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Abstract—Nowadays, we have diverse sensor technologies and
image processing algorithms that allow one to measure different
aspects of objects on the Earth [e.g., spectral characteristics in
hyperspectral images (HSIs), height in light detection and ranging
(LiDAR) data, and geometry in image processing technologies,
such as morphological profiles (MPs)]. It is clear that no single
technology can be sufficient for a reliable classification, but com-
bining many of them can lead to problems such as the curse of
dimensionality, excessive computation time, and so on. Applying
feature reduction techniques on all the features together is not
good either, because it does not take into account the differences in
structure of the feature spaces. Decision fusion, on the other hand,
has difficulties with modeling correlations between the different
data sources. In this letter, we propose a generalized graph-based
fusion method to couple dimension reduction and feature fusion of
the spectral information (of the original HSI) and MPs (built on
both HS and LiDAR data). In the proposed method, the edges of
the fusion graph are weighted by the distance between the stacked
feature points. This yields a clear improvement over an older
approach with binary edges in the fusion graph. Experimental
results on real HSI and LiDAR data demonstrate effectiveness of
the proposed method both visually and quantitatively.

Index Terms—Data fusion, graph-based, hyperspectral image
(HSI), light detection and ranging (LiDAR) data, remote sensing.

I. INTRODUCTION

R ECENT advances in the remote sensing technology have

led to an increased availability of multisensor data from

the same area. In particular, hyperspectral images (HSIs) pro-

vide a detailed description of the spectral signatures of ground

covers, whereas light detection and ranging (LiDAR) data give

detailed information about the height of the same surveyed area.

The HS data, once combined with LiDAR data, can provide a

more comprehensive interpretation of objects on the ground.

Many techniques have been developed for fusion of HS and

LiDAR data in a classification task [1]–[6]. Simental et al.

[1] explored the joint use of HS and LiDAR data for the

separation of vegetation classes, underlining that LiDAR can

be very useful in the separation of shrubs from trees. Lemp and
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Weidner [2] exploited HS and LiDAR data for the classification

of urban areas, using LiDAR for the segmentation of the scene

and then HS data for the classification of the resulting regions.

Koetz et al. [3] classified fuel composition from fused LiDAR

and HS bands using support vector machines (SVMs) and

showed that the classification accuracies after fusion were

higher than those based on either sensor alone. Multiple feature

fusion using decision fusion and manifold learning were pro-

posed for classification of HS remote sensing imagery in [7] and

[8]. Huang et al. [4] compared vector stacking, reclassification,

and postprocessing for information fusion of aerial images and

LiDAR data in urban areas. The joint use of HS and LiDAR

remote sensing data for the classification of complex forest

areas was investigated in [5]. They proposed a novel classifi-

cation system based on different possible classifiers that were

able to properly integrate multisensor information. Recently,

Pedergnana et al. [6] have applied morphological extended

attribute profiles (EAPs) [9] to both HS and LiDAR data for a

classification task. Their method jointly considered the features

extracted by EAPs computed on both HS and LiDAR data and

fused spectral, spatial, and elevation information in a stacked

architecture.

Despite the simplicity of such feature fusion methods (that

simply concatenate several kinds of feature sources), the sys-

tems do not always perform better (and can even perform

worse) than using a single feature source. Dalla Mura et al.

[10] showed examples where the classification accuracies by

stacking different morphological attributes were even lower

than by using only single morphological attribute. This is

because the information contained in different feature sources

is not well represented or measured. Furthermore, the resulting

data by stacking several kinds of feature sources may contain

redundant information. Last, but not least, the increase in the

dimensionality of the stacked features, as well as the limited

number of labeled samples in many real applications, may

pose the problem of the curse of dimensionality and, as a

consequence, result in the risk of overfitting the training data.

An older version of our graph-based data fusion method

with binary edges of the fusion graph won the “Best Paper

Challenge” Award at the 2013 IEEE Data Fusion Contest [11].

In this letter, we propose a generalized graph-based fusion

of HS and LiDAR (GGF). An important difference with [11]

is that the proposed fusion graph does not simply set the

edges of fusion graph to 0 (disconnected) or 1 (connected) but

employs weighted edges (with weights corresponding to the

distance between the stacked feature points). In this way, we

build a more general weighted fusion graph where the actual
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Fig. 1. Openings on a part of LiDAR data with disk-shaped SEs of increasing
radius size (1, 3, and 5).

differences and similarities in spectral, spatial, and elevation

characteristics of the feature points are better modeled. The

proposed fusion graph is hence more general and more pow-

erful than the binary one. The organization of this letter is as

follows. Section II provides a brief review of morphological

features. In Section III, we present the proposed graph-based

feature fusion method. The experimental results on real urban

HSIs are presented and discussed in Section IV. Finally, the

conclusions are drawn in Section V.

II. MORPHOLOGICAL FEATURES

Morphological features are generated by applying either

morphological openings or closings by reconstruction on the

image, using a structural element (SE) of predefined size and

shape. For example, the morphological profile (MP) with a

disk SE carries information about the minimum size of objects,

whereas the directional MP indicates the maximum size of

objects [12]–[14]. An opening acts on bright objects (areas

with high elevation in LiDAR data, such as the top of the

roof) compared with their surrounding, whereas closings act on

dark (low height in the LiDAR data) objects. For example, an

opening deletes bright objects that are smaller than the SE.1

By increasing the size of the SE and repeating the previous

operation, a complete MP is built, carrying information about

the size and the shape of objects in the image.

In our experiments, morphological features are generated

by applying morphological openings and closings with partial

reconstruction [12]–[14] on both LiDAR data and the first two

principal components (PCs) (representing more than 99% of the

cumulative variance) of the original HSI. For a disk-shaped SE,

MPs with 15 openings and closings (ranging from 1 to 15 with

a step-size increment of 1) are computed for both LiDAR data

and the first two PCs of the HSI. For linear structuring elements,

we take the maximum (for openings) or minimum (for closings)

over multiple orientations (every 10◦) and use 10% of the length

of the SE for partial reconstruction. Then, we generate MPs

with 20 openings and closings (ranging from 5 to 100 with a

step-size increment of 5) for both LiDAR data and the first two

PCs of the HSI. Fig. 1 shows the results of the MP with partial

reconstruction for LiDAR data with different scales. As the size

of the SE increases in openings, we can see that more and more

bright objects (i.e., objects with high elevation) disappear in the

1Deleting means here that the pixels in the object take on the value of their
surrounding.

dark background of LiDAR data. The effect of using disk- and

linear-based morphological features with partial reconstruction

for classification of remote sensing data from urban areas has

been discussed in our previous work [12]–[14].

III. PROPOSED FUSION METHOD

Different feature sources typically have a different range of

values, different dimensions, and different characteristics. For

example, an original HSI with 144 bands contains the spectral

information of the ground covers. The morphological features

of LiDAR data with 70 bands (with 30 bands of disk-based

MPs and 40 bands of directional MPs) carry the elevation

information of the same surveyed area. The morphological

features obtained from the HSI have 140 bands and carry the

spatial information. Before fusing all the feature sources, we

normalize their dimensions and reduce the noise throughout the

given feature space with kernel principal component analysis

(KPCA) [14], [15], like we also did in [11]. We assume that

the dimension of each feature source is already normalized

to the smallest dimension of all the feature sources D =
70. Let XSpe = {xSpe

i }ni=1, XSpa = {xSpa
i }ni=1, and XEle =

{xEle
i }ni=1 denote the spectral, spatial (the spatial features are

obtained from the HS data), and elevation features, respec-

tively, where x
Spe
i ∈ R

D, x
Spa
i ∈ R

D, and xEle
i ∈ R

D after

normalization to the same dimension. XSta = {xSta
i }ni=1 =

[XSpe;XSpa;XEle], and xSta
i = [xSpe

i ;xSpa
i ;xEle

i ] ∈ R
3D de-

notes the vector stacked by the spectral, spatial, and altitude

features. {zi}
n
i=1, and zi ∈ R

d denote the fusion features in a

lower dimensional feature space with d ≤ 3D.

The goal of this letter is to find a transformation matrix

W ∈ R
3D×d, which can couple dimensionality reduction and

feature fusion in a way of zi = WTxi (xi is a variable, which

can be set to be xSta
i , x

Spe
i , etc.). The transformation matrix W

should not only fuse different features in a lower dimensional

feature space but also preserve local neighborhood information

and detect the manifold embedded in the high-dimensional

feature space. A reasonable way [16] to find the transformation

matrix W can be defined as follows:

arg min
W∈R3D×d

⎛

⎝

n
∑

i,j=1

‖WTxi −WTxj‖
2Aij

⎞

⎠ (1)

where the matrix A is the edge of the graph G = (X,A).
In our previous work [11], we assumed that the edges (be-

tween data points xi and xj) are binary, i.e., Aij ∈ {0, 1}.

Aij = 1 if xi and xj are “close,” and Aij = 0 if xi and xj are

“far apart.” “Close” was defined by finding the k-nearest neigh-

bors (k-NN) of the data point xi. The k-NN is determined first

by calculating the Euclidean distance between data point xi and

all the data points, then sorting the distance and determining the

nearest neighbors based on the kth minimum distance. A fusion

graph GFus = (XSta,AFus) was defined as follows:

AFus = ASpe ⊙ASpa ⊙AEle (2)

with “⊙” denoting element-wise multiplication, i.e., AFus
i,j =

A
Spe
i,j A

Spa
i,j AEle

i,j , and AFus
ij = 1 only if A

Spe
ij = 1, A

Spa
ij = 1,
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TABLE I
CLASSIFICATION ACCURACIES OBTAINED BY THE DESCRIBED SCHEMES

and AEle
ij = 1. In this definition, all the connected nodes had

the same weight on their edges, without accounting for actual

differences in the spectral, spatial, and elevation proximities of

different data point pairs. However, this may not be true in real

cases. For example, it is more probable that a data point has

similar characteristics with its nearest neighbors than with those

points that are far apart. Therefore, in this letter, we propose a

generalized fusion graph GGFus = (XSta,QGFus). Suppose ∆
is a pairwise distance matrix of the stacked features XSta. We

propose a fused distance matrix as

∆GFus = ∆+ANeg max(∆) (3)

where ANeg = ¬AFus, and the operator “¬” denotes logical

negation. Let Ni denote the k-NN of xi. For each node xi

(i ∈ {1, . . . , n}), we first find its k-NN Ni in the fused distance

matrix ∆GFus. The edges are then formally defined as

QGFus
ij =

{

e−‖xi−xj‖, if xj ∈ Ni

0, otherwise.
(4)

Note that the edges denoted by AFus or ANeg are still binary,

whereas the edges of QGFus are weighted with different values

according to their distance if they are connected. The use of

the neighborhood Ni in this equation guarantees that those data

points that differ strongly in any of the spectral, spatial, or

elevation characteristics will not be connected in the graph. For

example, the data points from football fields made of real grass

(xSta
i ) and those made of synthetic grass (xSta

j ) have very sim-

ilar spatial and altitude information (A
Spa
i,j = 1, AEle

i,j = 1), but

different spectral characteristics (ASpe
i,j = 0). Then, A

Neg
i,j = 1,

and the distance ∆GFus
i,j in (3) will be penalized by adding the

maximum value of ∆. Hence, the data points that are strongly

dissimilar in any of the three characteristics are not likely to

be within each other’s k-NN, i.e., they are not likely to be

connected in the fused graph. When using the constraint in [17]

for avoiding degeneracy

WT (XSta)DGFus(XSta)
T
W = I (5)

where DGFus is a diagonal matrix with DGFus
i,i =

∑n
j=1 Q

GFus
i,j

and I is the identity matrix, we can obtain the transforma-

tion matrix W = (w1,w2, . . . ,wr), which is made up by r

eigenvectors associated with the least r eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λr of the following generalized eigenvalue problem:

(XSta)LGFus(XSta)
T
w = λ(XSta)DGFus(XSta)

T
w (6)

where LGFus = DGFus −QGFus is the fusion Laplacian

matrix.

IV. EXPERIMENTAL RESULTS

Experiments are done on an HSI and LiDAR data that were

acquired by the NSF-funded Center for Airborne Laser Map-

ping (NCALM) on June 2012 over the University of Houston

campus and the neighboring urban area. The HS imagery

has 144 spectral bands with a wavelength range from 380 to

1050 nm. Both data sets have the same spatial resolution (2.5 m).

The whole scene of the data, consisting of the full 349 × 1905

pixels, contains 15 classes. Available training and testing sets

are given in Table I (# number of training samples/# number

of test samples), and Fig. 2 shows the false color image of HS

data and test samples. For more information, see [18].

The SVM classifier with radial basis function [19] kernels

is applied in our experiments. The parameters of the SVM

classifier are set the same as in our previous work [11]. Dif-

ferent feature sources are scaled to [−1, 1] before classification.

We compare our proposed GGF with the following schemes:

1) using the original HSI; 2) using the MPs computed on

the first two PCs of the original HSI (MPsHSI); 3) using the

MPs computed on the LiDAR data (MPsLiDAR); 4) stacking

morphological features computed from both LiDAR data and

the first two PCs of the original HSI (MPsHSLi), similarly as

[6]; 5) stacking all dimensional normalized features, i.e., XSta

(Sta); 6) stacking all the features extracted by PCA from each

individual feature, which represents more than 99% of the cu-

mulative variance (PCA); 7) stacking all the features extracted

by nonparametric weighted feature extraction (NWFE) [20]

from each individual feature (which represents more than 99%
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Fig. 2. Classification maps produced by the described schemes. (a) False color image with 15 classes labeled and highlighted in the image. Thematic maps using
(b) MPsHSLi, (c) LPP, (d) GFHLOrg, (e) GGFOrg, (f) GFHL [11], and (g) GGF.

of the cumulative variance); 8) features fused by using the graph

constructed by all stacked feature sources (i.e., LPP [17]); and

9) our previous work with the edges of the fusion graph binary

[11] (GFHL). Both GFHL and our proposed GGF can operate

on all feature sources without and with KPCA normalization.

We denote feature fusion on original feature sources without

KPCA normalization as GFHLorg and GGForg, respectively. In

our experiments, 5000 samples were randomly selected to train

KPCA, LPP, GFHL, and our proposed GGF.

The classification results are quantitatively evaluated by

measuring the overall accuracy (OA), the average accuracy

(AA), and the Kappa coefficient (κ) on the test samples. The

experiments were carried out on a 64-bit 3.40-GHz Intel i7-

4930K (1 core) CPU computer with 64-GB memory, and the

consumed time includes normalization, feature fusion, and

classification. Table I shows the accuracies and consumed time

obtained from the experiments. For visual comparison, we show

the classification maps in Fig. 2.

Form the table and figure, we have the following findings.

1) The results confirm that the fusion of the spectral, spatial,

and elevation features can improve the classification per-

formances. In particular, our proposed GGF produced the

best OA, AA, and κ. The improvements of GGF in OA are

3.50%–12.93% compared with schemes 1–8. However,

increasing the processing time with KPCA normalization,

both GFHL and GGF have more than 3% improvements

in κ compared with the GFHLorg and GGForg without

KPCA normalization. Compared with setting the edge

of fusion graph binary (GFHL) in [11], the proposed

generalized fusion graph (GGF) produces higher overall

accuracies, particularly without KPCA normalization.

2) From the class-specific accuracies, when single features

are used, the RawHSI approach produces better results on

class “Tree,” whereas MPsHSI performs better on classes

“Residential” and “Road,” and the MPsLiDAR approach

performs better on classes “Commercial” and “Highway.”

The proposed GGF produces higher accuracy on some

classes related to nature resources, e.g., grass and tree.

For some man-made objects such as “Commercial” and

“Highway,” both GFHL and GGF perform better than

schemes 1–8.

3) From the classification maps, we can visually see that

the objects under cloud regions are not well classified by

using the stacked features. Without KPCA normalization,

the proposed GGForg classifies objects under cloud better

than GFHLorg, with less consumed time.

The remote sensing data from the urban area was a mix

between man-made structures and natural materials, and dif-

ferent objects may be made by same materials. It is difficult

to classify them only using HS data, for example, some land-

use classes (e.g., commercial and highway) are better classified

when using LiDAR data. This is because commercial objects

have larger area and higher elevation than residential objects

and highway objects have higher elevation than road objects. By

concentrating on different features in the stacked structure,

the classification accuracies are improved. The approaches of

NWFE and Sta are similar to the PCA approach in terms

of a stacked architecture; all these three approaches first ap-

plied feature extraction on each individual feature and then

concatenated the extracted feature vectors from the original

HS data, the MPs of the HSI, and the MPs of LiDAR into

one stacked vector. The differences are that each individual

feature is represented by different aspects, e.g., the features

extracted by PCA represent most of the cumulative variance in

the data, whereas the features extracted by NWFE respect the

class discriminant. The cloud-covered regions in the original

HSI are not classified well by fusing features in a stacked

architecture, because the elevation information contained in the
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Fig. 3. (a) Number of nonzero entries in A
Spe and A

Fus as a function of the
number of the nearest neighbors. (b) OA on the number of extracted features.

morphological features of LiDAR data is not well represented

in such a way of data fusion. The spectral and spatial informa-

tion (MPsHS) of the cloud-covered regions is not related to real

ground cover. The LiDAR sensor can penetrate clouds, and its

morphological features contain the elevation information of the

real ground cover. When stacking all feature sources together,

the element values of different features can be significantly

unbalanced, and the information contained by different feature

sources is not equally represented. The same problems happen

when using the stacked features to build a graph in the LPP

method. By building the binary fusion graph, GFHL [11] cannot

classify some objects under cloud well, particularly GFHLorg

without KPCA normalization. This is because both GFHL and

GFHLorg set all connected edges of the fusion graph to the

same weight, which means that all connected points are treated

as equally similar in terms of their characteristics. The proposed

approach (GGF and GGForg) assigns different weights to the

connected edges according to a distance function and, in this

way, better models the actual similarity of the connected nodes

in their characteristics. Fig. 3(a) shows that there are fewer

nonzero entries in AFus than in ASpe (the number of nonzero

entries is the same as ASpa and AEle) as the number of the

nearest neighbors increases. With KPCA dimensional normal-

ization, the OA of both GFHL and our proposed GGF are

better than those without KPCA normalization (i.e., GFHLorg

and GGForg) as the number of extracted features increases [see

Fig. 3(b)].

V. CONCLUSION

The main contribution of this letter is a new methodology

to include spectral, spatial, and elevation information in the

classification process by a generalized graph-based feature

fusion scheme. Compared with an older related method that

used binary edges in the fusion graph, our new method, which

employs weighted edges based on differences among spectral,

spatial, and elevation features, better models the actual simi-

larity of the connected nodes, which is reflected in improved

classification performances.
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