5 to show that AL must not contain derivatives
of order higher than two. If we use a test function of the form

f4(x) = (−x2
1 − x2

2 − · · · − x2
N + β2 x

η)χ(Kx) (183)

where χ(x) is defined in a similar way as in the text following

equation (35), then we can choose β2 and K in such a way that
f4(x) ≤ 0∀x and AL(0) ≥ 0. Thus, the maximum principle

would be violated, because the maximum of the solution would

be greater than zero and would not occur at the boundary of the
domain.

Given the complementary assumption of a local process, the

requirement of the maximum principle to hold does, however,
not yield an offset a0 equal to zero in the evolution equation as

the requirement of non-enhancement of local extrema leads to. If
we allow ourselves to reparameterize the scale parameter in the

evolution equation by the following change of variables

L̃ = e−a0sL (184)

and if L is a solution of

∂sL =
∑

0<|η|≤2

aη∂xηL+ a0L (185)

as would be obtained from the maximum principle, then the

transformed representation L̃ is a solution of

∂sL̃ =
∑

0<|η|≤2

aη∂xη L̃ (186)

which agrees with the form of evolution equations obtained from
non-enhancement of local extrema. In this respect, there is a close

formal relationship between non-enhancement of local extrema

and the maximum principle. Given the requirement of the max-
imum principle to hold, it should, however, be emphasized that

non-enhancement of local extrema would not be guaranteed to

hold in the original domain, only in some transformed domain.

B.2 A more fundamental difference in terms of local

vs. non-local processes

In the above mentioned analysis, we made a complementary as-
sumption that the evolution equation should be determined by a

local evolution equation. In our previous treatment in section 3,
such a local form of the evolution process was established from

the assumption of non-enhancement of local extrema in step C.1
in the necessity proof underlying theorem 5. A very notable dif-
ference between the maximum principle and non-enhancement of
local extrema, however, is that the maximum principle allows for
non-local evolution processes, where the minimum and maximum

values have to occur at the boundary, whereas non-enhancement

of local extrema is violated for such evolution processes. Consider,
for example, an evolution equation of the form

∂sL(x; s) =

∫ ∞
ξ=−∞

w(ξ) (L(x− ξ; s)− L(x; s)) dξ (187)
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where w is a non-negative smooth C∞ function with bounded
L1 norm. From the averaging interpretation of this process, it is

evident that if x0 is a global maximum (minimum) of the mapping

x → L(x; s0), then L(x0 − ξ; s) − L(x0; s0) will always be
negative (positive), which means that ∂sL(x0; s0) is guaranteed

to be negative (positive). Hence, this evolution process satisfies
a maximum (minimum) principle in the sense that the global

maximum (minimum) of the mapping x → L(x; s0) is always

guaranteed to decrease (increase). This property in turn means
that the global maximum (minimum) of the mapping (x, s) →
L(x; s) has to occur at the boundary of the (x, s) domain. There

is, however, no guarantee concerning the sign of ∂sL(x; s) at
local extrema of the mapping x → L(x; s0), and an evolution

process of this form may therefore violate non-enhancement of

local extrema (see figure 28 for an illustration).

Thus, an evolution process that obeys the maximum principle

does not even have to be local , in the sense that the right-hand

side in the evolution equation (187) may depend on values of L at
several points, while the result in theorem 5 shows that a smooth-

ing process that obeys non-enhancement of local extrema always

has to be local and be determined by a second-order parabolic
operator.

B.3 Fourth-order evolution equations

Maximum principles can also be stated for certain types of fourth-

order elliptic equations Dunninger [1972], Zhang and Zhang [2002],
such as

(∇2)2L+ L = 0, (188)

which are, however, not within the class of non-enhancement
scale-spaces that we shall consider. In connection with the prob-

lem of choosing between candidate smoothing processes, it may

also be highly relevant to ask if, for example, a fourth-order evo-
lution equation of the form13

∂sL = −(∇2)2L (189)

could be regarded as a possible model for generating a scale-

space? The solutions of this equation may, however, have non-
intuitive properties in the sense that positivity may be violated

and local ripples may be amplified [Broadbridge, 2008, page 366].

The latter fourth-order process can be ruled out by both the
maximum principle and non-enhancement of local extrema.

C Galilean-invariant fixed points in Gaussian

spatio-temporal scale-space

The subject of this appendix is to describe one way to make

appropriate selection of velocity parameters for interpreting the
results in a multi-parameter spatio-temporal scale-space repre-
sentation in a general situation when there is no a priori infor-

mation of the motion of observed objects relative to the observer.
The method that will be proposed is based on the definition of

Galilean invariant fixed points constructed by normalizing lo-

cal spatio-temporal image patterns by a method referred to as
Galilean block diagonalization and by comparing and adapting
the velocity parameter based on local spatio-temporal image mea-

surements.

13 The minus sign is needed here to make this equation dissipa-

tive in L2 [Broadbridge, 2008, page 371].

C.1 Basic definitions

Consider a spatio-temporal image sequence f(p) = f(x, t) de-

fined over RN × R with spatio-temporal scale-space representa-

tion L(p; Σ) given by L(·; Σ, δ) = g(·; Σ, δ) ∗ f(·), where g
denotes the spatio-temporal Gaussian kernel

g(x; Σ, δ) =
1

(2π)(N+1)/2
√

detΣ
e−(p−δ)TΣ−1(p−δ)/2, (190)

with a spatio-temporal covariance matrix Σ of the form (61) and

with time delay δ.

Given any velocity vector u, define a Galilean transformed
image f ′′ by f ′(p′′) = f(p), where p′′ = G(u) p and G(u) denotes

a Galilean transformation with image velocity u. Moreover, define
the spatio-temporal scale-space representation L′′ of f ′′ accord-

ing to L′′(·; Σ′′, δ′′) = g(·; Σ′′, δ′′)∗f ′′(·). Then, from the trans-

formation property of the Gaussian scale-space under Galilean
transformations, which in turn originates from the correspond-

ing transformation property under affine transformations (51), it

follows that L′′(p′′ Σ′′, δ′′) = L(p; Σ, δ) provided that the co-
variance matrices satisfy Σ′′ = GΣGT and that the time delays

are equal δ′′ = δ.

C.2 Spatio-temporal second-moment matrix/structure

tensor

Let us next define velocity-adapted spatio-temporal second-moment

matrices (structure tensors) of L and L′′ according to

µ(p; Σ1, Σ2, δ1 + δ2) =

=

∫
q∈R(N+1)

(∇L(q; Σ1, δ1))(∇L(q; Σ1, δ1))T g(p− q; Σ2, δ2) dq,

(191)

µ′′(p′′; Σ′′1 , Σ
′′
2 , δ
′′
1 + δ′′2 ) =

=

∫
q′′∈R(N+1)

(∇L′′(q′′; Σ′′1 , δ′′1 ))(∇L′′(q′′; Σ′′1 , δ′′1 ))T

g(p′′ − q′′; Σ′′2 , δ′′2 ) dq′′. (192)

where δ1 and δ2 denote the time constant in the first and sec-

ond stages of scale-space smoothing, respectively. Then, from the
general transformation property of second-moment matrices un-

der affine transformations [Lindeberg, 1994a, section 15.3] [Lin-

deberg and G̊arding, 1997], if follows that the second-moment
matrices µ and µ′′ are related according to

µ′′ = G−T (u)µG−1(u). (193)

C.3 Galilean block diagonalization

Our next step is to introduce the notion of Galilean block di-
agonalization, which corresponds to finding the unique Galilean

transformation that transforms the spatio-temporal second-moment
matrix to block diagonal form with all mixed purely spatio-temporal
components being zero µ′x1t = µ′x2t = · · · = µ′xN t = 0 [Lindeberg
et al., 2004b]

µ′ =


µ′x1x1 µ′x1x2 . . . µ′x1xN 0

µ′x1x2 µ′x2x2 . . . µ′x2xN 0

...
...

. . . 0
µ′x1xN µ′x2xN . . . µ′xNxN 0

0 0 0 0 µ′tt

 (194)
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Such a block diagonalization can be obtained if the velocity vector
u satisfies
µ′x1x1 µ′x1x2 . . . µ′x1xN
µ′x1x2 µ′x2x2 . . . µ′x2xN

...
...

. . .

µ′x1xN µ′x2xN . . . µ′xNxN



u1

u2

..

.
uN

 = −


µx1t
µx2t

...

µxN t

 (195)

with the solution

u = −{µxx}−1{µxt} (196)

i.e., structurally similar equations as are used for computing optic
flow according to the method by Lukas and Kanade [1981]. This

is a very general approach for normalizing local spatio-temporal

image patterns, which also applies to spatio-temporal patterns
that cannot be modelled by a Galilean transformation of an oth-

erwise temporally stationary spatial pattern.

C.4 Galilean invariant property of Galilean

diagonalization

In view of the above mentioned definition of the notion of Galilean
block diagonalization of the spatio-temporal second-moment ma-

trix, let us next return to the previously stated general trans-

formation property (193) of the Gaussian spatio-temporal scale-
space under Galilean transformations. Given a certain spatio-

temporal pattern L around a point p in space-time, let us assume

that we have a Galilean transformation G(u) that transforms µ′′

into block diagonal form

µ′′ = G−T (u)µG−1(u). (197)

Let us moreover assume that the original spatio-temporal im-

age pattern L is transformed by some unknown Galilean trans-

formation with velocity vector v into a transformed scale-space
representation L′. From equation (193), it then follows that the

spatio-temporal second-moment matrix µ for this transformed

image pattern can be written µ′ = G−T (v)µG−1(v). This trans-
formed spatio-temporal second-moment matrix can in turn be

brought to a Galilean block diagonalized form by a velocity vec-

tor w such that µ′′ = G−T (w)µ′G−1(w). By combining the last
two expressions, we thus obtain

µ′′ = G−T (w)G−T (v)µG−1(v)G−1(w). (198)

Since Galilean transformation matrices satisfy G−1(v) = G(−v)
as well as G(v + w) = G(v)G(w), it follows that

µ′′ = G−T (v + w)µG−1(v + w) (199)

and we have that the Galilean transformation G(w) = G(u − v)

will bring the second-moment matrix µ′ of the transformed pat-

tern into block diagonal form. Thus, the property of Galilean
block diagonalization is preserved under Galilean transforma-

tions. Specifically, the velocity vector associated with the Galilean
transformation, that brings a second-moment matrix into block
diagonal form, is additive under superimposed Galilean transfor-

mations.

Therefore, if we normalize local space-time structures using
a local Galilean transformations determined from the require-

ment that the second-moment matrix should be block diagonal,
it follows that the result after normalization will always be the
same, irrespective of any superimposed Galilean transformation.

From this view-point, the notion of Galilean block diagonaliza-
tion leads to a canonical Galilean invariant way of normalizing

local spatio-temporal image structures.14

14 Note that although a similar result could be expected from

the viewpoint of optic flow computations according to the method

C.5 Fixed-point property: Adaptation of the velocity

vectors to the local spatio-temporal image structure

A pre-requisite for carrying out the proofs underlying the trans-
formation properties above is that the spatio-temporal covariance

matrices used for computing the second-moment matrices are re-

lated according to Σ′′ = G(u)ΣGT (u) and Σ′ = G(v)ΣGT (v).
Thus, perfect Galilean invariance can only be expected if the

shapes of the spatio-temporal smoothing kernels are coupled.

Otherwise, the transformation properties will only be approxi-
mate. From this viewpoint, a scale-space concept that allows for

velocity adaptation for any image velocity can therefore be mo-

tivated from the desire of achieving true Galilean invariance.
We can formally test if true Galilean invariance has been

achieved by checking if the velocity estimate û according to equa-
tion (196) agrees with the velocity v of the velocity-adapted

spatio-temporal filters used for computing the estimate. Then,

the image measurements are in agreements with the assumptions
used for computing them. In practice, an operational criterion of

the form

‖û− v‖ ≤ ε (200)

can therefore be expected to sort out stable spatio-temporal im-

age descriptors from unstable ones, with the interpretation that if

this condition is satisfied, then the velocity parameter in the scale-
space representation could be regarded as approximately match-

ing an average velocity estimate for the local spatio-temporal

image pattern [Lindeberg et al., 2004a].
In an actual implementation based on a limited set of filter

parameters, we can also iteratively adapt the velocity parameter
to previous image measurements and stop the iterations when

the increments are below a threshold. Provided that this itera-

tive velocity adaption procedure converges, the resulting image
descriptors will then be Galilean invariant.

An underlying assumption for the iterative velocity adap-

tation approach to be applicable is that the velocity estimates
are stationary over time intervals longer than combined tempo-

ral delay δ1 + δ2 corresponding to the time constants of the first-

and second-layer scale-space filters. If the velocity estimates vary
strongly on a much shorter time scale, the results of iterative

velocity adaptation may, however, be unpredictable.

Let us finally remark that although the analysis in this ap-
pendix concerns the Gaussian spatio-temporal scale-space, a cor-

responding treatment can be performed for the time-causal spatio-

temporal scale-space. Moreover, besides a Galilean invariant rep-
resentation based on a single velocity parameter, there is also a

potential in exploring representations based multiple values of the
velocity parameter in a corresponding manner as multiple orien-

tations of spatial receptive fields may be used in an advantageous
manner in spatial vision.

by Lukas and Kanade [1981], we have in this proof not made

any assumption that the local spatio-temporal image structures
within the support region of the window function should represent

a local translational model. (The optic flow estimation method by
Lukas and Kanade is derived from such an assumption.) There-
fore this result applies to arbitrary types of space-time structures

and spatio-temporal events. The only assumption we have made

above is that the purely spatial component of the second-moment
matrix is non-singular, i.e., that det{µxx} 6= 0. If this assumption

is violated, then the velocity vector u in the Galilean transforma-
tion G(u) that diagonalizes the spatio-temporal second-moment

matrix µ is not uniquely determined, and we have a situation

with a local aperture problem. This indeterminacy will, however,
not effect the Galilean normalization, since the indeterminacy

will not effect the transformed pattern.
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D Solutions for the time-causal spatio-temporal

scale-space

In this section, we will study the solution of diffusion equations

on semi-infinite domains, with emphasis on how time-dependent
boundary conditions influence the temperature distribution in the

interior. This type of physical model arises in time-causal scale-

spaces on temporal and spatio-temporal domains. To simplify the
treatment, let us begin with a simplified case with one temporal

dimension and no spatial dimensions.

Please note that this treatment is given for introductory

and tutorial purposes. For a detailed account of the solutions
of the diffusion equation in different types of solids, please refer

to Carslaw and Jaeger [1959]. A difference compared to classical

heat diffusion, however, is that we will here later consider dif-
fusion over two temporal dimensions; one for the spatial scale

parameter s and one for the ordinary time t.

D.1 Pure temporal time-causal scale-space

Consider the solution of the diffusion equation

∂tL =
1

2
Lττ (201)

on a semi-infinite solid with initial condition L(0; τ) = L0(τ)

and a time-dependent boundary condition L(t; 0) = f(t). This

equation describes how an initial heat distribution L0(τ) evolves
over time t in an infinite solid with τ > 0 while also being strongly

influenced by a time varying temperature f(t) at the boundary

τ = 0. With regard to a temporal scale-space representation, the
temperature distribution at a non-infinitesimal distance τ from

the boundary τ = 0 will be interpreted as the time-causal scale-

space representation of a temporal signal f(t) at coarser time
scales τ .

In [Carslaw and Jaeger, 1959, Section 14.2] it is shown that

the solution of this one-dimensional equation can be written

L(t; τ) =

∫ ∞
ζ=0

L0(ζ) (g(τ − ζ; t)− g(τ + ζ; t)) dζ

+

∫ t

u=0

f(u)φ(t− u; τ) du (202)

where

g(τ ; t) =
1
√

2πt
e−τ

2/2t and φ(t; τ) =
1

√
2π t3/2

τ e−τ
2/2t.

(203)

As can be seen, this solution consists of two terms. The first term

describes how the initial heat distribution L0(τ) evolves over time
t in such a way that the influence of this heat distribution will be
kept to zero at the boundary τ = 0. For this reason of keeping the
boundary influence to zero, an artificial distribution of negative

heat sinks −L0(−τ) has been introduced on the negative τ axis,
manifested in terms of the addition of a negative Gaussian in

the convolution expression. The second term describes how the
time dependent boundary condition f(t) at τ = 0 spreads into
the heat conducting medium. Specifically, the kernel φ(t− u; τ)
arising in this term describes how an amount of heat f(u) at the

boundary at time t− u spreads over time t into the medium at a
penetration depth τ from the boundary. Due to the linearity of
the diffusion equation, these two solutions can be superimposed,
and the resulting solution will satisfy both the initial condition
and the boundary condition. While one could in general initiate a

temporal or spatio-temporal scale-space concept over time t with
an initial distribution over temporal scales τ , we will henceforth

simplify the treatment by setting the initial condition to zero

and focus on the latter boundary component of the solution only.
Thus, with initial condition L(0; τ) = L0(τ) = 0 we will consider

L(t; τ) =

∫ t

u=0

f(u)φ(t− u; τ) du (204)

with

φ(t; τ) =
1

√
2π t3/2

τ e−τ
2/2t (205)

as the solution for the boundary-dependent part of the diffusion

equation with the time-dependent boundary condition L(t; 0) =

f(t).
By verification, it can be shown that φ(t; τ) satisfies the

diffusion equation. More easily, by observing that φ(t; τ) =

−∂τg(τ ; t) we can also immediately see that φ(t; τ) has to satisfy
the diffusion equation, since the Gaussian g(τ ; t) is a solution of

the diffusion equation and the operator ∂τ used for computing φ

from g is a linear operator.

D.2 Fulfillment of the boundary condition

To verify that L according to (204) satisfies the boundary con-

dition L(t; 0) = f(t), we can start from the explicit integral

expression

L(t; τ) =
1
√

2π

∫ t

u=0

f(u)
τ

(t− u)3/2
e−τ

2/2(t−u) du (206)

and perform a change of variables by [Carslaw and Jaeger, 1959]

µ =
τ√

2(t− u)
with u = t−

τ2

2µ2
and du =

τ2

µ3
dµ (207)

which transforms the integral expression into

L(t; τ) =
2
√
π

∫ ∞
µ=τ/

√
2t

f(t−
τ2

2µ2
) e−µ

2
dµ (208)

If we would allow ourselves to take limits inside the integral, we
would obtain

lim
τ↓0

L(t; τ) = lim
τ↓0

2
√
π

∫ ∞
µ=τ/

√
2t

f(t−
τ2

2µ2
) e−µ

2
dµ

=
2
√
π

∫ ∞
µ=0

(
lim
τ↓0

f(t−
τ2

2µ2
)

)
e−µ

2
dµ

=
2
√
π

∫ ∞
µ=0

f(t) e−µ
2
dµ

= f(t)
2
√
π

∫ ∞
µ=0

e−µ
2
dµ = f(t) (209)

and the fulfillment of the boundary condition would be proven.
A more detailed proof showing that this conclusion can indeed
be made valid is given in [Lindeberg, 2010].

D.3 Temporal cascade-recursive structure over time

In addition to the cascade smoothing property over temporal
scales τ , the time-causal scale-space also obeys a recursive struc-

ture over time t. If we start from the general expression for



xliii

the solution of the diffusion equation over a semi-infinite solid
in equation (202), and let the initial condition be the tempo-

ral scale-space representation at time t1, i.e., L0(ζ) = L0(τ) =

L(t1; τ), then we can write the temporal scale-space represen-
tation L(t2; τ) at time t2, i.e., after a time increment t2 − t1
as

L(t2; τ) =

∫ ∞
ζ=0

L(t1; ζ) (g(τ − ζ; t2 − t1)− g(τ + ζ; t2 − t1)) dζ

+

∫ t2

u=t1

f(u)φ(t2 − u; τ) du (210)

If we at time t = t2 consider t = t1 as a divider of the history,

we can from this expression explicitly see how L(t1; ζ), when

considered as a representation over all temporal scales ζ works as
an internal memory of what has happened before t = t1. This in-

formation is updated by integration with two shifted Gaussians,

one of these negative, each with variance t2 − t1. The novel con-
tribution of information between t = t1 and t2 is incorporated

into the temporal scale-space representation L by convolving the

input signal f with the time-causal scale-space kernel φ(t; τ). If
we in turn combine this expression with the definition of L(ti; τ)

L(ti; τ) =

∫ ti

u=0

f(u)φ(ti − u; τ) du (211)

and divide the integral for computing L(ti; τ) over the intervals

[0, t1] and [t1, t2] we obtain

∫ t1

u=0

f(u)φ(t2 − u; τ) du+

∫ t2

u=t1

f(u)φ(t2 − u; τ) du+

=

∫ ∞
ζ=0

(∫ t1

u=0

f(u)φ(t1 − u; ζ) du

)
(g(τ − ζ; t2 − t1)− g(τ + ζ; t2 − t1)) dζ

+

∫ t2

u=t1

f(u)φ(t2 − u; τ) du (212)

By changing the order of integration in the middle integral and

then identifying first the integrals over the interval [0, t1]

∫ t1

u=0

f(u)φ(t2 − u; τ) du

=

∫ t1

u=0

f(u)

(∫ ∞
ζ=0

φ(t1 − u; ζ)

(g(τ − ζ; t2 − t1)− g(τ + ζ; t2 − t1)) dζ

)
du

(213)

and then also identifying the arguments of these integrals with

the complementary motivation that this relation should hold for

all sufficiently regular f , we can after replacing the arguments
ti − u by ti state that

φ(t2; τ) =

∫ ∞
ζ=0

φ(t1; ζ) (g(τ − ζ; t2 − t1)− g(τ + ζ; t2 − t1)) dζ

(214)

This is the time-recursive cascade smoothing property of the
time-causal scale-space kernel φ(t; τ) over time t.

E Formal statements concerning the

time-causal spatio-temporal scale-space

This appendix contains formal statements for the time-causal

spatio-temporal scale-space analogous to definition 1, lemma 2,
definition 3, definition 4 and theorem 5 in section 3.2 regarding

the generalized Gaussian scale-space; please refer to section 5 for
an overview.

Definition 11 (Continuous time-causal pre-scale-space represen-
tation) Let f ∈ L2(RN × R+) be a continuous spatio-temporal

signal and let T (s, t) with (s, t) ∈ R2
+ be a strongly continuous

two-parameter semi-group of linear and shift-invariant operators
from L2(RN × R+) to L2(RN × R+) according to{
T (s1, t1) T (s2, t2) = T (s1 + s2, t1 + t2),

T (0, 0) = I. (215)

and equation (70), where the semi-group corresponds to a spatio-

temporal convolution operation of the form (67) with the convo-

lution kernels h(x, t; s, τ) ∈ L1(RN × R) and the smoothing
functions T (x, t; s, τ, ζ) in the time-recursive update rule (66)

also being in L1(RN × R). The semi-group is also required to

be C1 continuous with respect to the L2-based Sobolev norm
‖·‖Hk(RN×R+) in the sense that for all connected regions Ω ∈ R2

+

near the origin that shrink to zero in such a way that the max-

imum distance ρ(Ω) between a point in Ω and the origin tends

to zero

lim
ρ(Ω)↓0

∥∥∥∥∥
∫
(s,t)∈Ω T (s, t)f dΩ∫

(s,t)∈Ω dΩ
− f

∥∥∥∥∥
Hk(RN×R+)

= 0 (216)

should for some k > (N + 1)/2 be required to hold for all smooth

functions f ∈ L1(RN × R+) ∩ C∞(RN × R+). Then, the two-
parameter family of signals L : RN × R+ × R2

+ → R given by

L(·, t; s, ·) = T (s, t)L(·, 0; 0, ·) (217)

with boundary condition L(x, t; 0, 0) = f(x, t) and combined

initial and boundary condition L(x, 0; 0, τ) = L0(x; τ) is said
to be a continuous time-causal pre-scale-space representation of

f generated by T (s, t).

Lemma 12 (A continuous time-causal pre-scale-space represen-

tation is differentiable) Let L : RN × R+ ×R2
+ → R be the con-

tinuous time-causal pre-scale-space representation of a smooth
spatio-temporal signal f ∈ L2(RN ×R+)∩C∞(RN ×R+). Then,

L satisfies a two-parameter differential equation with regard to

the parameters of the semi-group with the directional derivative
of the semi-group in direction u = (α1, α2) given by

Du L = (α1A1 + α2A2)L (218)

for some linear and shift-invariant operators A1 and A2 from
L2(RN × R+) to L2(RN × R+).

Proof: Follows from results in [Al-Sharif and Khalil, 2004, page 407]
reviewed in connection with equations (71)–(75) in section 5. �

Definition 13 (Time-causal pre-scale-space property: Non-enhance-
ment of local extrema) A time-causal continuous pre-scale-space

representation L : RN × ×R+R2
+ → R of a smooth signal f ∈

L2(RN × R+) ∩ C∞(RN × R+) is said to possess continuous

non-enhancement pre-scale-space properties, or equivalently not
to enhance local extrema, if for any time t0 ∈ R+ and any scale
s0 ∈ R+ it holds that if (x0, τ0) ∈ RN ×R+ is a critical point for

the mapping (x, τ) 7→ L(x, t0; s0, τ) and if the Hessian matrix
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Hx,τ with respect to both space x and temporal scales τ at this
point is non-degenerate, then the (semi-group) directional deriva-

tive of L in any direction u = (α1, α2) in (s, t) space at this point

has the same sign as the Hessian matrix, i.e.,

sign ∂uL = sign traceHx,τL. (219)

Remark: The definition of local extrema underlying this defini-
tion, i.e., local extrema of the mapping (x, τ) 7→ L(x, t0; s0, τ)

for every scale s0 ∈ R+, means that these local extrema can be
detected from the always available internal buffer over (x; s, τ)

at any time moment t0 and do not imply any explicit references

to the future t > t0 or the past t < t0. In this respect, the notion
of non-enhancement of local extrema for the time-causal spatio-

temporal scale-space differs from the notion of non-enhancement

of local extrema for the Gaussian spatio-temporal scale-space,
where non-enhancement of local extrema is expressed in terms of

local extrema of the mapping (x, t) 7→ L(x, t; s0, τ0). �

Definition 14 (Time-causal continuous non-enhancement scale-

space representation) Let T (s, t) be a strongly continuous two-

parameter semi-group of linear and shift-invariant operators from
L2(RN × R+) to L2(RN × R+). Given a spatio-temporal signal

f ∈ L2(RN × R+), the pre-scale-space representation L : RN ×
R+ × R2

+ → R of f is said to be a time-causal continuous scale-
space representation of f if and only if it for every smooth func-

tion f ′ ∈ L2(RN ×R+)∩C∞(RN ×R+) of compact support and

for every initial condition L(x, 0; 0, τ) = L0(x; τ) it holds that

the time-causal pre-scale-space representation L′ : RN × R+ ×
R2

+ → R of f ′ generated by T (s, t) obeys non-enhancement of

local extrema,

Lemma 15 (Time-causal non-enhancement scale-space for con-

tinuous signals: Necessity I) A continuous time-causal non-enhance-
ment scale-space representation L : RN × R+ × R2

+ → R of a

spatio-temporal signal f ∈ L2(RN × R+) satisfies the following
system of parabolic differential equations

∂sL =
1

2
∇Tx,τ (Σ1∇x,τL)− δT1 ∇x,τL, (220)

∂tL =
1

2
∇Tx,τ (Σ2∇x,τL)− δT2 ∇x,τL, (221)

with boundary condition condition L(x, t 0, 0) = f(x, t) for some
positive semi-definite (spatial) covariance matrices Σ1 and Σ2

and some velocity vectors δ1 and δ2.

Proof: A proof that the evolution property over spatial scales

s has to be of the form in equation (220) can be performed
by constructing a similar set of counterexamples from functions

fi(x, t) = fi(x) i = 1..5 with fi(x) given by the five functions
used for constructing counterexamples in the proof of theorem 5.

A proof that the evolution property over time t has to be of
the form in equation (221) can be performed by constructing a

similar set of counterexamples determined by L0(x; τ) = fi(τ)
with fi(τ) determined by the five counterexamples in the proof
of theorem 5.

The existence of derivatives with respect to space x as used in

the first part of the proof follows from the assumption of the con-

volution kernels h(x, t; s, τ) in equation (67) being in L1(RN×R),
which implies that we for smooth functions f with compact sup-
port have

∂xj (h(·; s, τ) ∗ f(·)) = h(·; s, τ) ∗ (∂xj f)(·)). (222)

The existence of derivatives with respect to temporal scale τ as

used in the second part of the proof follows from the assumption

of the smoothing functions T (·, t; s, τ, ·) in the time recursive
formulation (66) being in L1(RN × R). �

Out of this family of differential equations, it is not necessarily

the case that all differential equations give rise to reasonable evo-
lution processes with regard to interpretations in terms of spatial

scales and temporal scales. More generally, given a two-parameter

semi-group, one may also conceive different ways of parameter-
izing the same semi-group. In addition to the above mentioned

structural conditions, we would, however, also would like to have

the ability to interpret the first parameter s in the two-parameter
semi-group as a spatial scale parameter and the second param-

eter t as regular time t. We say that a parameterization is on

standard form if such an interpretation is possible.

Definition 16 (Standard form for the spatio-temporal scale-space)

A system of partial differential equations describing a spatio-

temporal scale-space representation L : RN ×R+ ×R2
+ → R of a

spatio-temporal signal f ∈ L2(RN×R+) is said to be on standard

form if

(i) the parameter s can be interpreted as a spatial scale pa-
rameter in the sense that the evolution equation over s does

not explicitly depend on derivatives with respect to temporal
scale τ ,

(ii) the evolution over spatial scales s does not imply any transla-
tion in space in the sense that the coefficients of the first-order

derivatives with respect to space x and temporal scale τ are

zero,

(iii) the evolution equation over spatial scales s is stationary over
time in the sense that the coefficients do not depend on time

t,

(iv) the evolution equation over time t should not be affected

by the spatial scales in the sense that the coefficients of the

second-order derivatives with respect to space x must be zero,

(v) the evolution equation over time t does not involve temporal
scale dependent translation in time in the sense that the co-

efficient of the first-order derivative with respect to temporal

scale τ is zero.

Given these conditions, the evolution equations reduce to a sim-
pler form:

Theorem 17 (Time-causal non-enhancement scale-space for con-

tinuous signals: Necessity II) A continuous time-causal non-enhance-
ment scale-space representation L : RN × R+ × R2

+ → R of a

spatio-temporal signal f ∈ L2(RN × R+) on standard form sat-
isfies the following system of parabolic differential equations

∂sL =
1

2
∇Tx (Σ0∇xL), (223)

∂tL = −vT∇xL+
1

2
∂ττL. (224)

with initial condition condition L(x, t 0, 0) = f(x, t) for some

positive semi-definite (spatial) covariance matrix Σ0 and some
velocity vector v.

Proof: Lemma 15 implies that the spatio-temporal scale-space
representation has to satisfy the evolution equations (220) and (221).

Property (i) implies that∇Tx,τΣ1∇x,τL reduces to∇Tx,τΣ1∇x,τL.
From property (ii) it follows that δ1 = 0. From property (iii) we

have that Σ1 does not depend on time t.

From property (iv) we obtain that ∇Tx,τ (Σ2∇x,τL) reduces

to ∂ττL. Property (v) implies that δT2 ∇x,τL reduces to δT2 ∇xL
and we can rename the x component of δ2 into v. �
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Theorem 18 (Time-causal non-enhancement scale-space for con-
tinuous signals: Sufficiency) Given a semi-definite (spatial) co-

variance matrix Σ0, an arbitrary vector v and any twice contin-

uously differentiable function f ∈ L2(RN × R+), the solution of
the diffusion equation

∂sL =
1

2
∇Tx (Σ0∇xL), (225)

∂tL = −vT∇xL+
1

2
∂ττL. (226)

with boundary condition L(x, t 0, 0) = f(x, t) does for every com-
bined initial and boundary condition L(x, 0; 0, τ) = L0(x; τ)

constitute a time-causal continuous non-enhancement scale-space

representation of f . Specifically, for any (forward) direction u in
(s, t) space L obeys

∂uL ≤ 0 at any non-degenerate local maximum, (227)

∂uL ≥ 0 at any non-degenerate local minimum. (228)

Proof: If (x0, τ0) is a local extremum of the mapping (x, τ) 7→
L(x, t0; s0, τ), then x0 is also a local extremum of the mapping
x 7→ L(x, t0; s0, τ). From theorem 6 it then follows that ∂sL ≤ 0

if the point is a local maximum and ∂sL ≥ 0 if the point is a

local minimum.
Similarly, if (x0, τ0) is a local extremum of the mapping

(x, τ) 7→ L(x, t0; s0, τ), then τ0 is also a local extremum of the

mapping τ 7→ L(x, t0; s0, τ). From theorem 6 it then follows that
∂tL ≤ 0 if the point is a local maximum and ∂tL ≥ 0 if the point

is a local minimum.
Since ∂uL = α1∂sL+α2∂tL, where α1, α2 ≥ 0 for a forward

direction in (s, t) space, we have that sign ∂uL = sign traceHx,τL
and the result follows. �
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