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ABSTRACT.   A theory of generalized gradients for a general class of func-
tions is developed, as well as a corresponding theory of normals to arbitrary
closed sets.   It is shown how these concepts subsume the usual gradients and
normals of smooth functions and manifolds, and the subdifferentials and nor-
mals of convex analysis.   A theorem is proved concerning the differentiability
properties of a function of the form   max{g(x, u):u e if}.  This result unifies
and extends some theorems of Danskin and others.   The results are then ap-
plied to obtain a characterization of flow-invariant sets which yields theorems
of Bony and Brezis as corollaries.

Introduction. Some of the most important recent advances in optimization
have come about as a result of the systematic replacement of smoothness assump-
tions by convexity. This is exemplified by the work of Rockafellar [12], [13],
which has extended the boundaries of treatable problems and has in addition led
to new techniques for dealing with problems of a familiar nature.

It is natural to ask whether analogous results can be proven without either
smoothness or convexity.  A general theory of necessary conditions for such prob-
lems has been obtained [3] and the results described in [4]. The conditions are
expressed, in part, by means of generalized "gradients". They subsume the re-
sults of the smooth and convex cases and they yield, among other things, signif-
icant extensions of the Pontryagin maximum principle of optimal control theory.

We describe in this article the generalized theory of gradients and some of
its consequences. As mentioned, the principal application of this theory has been
to variational problems, but the two main applications given here concern the dif-
ferential properties of max functions (§2) and flow-invariant sets (§4).

1. Locally Lipschitz functions.  Throughout this section, we shall be dealing
with a function f:R" —► R which will be assumed locally Lipschitz.  That is,
for each bounded subset B of R"  there exists a constant K such that

\f(xx)-f(x2)\<K\xx-x2\
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248 F. H. CLARKE

for all points xx   and x2  of B.  (The vertical bars denote the Euclidean norm.)
It is known [14] that such a function has at almost all points x  a derivative
(gradient), which we denote V/(x).  It is easily verified that the function V/ is
bounded on bounded subsets of its domain of definition.

(1.1) Definition.   The generalized gradient of / at x,  denoted 3/(x),
is the convex hull of the set of limits of the form lim V/(x + Zj,), where h¡ —►
0  as i —► °°.  (An extension of this definition to functions not almost every-
where differentiable will be given later.)

It follows that  3/(x) is a nonempty convex compact set [11, Theorem
17.2]. The mapping 3/ from R"  to the subsets of R"  (we use the term
multifunction from R"   to R") is also seen to be upper semicontinuous: if
v¡ and x¡ are sequences tending to  v and x  respectively, and if v¡ belongs
to  3/(x,) for each Z,   then v belongs to  3/(x).

The epigraph of a function /, denoted epi(/), is the set {(x, s) :/(x) < s}.
We shall say / is convex if epi(f) is a convex set (see [11] for other equivalent
definitions).  The vector p is a subgradient of / at x if, for all v in R",

f(x + v)-f(x)>vp,

where the right side denotes the usual inner product.

(1.2) Proposition. If f is convex, then 9/(x) is the set of subgradients
of f at x.

The proof is immédiate from convex analysis [11, Theorem 25.6].
(1.3) Definition.   The generalized directional derivative of / at x in

the  v direction, denoted f°(x; v), is given by

f°(x; v) = lim sup \f(x + h + 8v) - f(x + h)]/8.
h-*0;SiO

(As with (1.1), this definition is appropriate only for the Lipschitz functions we
are considering at present.)

We shall denote the usual one-sided directional derivative of / at x by
/(x;u). Thus

f(x; v) = lim [f(x + 8v) ~f(x)]/8,
64.0

whenever this limit exists.

(1.4) Proposition. /°(x; u) = max{?-u: J E 3/(x)}. (That is, /°(x;-)
is the support function of 3/(x).)

Proof. Define the function g:R" x R" —*■ R by

(1.5) g(x, v) = maxtt • it : f E 3/(x)}.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GENERALIZED GRADIENTS AND APPLICATIONS 249

It is immediate from (1.1) that

(1.6) g(x, v) = lim sup v • V/(x + h),
ti-»o

where this is finite. It follows that for suitable sequences h¡ and 8¡ tending
to 0,

g(x, v) = lim [f(x +h¡ + 8¡v)-f(x + h¡)] /S„

whence g</°  by definition. We need only prove that, for any positive e,

(1.7) f°(x;v)<g(x,v) + e,

which we proceed to do. We may assume v is nonzero. Let g(x, v) = a. It
follows from (1.6) that for h in some ball of radius k > 0 around 0, when
V/(x + h) exists,

(1.8) v-Vf(x+h)<a + e.

Let a subset S of R"  have measure  0, and consider the set of hnes in
R"  parallel to a given vector.  It is a consequence of Fubini's Theorem that al-
most all of these lines meet S in a set of 0  one-dimensional measure. If we
apply this fact in the case where 5 is the set of points at which V/ fails to
exist, we deduce that for almost all A  the function 8 —+ f(x + h + 8v) is dif-
ferentiable a.e., its derivative being it • V/(x + h + 8v). We have then

f(x + h + 8v)=f(x +h)+ (   v> V/(x + h + tv)dt.jo
In view of (1.8), we see that for almost all h such that  \h \ < k/2, and for all
8<k/\v\2,

[f(x + h + 8v)-f(x + h)]/8 = (1/8) fS u-V/(x + h + tv)dt<a + e.j o
Since / is continuous, this must then hold for all such h without exception.
The required inequality (1.7) follows from (1.3).   Q.E.D.

(1.9) Corollary. f°(x; v) is a convex function of v.

Proof. A supremum of linear functions is a convex function [11, Theo-
rem 5.5].

(1.10) Corollary.   If for some point J" of R" and for all v in R"
we have

f. u < lim sup [/(x + Su) - f(x)] /S,
640

ZZieTi  f belongs to  3/(x).

Proof.  It follows from the above hypothesis that, for all v in R",
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250 F. H. CLARKE

f -v </°(x; v). The conclusion then follows from (1.4) combined with [11, The-
orem 13.1].   Q.E.D.

A slight modification of the proof of (1.4) yields:

(1.11) Proposition. Let E be a subset of R" of measure 0, and let
dfE and fE  be defined as in (1.1) and (1.3) respectively, except that in those
definitions the points x + h¡, x + h, and x + h + 8v are constrained to the
complement of E.   Then

f°(x; v) = fE(x; v) = max{f • v : f E bfE(x)},
and

VE(x) = 3/(x).

(1.12) Proposition.  d(fx + f2)(x) E dfx(x) + 3/2(x).

Proof.  Let E be the set of points at which either fx   or f2  fails to be
differentiable.  Since any sequence of the form Vf/j + f2)(x + h,), where
x + h¡ lies in the complement of E,   admits a subsequence such that
V/,(x + T2n.) and V/2(x + Än.) both exist and converge, the result follows
from (1.1) and (1.11).   Q.E.d!

The function f(x) = x2 sin(l/x) is differentiable at 0, but it is not diffi-
cult to establish that  3/(0) contains more than the point V/(0) = 0. In fact,
3/(0) = [- 1, 1].  By taking fx =/ and f2 = -/ in (1.12), we see that strict
inclusion may occur.

The reason that  3/(0) does not reduce to V/(0) in the above case, as we
now see, lies in the discontinuity of the gradient.

(1.13) Proposition.   The following are equivalent:
(a) 3/(x) = {f}, a singleton.
00 V/(x) exists, V/(x) = f,  a77cf V/ is continuous at x relative to the

set upon which it exists.

Proof.  That (b) implies (a) is evident from (1.1). Assume that (a) holds.
Define g:[-l,l] x B(l, 0)—>R by

S(S, v) = [f(x + 8v)-f(x)]/8 -t.v   for 8 * 0,
= 0 for 8 = 0,

where 5(1,0) is the closed unit ball about 0 in R". Then (1.4) implies

lim sup  g(8, u) = 0= g(0, v).
u-*v,SiO

The same argument with - / and - f replacing / and f  shows that the
same inequality holds for the lim inf also, and hence that g is continuous (and
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GENERALIZED GRADIENTS AND APPLICATIONS 251

consequently uniformly continuous) on the compact set [0, 1] x 5(1, 0). Be-
cause g(-8, v) = -g(8,- v) and g(0,')-0, this uniform continuity holds
on  [- 1, 1] x 5(1, 0). It follows by definition that V/(x) exists and equals J.

The last assertion in (b) follows from the previously noted fact that V/ is
bounded in a neighborhood of x and the fact that any limit of the form in
(1.1) must converge to f if (a) holds.   Q.E.D.

We may use (1.13) to deduce the following characterization of C1   func-
tions:

Corollary. Let B be an open subset of R".  The following are equiva-
lent:

(a) / is C1  on 5.
(b) For each x in B,  the following limit exists for each v in R":

lim       [f(x + h + 8v)- f(x + h)] ¡8.
7i-»0;6-*0

(c) 3/(x) is a singleton for each x in B.

2. Max functions. We now characterize the generalized gradient of a type
of function important in optimization.

(2.1) Theorem.   Let U be a sequentially compact space, and let g:R"
x U—*■ R have the following properties:

(a) g(x, u) is u. s. c. in (x, u).
(b) g is locally Lipschitz in x, uniformly for u in  U.
(c) gx(x, u;-) = g'x(x, u;• ),  the derivatives being with respect to x.
(d) dxg(x, u) is u. s. c. in (x, u).

Then, if we let f(x) = max{g(x, u):uE U},
(1) / is locally Lipschitz.
(2) f(x; v) exists.
(3) f(x; v) = f°(x; v) = max{f • it : f E bxg(x, u), u E M(x)}, where

M(x) = {uEU:g(x,u)=f(x)}.
(4) 3/(x) is the convex hull of {àxg(x, u):uEM(x)}.

Remark.   The differential properties of the function / have been the sub-
ject of much investigation (see [5], [8] for surveys and references).  In a suitable
setting, hypotheses (b), (c), and (d) will follow if g is convex in x (by (1.2),
[11, Theorems 23.4 and 24.5]), and we thereby generalize some results of other
authors. The conditions on g also hold when Vxg(x, u) exists and is continu-
ous in (x, u), and we thereby obtain a generalization of a theorem originally due
to Danskin [6] (see also [9, Theorem 3.3]).

Proof.  Notice first that because g is u. s. c. and  U is sequentially
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252 F. H. CLARKE

compact, the use of "max" rather than "sup" is justified; for the same reasons
M(x) is nonempty.  Let K be a Lipschitz constant for g(x, M) (hi ■*) for x
in a bounded set and for all u in  U.   Let Xj   and x2  be points in the
bounded set, and choose any u~ in M(xx). Then

f(x1) = g(x1, ü~)<g(x2,ü) + K\xx -x2\ <f(x2) + K\xx -x2\.

Since we may similarly obtain the same inequality with xx   and x2  switched,
(1) follows.

We now prove (4). We have, for any u  in M(x) and  v in R",

g°x(x, u; v) = g'x(x, u; v) = lim [g(x + 8v, u) - g(x, u)]/8
640

< hm sup [f(x + 8v) -f(x)] ¡8.
640

By (1.4) we then have this last expression greater or equal to f • it for any f in
dxg(x, u), whence any such f belongs to 3/(x) by (1.10). Consequently we
derive
(2.2) co{dxg(x, u) : u E M(x)} C 3/(x),

where "co" denotes "convex hull." Now let x  be a point where V/(x ) exists.
Then, for any u in M(x),

v• V/(x) = lim [f(x +8v)-f(x)]¡8
640

> lim sup [g(x + 8v, u) - g(x, «)] /8
640

= g'x(x, u; v) = g°x(x, u; u) = max{f • it : f E dxg(x, u)}.

Since this holds for any  it in R", we deduce by [11, Theorem 13.1]

(2.3) dxg&, u) = {V/(x)}.

Now suppose that we have a sequence of points x + h¡ where  V/(x + h¡) ex-
ists and h¡ tends to 0. Let u¡ belong to M(x + h¡). We may suppose that
u¡   converges to some   u0   in   U,   since   U  is sequentially compact.    It fol-
lows readily that   u0   belongs to M(x).   But from (2.3) it follows that if
hm/->ooV/(x + h¡) exists, it must be in the set  ()xg(x, u0), in view of hypoth-
esis (d). Consequently we deduce from the above and (1.1)

3/(x) C coO^ix, u):uEM(x)},

and this combined with (2.2) yields (4).
Because of (4), given any it, we may choose u in M(x) and f in

àxg(x, u) such that f°(x; v) = f • it. We have then
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lim inf [f(x + 8v) ~f(x)]/8 > lim inf [g(x + 8v, u)-g(x, u)]/8
640 640

= ^(x, u; it) = gx (x, u; it) > f • v = /°(x; v).

But the reverse inequality always holds by (1.3), and hence

lim inf [f(x + 8v) ~/(x)]/8 = lim sup [f(x + 8v) ~f(x)]/8
640 640

and both equal f°(x; v). This proves (2) and (3) with the exception of the ex-
pression for f(x; v) in (3), which is an easy consequence of (1.5).   Q.E.D.

Theorem 2.1 shows that f(x; v) is convex in v.  Such functions are
termed quasidifferentiable, and can serve as the natural setting for very general
problems in optimization [9]. It is not difficult to show that if a function g
has g'(x;v) convex in v andu.s.c. in x,  then g satisfies g°(x;v) = g'(x;v)
(hypothesis (c) in (2.1)). This is the case for smooth, convex, and max functions.

We shall now use (2.1) to characterize the generalized gradient of the func-
tion

dE(x) = d(x, E) = min{|x - e \ : e E E},

where E is a nonempty closed subset of R". The function dE  is Lipschitz by
the argument that proved assertion (1) of Theorem (2.1).

(2.4) Proposition.  Suppose VdE(x) exists and is different from 0.
Then

(1) x belongs to the complement of E.
(2) There exists a unique point e in E closest to x.
(3) VdE(x) = (x-e)l\x-e\.

Proof. If x is in E,  then for any v in R" we have

v • VdE(x) = lim [dE(x + 8v) - dE(x)] ¡8 = lim dE(x + 8v)/8 > 0,
640 640

whence VdE(x) = 0,  contrary to assumption. This proves (1).
For (2) and (3) we need only note that g(y, u) = \y - u\  is C1   for y

near x  and u in E,  and apply Theorem 2.1 to the function

~dE(y) = max{- \y-u\:uEE}.
Q.E.D.

(2.5) Corollary.   Let e belong to E.  Then

ddE(e) = co{0, lim(x,. - e,)/|x,. - e¡\},

where we consider all sequences x¡, e¡ such that x¡ is not in E and has closest
point e¡ in E, and x¡ —> e as i —► °°.
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Proof. We have the left side contained in the right by (2.4) and (1.1).
The opposite inclusion requires only that 0 belong to o~dE(e). This follows
from (1.10) and the following observation, for any  v in R":

lim sup [dE(e + 8v) -dE(e)]/8 = lim supdE(e + 8v)/8 > 0.
540 640

Q.E.D.
3. Normals to sets.  Let E be a closed nonempty subset of R", and let

e be a point in E.
(3.1) Definition.   The cone of normals to E at e,  denoted NE(e), is

the closure of the set

{p ER" :sp E ddE(e) for some s in (0, °°)}.

We say p is normal to E at e if p belongs to NE(e). It is easy to see
that NE(e) is a closed convex cone.

(3.2) Proposition.
NE(e) = cl co< lim s¡(x¡ - e¡)>,

where we consider all sequences with s¡ > 0, x¡ converging to e, and having
closest point e¡ in E.

Proof.  Let p = lims¡(x¡ - e¡). We may assume  (xf - e¡)/\x¡ - e¡\  con-
verges to a limit f. Then f E ME(e) by (2.5), and

p = [lims¡ \x¡ -e¡\] [lim(x,. - e,)/|x,. - e¡|] = \p|f,

whence p E NE(e). This shows that the right side in (3.2) is contained in the
left, and the opposite inclusion follows from (2.5) and (3.1).    Q.E.D.

(3.3) Proposition. (1) Let E be a C1  manifold.  Then NE(e) coin-
cides with the usual space of normals to E at e.

(2) Let E be convex.   Then NE(e) coincides with the cone of normals
to E at e in the sense of convex analysis.

Proof.  We first prove (1).
Let x0  be such that \>dE(xQ)  exists and is nonzero.  It follows from

(2.4) that x0   lies in the complement of E and that x0   has a unique nearest
point e0  in E.   In a neighborhood of e0, E has a representation in local co-
ordinates of the form

E = {e E R" : e = f(v), v in an open subset  V of Rm},

where f:Rm —> R"  is C1, e0 = f(vQ) for some v0  in  V,  and the Jacobian
fx(v0) has maximal rank (E then has dimension m). Recall that the normal
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space at e0  is the space orthogonal to that spanned by the tti  columns of
fx(vQ). Because  \f(v)-x0\2  has a local minimum at v = v0, we deduce

(f(vo)-xo)fx(vo) = 0,

whence we see that (x0 - eQ)/\x0 - e0\  (which equals VdE(x0) by (2.4)) lies
in the usual normal space at e0. Now suppose that x¡ and e¡ axe sequences of
points such as these, where x¡ tends to e and VdE(x¡) converges. The limit
of the sequence VdE(x¡) must then belong to the usual normal space at e, since
this space is spanned by vector functions continuous in e.  We conclude that
ddE(e) is contained in the usual normal space at e,  and hence that NE(e) is
also.

It will suffice to prove the opposite inclusion by showing that an arbitrary
unit vector p in the usual normal space at e is contained in ddE(e), in view
of (3.1). We assume e = 0 and that, near 0, E has the representation 5 =
{e E R" :F(e) = 0}, where F:R" —► 5"_m  is such that Fx(0) has maximal
rank.  Recall that in this setting the usual normal space at 0 is spanned by the
vectors  VF'(O),  1 < i < 72 - tti,  and hence p = ~\FX(0) for some vector X in
R"~m.  Let 8¡ decrease to 0, and let 8¡p have closest point e¡ in E.  Then,
because 0 is in E,

(3.4) \8iP-e¡\<8¡,

and consequently we may assume that e¡/8¡ converges to a limit in R". From
the fact that

F(x) = F(0) + xFx(0) + o(x),

we have e¡Fx(0) = - o(e¡), since F(0) = 0. Squaring (3.4) and substituting
gives
(3.5) 28,.X.o(e,.) + k,.|2<0,
where we have also replaced p by  XFx(0).

Now if any e¡ is zero, then 8¡p has nearest point  0 in E,  and p E
o-dE(0) by (2.5). Hence we may assume the e¡ axe different from 0.  Dividing
(3.5) by 8¡\e¡\ and taking limits, we find that lim£?,/S,. = 0.

Because e¡/8¡ converges to 0, we have 8¡p-e¡i^Q for i large.  But
then we see that the vectors (8¡p - e¡)¡\8¡p - e¡\  belong to  ddE(e¡) by (2.5)
and that they converge to p.   Since  bdE  is u. s. c, p E ddE(0) and we are
done.

Proof of (2).  Recall that a vector p is normal to E at e0  in the
sense of convex analysis iff, for all e in E, p • (e0 -e)>0. It is well known
that this holds iff p + e0  has closest point e0  in E.  This fact combined with
(3.2) gives the desired equivalence.   Q.E.D.
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(3.6) Definition. The tangent cone to E at e,  denoted TE(e), is the
cone dual to NE(e):

TE(e) = {f : f. u < 0 for all it in NE(e)}.

It follows from Proposition (1.4) that v is tangent to E at e (i.e.  vE
TE(e)) iff </°j(e; u) = 0. The following result will be useful later, and gives an
alternate characterization of tangents.

(3.7) Proposition. Let e0  belong to E, and let v be a point of R".
The following are equivalent:

(i) t.er£(e0).
(2) lim^^es lim inf610ci£(e + 8v)/8 = 0.

Proof.  By the above remark, we have dE(e; v) = 0 if (1) holds, and hence

(3.8) lim sup   [dE(e0 +h + 8v)~ dE(e0 + h)] /8 = 0.
7i-»0;640

It is easy to see that the expression occurring in (2), with lim sup in place of
the limit there is no greater than that in (3.8), and yet is nonnegative. The ex-
istence of the hmit and equality (2) follow.

Suppose now that (2) holds.  Let x be a point not in E where VdE(x)
exists. Then if e is the point of E 'closest to x,

(3.9) |x -e| = dE(x) < |x - e - Su | + dE(e + 8u),

for any positive 8, since dE  is Lipschitz with constant 1.  Squaring both sides
in. (3.9) and rearranging, we derive

rtim      (x-e)      8vv        ,_, r   [dE(e + 8v)     \x-e-8v\~\

We may obtain a bound on the last term in this expression:

dE(e + 8v)     \x-e-8v\
2|x-e| \x-e\

(3.11) <(2\x-e\)-1{dE(x) + \x-e-8v\ + 2\x-e\ + 8\v\}

< (2|x -e\)-1{4dE(x) + 28 \v\} < 2 +r^-r.
\x-e\

For any positive e, we may choose 80  such that

8o_ dE(e + 80v) . pdE(e + 8v)
- < e,-< hm inf-+ e.
\x-e\ 80 640 S

Substituting into (3.10), and using (3.11) and the equality

(x-íO/Ix-e^Vd^íx)
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(by (2.4)), we arrive at

it • WE(x) < elul2 + (2 + e|u|) ("lim inf dE(e + 8v)/8 + el.

Hence we must have

v • VdF(x) < 2 lim inf dE(e + 8v)¡8,
640

and since the right-hand side goes to 0  as e goes to e0, we conclude from
(1.1) that t> - f < 0  for every element  f of ddE(e0). This implies (1). Q.E.D.

We shall apply the above notions to flow-invariance in the next section. We
proceed to relate them now to the generalized gradients defined in §1. The first
result generalizes the familiar calculus result that  (df/dx, - 1) is a vector normal
to the graph of /

(3.12)  Lemma. Let f:R"—► R be given, and suppose V/(x0) exists.
If E is the epigraph of f (see §1) then

Ç7f(x0),-l)ENE(x0,f(x0)).

Proof.  Let us assume x0 = 0 and /(x0) = 0, and put V/(0) = f.   We
shall be done if we establish

(3.13) (f, - 1)/1 (?,-1)1 €3^(0,0).
Let ¿(x) = f-x,  and let dG  be the distance function corresponding to

epi(g). It is not difficult to prove that for a fixed (v, s) in R" x R we have

dE(8(v, s))>dG(8(u, s)) + o(8).

Consequently we deduce

(3.14) lim sup [dE(8(v, s)) - iZF(0, 0)]/S > lim sup dn(8(v, s))/8.
640 « « 6;o

But

dG (8(v, s))l8 = 0 > (f, - 1) • (it, s) if s > f - it.
= (v, »)•(?,-l)/lff,-1)1    otherwise.

In any case, the left side of (3.14) is no less than

(ir,s).(i,-l)/|(r,-l)|,
and (3.13) follows from (1.10).   Q.E.D.

(3.15) Lemma.  Let f:R"—*R be locally Lipschitz, and let E = epi(f).
If the point (y, s)ER" x R is not in E and has closest point (x, t) in E,
then (y - x) E (t - s)bf(x).
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Proof.  There is a circle about  (y, s) with (x, /)  on its boundary and
no points of E in its interior. This implies

(3.16) (y - x, s - t) • (z - x, f(z) -t)< o(z - x).

Let v be any point of R". We put z = x + 8v in (3.16) and derive (using
t>s and  t>f(x))

lim sup (t - s) (f(x + Sir) -/(x))/6 > v • (y - x).
640

This yields the desired result by (1.10).   Q. E. D.

(3.17) Proposition.   Let f be locally Lipschitz and let E = epi(f).
The following are equivalent:

(1) f€3/(x).
(2) (<;,-l)ENE(x,f(x)).

Proof.  That (1) implies (2) follows from (1.1) and an appeal to Lemma
(3.12). The reverse implication is a consequence of Lemma (3.15) and Proposi-
tion (3.2), which states that A^  is generated by points of the type appearing in
(3.15).   Q.E.D.

Suppose now that f:R"—* (°°, °°]   isl.s. c. Then E = epi(f) is a closed
subset of R" x R.

(3.18) Definition.  Let / be finite at x.  We define

3/W = {p:(p,-l)GAß(x,/(x))},

and we call  3/(x)  the generalized gradient of / at x.
Note.   Proposition (3.17) assures that (3.18) is a consistent extension of

Definition (1.1) to non-Lipschitz functions.  In this more general case,  3/ can be
empty, and need not be compact. An instance of the former behavior is the func-
tion - Ixl1'2  at 0, and the negative of this function provides an example of
the latter case.  Consequently, the relation  3(-/(x)) = - 3/(x), which is obvious
in the Lipschitz case, may fail. We see from (3.12) that whether / is Lipschitz
or not,  3/(x) always contains V/(x) when this exists.

It is natural to wonder whether one may find a suitable extension of Defi-
nition (1.3) to the non-Lipschitz case, so that an analogue of (1.4) is valid.  It is
in fact possible to carry this out, but it is best deferred, along with a thorough
study of the properties of these extended constructions. This is because there ex-
ists a way of defining certain tangent cones and gradients on an arbitrary locally
convex linear topological space, which reduce on R"  to the ones given here. As
well as providing a more convenient setting for deriving general results, this
method yields also alternate definitions on R"  independent of which equivalent
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norm is used.  Thus our apparent dependence on the Euclidean norm in this paper
may be removed. Whichever approach is used however, we require the results
proven here for R".

We conclude this section by considering the generalized gradients of two
types of functions extremely important in optimization: convex and indicator
functions. The first result removes the Lipschitz hypothesis from Proposition (1.2).

(3.19) Proposition.  Let f:Rn —*■ (-<*>, °°]   be I. s. c. and convex, and
let f be finite at x.   Then  3/(x) is the set of subgradients of f at x.

Proof, p is a subgradient at x  iff (p, - 1) is normal to epi(f) at
(x, f(x)) in the sense of convex analysis. This is equivalent by (3.3) to  (p, - 1)
being normal in the sense of (3.1) to epiff) at  (x, f(x)), which in turn is equiv-
alent by (3.18) to the inclusion p E df(x).   Q. E. D.

(3.20) Definition. Let E be a closed subset of R". The indicator
function of E is defined by

8(x\E)= 0       ii xEE,
= + °°  otherwise.

Note that  8 ( • | E)  is 1. s. c.

(3.21) Proposition. Let x lie in E.   Then  38 (x | E) = NE(x).

Proof.  The epigraph of 8(>\E) is Ex [0,°°). By (3.2) and (3.18),
we need only show that p is normal to E at x  iff (p, - 1)  is normal to
E x [0, °°)  at  (x, 0).  This follows readily from (3.2) along with the following
two observations: if a point (v, s) in R" x R  has closest point (e, t) in E x
[0, °°), then u has closest point e  in E; if v  has closest point  e  in E,
then (v, - 1) has closest point (e, 0) in E x [0, °°).   Q. E. D.

4.  Flow-invariant sets.  Let X be a multifunction from R"   to R".  That
is, for each xER", X(x)  is a subset of R".  We shall assume that X(x)  is
nonempty and compact.  A trajectory for X will mean an absolutely continuous
function x: [0, 1] —> R"  such that

(4.1) x(t)EX(x(t))   a.e.

where "a. e." denotes "for almost all  t in   [0,1]"  and x(t)  is the derivative
of x,  which exists a.e.  The interval   [0, 1] is chosen here just for convenience.
Relation (4.1) is often referred to as a differential inclusion or a generalized dif-
ferential equation.

(4.2)  Definition.   X is Lipschitz if there exists a constant K with the
following property: given any xx,x2   in R"  and a point  vx   in X(xx), there
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exists u2  in A"(x2) suchthat  \vx -v2\ <K\xx -x2\.
This is equivalent to saying that X is Lipschitz in the Hausdorff metric on

closed sets. If X is actually a function, (4.2) describes a Lipschitz condition
on X.

(4.3) Definition.   The closed subset F of R"  is flow-invariant for X
if any trajectory x  for X with initial value in F remains in F.  That is, for
any trajectory x  for X, x(0) € F implies x(f) EF for t > 0.

The following theorem demonstrates that the notion of tangency defined
in §3 is precisely the right one to characterize flow-invariant sets.

(4.4) Theorem.   Let X be a Lipschitz multifunction, and let F be a
nonempty closed subset of R".   The following are equivalent:

(1) F is flow-invariant for X.
(2) For each x in F, X(x) is tangent to F at x (that is, X(x) C

TF(x), the latter having been defined in (3.6)).

Proof.  Suppose first that (2) holds. Let x be a trajectory for X,  and
let x(0) lie in F.  Define /: [0, 1] —» [0, °°) by f(t) = dF(x(t)). We need
only prove that /is 0 on  [0, 1].

Since x(t) is easily seen to be bounded, it follows that x  and hence /
is Lipschitz on   [0,1]. Let t be any point where f(t) and x(t) exist and
such that x(t) lies in X(x(t)) (almost all ppints in   [0, 1] have this property).
Then (the following limits are taken as 8  goes to  0)

f(t) = lim[<iF(x(r + 8)) - dF(x(t))]l8
(4 5) = lim [dF(x(t) + 8x(t) + o(8)) - dF(x(t))] /S

- lhn[dF(x(t) + 8x(t)) - dF(x(t))]/8
<4(x(t);x(t))   (by (1.3)).

Assume for the moment that x(Z) does not lie in F.   By (1.4) and (2.4)
we see that

(4.6) d°F(x(t); x(t)) = x(t)(x(t) -y)l\x(t) -y\,

where y is a point in F closest to x(t). By hypothesis, there exists a point
v in X(y) such that

\v-x(t)\ <K\y -x(t)\ = KdF(x(t)).

We then have

*<>-l&.-i&*w<>-*-
The first term on the right side of this last expression is nonpositive since
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X(y) is tangent to F at y (note that x(t)-yENF(y) by (3.2) and v lies
in X(y)). Substituting (4.6) and (4.7) into (4.5) we arrive at

(4.8) f(t)<Kf(t).
If x(t) does lie in F,  then dF(x(t); x(t)) is 0 by hypothesis (since

x(t) E X(x(t))) and in this case also (4.5) leads to (4.8), which conse-
quently holds a.e.  A standard argument then establishes that /= 0, and (1)
follows.

Let us now posit (1).  Let y0  be any point of F.  We shall show that
X(y0) is tangent to F at y0. Choose any v0 E X(y0).

Let y be an arbitrary point of F.  There exists a point u in X(y) sat-
isfying | it- u0| <K\y -y0\, and also a trajectory x for X suchthat x(0)
= y and x(0) exists with value it   [7, Theorem 5].  It follows from flow-invar-
iance that x(t) lies in F for 0 < t < 1. Hence (the lim sup's are as 8  goes
to 0)

lim sup dF(y + 8v)¡8 = lim sup <iF(x(0) + 8x(0))/8
= lim sup dF(x(8))/8 = 0.

Consequently,

hm sup   lim inf d(y + 8v0)/8
y-*y0;yeF    6 40

<  hm sup   lim inf [d(y + 8v)/8 + |u - u0|] < 0,
y+yo¡y^F   &*°

by (4.9). We conclude from (3.7) that v0ETF(y0).   Q.E.D.

(4.10) Corollary (Bony [1]). Let X be a locally Lipschitz function
and suppose that whenever a point z has closest point y in F we have

(4.11) (z-y)-X(y)<0.

Then F is flow-invariant for X.

Proof.  It is clear from (3.2) that (4.11) implies (2) of the theorem. Q.E.D.

(4.12) Corollary (Brezis [2]). Let X be a locally Lipschitz func-
tion.  Then F is flow-invariant for X iff, for each y E F,

(4.13) lim dF(y + 8X(y))/8 = 0.
640

Proof.  Our proof of the theorem showed that flow-invariance implies
(4.9), and that this in turn implies (2).  Since (1) and (2) are in fact equivalent
by the theorem, each is equivalent to (4.9), which is in turn equivalent to (4.13).
Q.E.D.

Remark.   Redheffer [10] has given simplified proofs and extended
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versions of the original theorems of Bony and Brezis. He replaces the Lipschitz
hypothesis on X by a weaker one involving "uniqueness functions". The proof
of Theorem (4.4) could be modified to treat this case.

Acknowledgement. I wish to thank Professor R. T. Rockafellar for his
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