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                     Summary 

   Algebraic proofs are given to some inequalities involving 
canonical correlation coefficients which, however, seem quite 
natural from statistical intuition. Though all of these inequalities 
can be easily verified from the well-known Courant-Fischer min-max 
theorem (c. f. Bellman [2], pp. 115-117), our method in this note 
seems to have some interests notwithstanding.

   Let A=(ai,) be a p. d. (positive definite real symmetric) NxN matrix. Then the 

most famous determinantal inequality is due to Hadamard : 

                       IAIN        �H ,(1) 

where the equality holds if a ii=0(i� j). 
   Among various extensions of Hadamard's inequality, the extension due to Fischer 

seems most straightforward. Let us partition A as 

            / A11 Al2 A1k 

        AA-          A=
.21.22•• A2k , where Aii(l�i�k) is the square matrix. 

                Aki Al2— Akk I 

Fischer's inequality is 

               1A15=1-11Aiii,( 2 ) 
                                                              i=1 

where the equality holds if Ai,=0 (i�j). 

   A number of inequalities in multivariate statistical analysis can be derived by 

the inequality (2). We shall give here only two examples. 

   EXAMPLE 1. Let21=--(a11Civ12) (p x p, p. d.) be the covariance matrix of a random 
                         62122 

vector X'=(X„ X2, '•• Xv). Then the square of multiple correlation coefficient bet-

ween X2 and (X2, ••• , Xp) is given by
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 611 0.12 
                                                        0'21 122 
            (2, ••., p)—( 3 )                                       aill/221 

Thus the inequality (2) shows that 0�pi ,(2,...,p)<1 and p?,(2,...,p)=0 iff 012=0. 

    EXAMPLE 2. Let the p-dimensional random vector X be distributed according to 
Np(p, I). We partition as 

         / X11 /12 ••• Elk \ 
      II     I—I21222k , where fii(l_i�k) is the square matrix of order pax pi. 

         \ E kl E k2—• kk 

    Let S be the matrix of the sum of cross-products , (x,--5.)(x,--V, which 
                                                                                             a=1 

is partitioned correspondingly as S=(Si;), where Si,(1�i�k) is the square matrix of 

order pi. 

   Then the likelihood ratio statistic for testing the hypothesis H: 1 ,0=-0 (i�j) 

(c. f. Anderson [1], Ch. 9) becomes 

          22/n= IS I( 4 ) 

                                                                                                             • 

                          H ISiil 
                                                          i=1 

The inequality (2) implies that 0<2� .1, and it is interesting to note 2=1 iff Si)=0 , 
i#1. 

   There is a refinement of Fischer's inequality (2) due to Faguet (Smirnov [6] , p. 70) : 

                                  A11 Al2 A22 A23 
                                  A21 A22 A32 A33  
      IA15_( 5 )                                I A

221 

where the equality holds iff A13—Al2A221A23=0. 
   We shall give here elementary proofs of (2) and (5). For this purpose we use 

the following well-known facts in linear algebra : For square matrices A and D, we 
have 

             A B jAHD—CA-1 BI, when A is non-singular 
                                           (6)             C D ID1 I A— BD-1 C I, when D is non-singular. 

Let A=(AilAl2         A) be p. d., where A11 and A22 are square matrices. Then it follows 
              fi.2 1-122 

that A-1, A11.2 and A22,1 are p. d. and 

              (A„ Al211._(A1.2, —,4111.2Al2A221 
                \A2, A22/ \—A221-A21Ati1.:2, A221-4-A221A21An1.2Al2A221 

                                               ( 7 )                                                                    —21.11,412,4221.1 

                                                           7 A221.1 
where Aii.k=A0—AikAIal,Aki.
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   Though the following lemma is well-known (for instance in Lemma 5.1. in 

Kullback  [4]), the following concise analytical proof will be of some interest. 

   LEMMA. Let A and B are p. d. matrices of order N. 

   (i) If x' Ax�_x' Bx for any x, then I Al�-1 Bl. 

   (ii) In addition to the condition in (i), if x',Axo> x'oBx, for some x0, then IAI>IB I. 

   REMARK. This lemma is still valid for Hermite positive definite matrices because 

of lool
„..A,,,} du dv= V2N , where x=u+-N/-1v (u and v are real N-vectors) and V 2N              I AI 

       7rN 

  r(N+1) • 

   The proofs of the inequalities (2) and (5) are based on this lemma, and hence 

they are valid for Hermite positive definite matrices. 

   PROOF. It is easily seen that the conditions of (i) and (ii) yield the following (i)' 

and respectively. 

   (i)' {x j x'Ax<1} c {x I x'Bx� 1}. 

   (ii)' {xIx'Ax-�1} C {xix'Bx�1} and the difference set {xIx'Bx_1}— {xIx'Ax�1} 
has positive Lebesgue measure. Considering the well-known definite integrals 

        VNVN       d
x=-= 
            ixix,Ax51)I A1112BI1/2' 

                 7rN/ 2 
where VN = r(N12+1) is the volume of N-dimensional unit hypersphere, we have 

conclusions. 

   PROOF OF FISCHER'S INEQUALITY (2). It is enough to prove (2) for k=2, because 

we can obtain (2) for any k inductively. The inequality (2) is equivalent to I A22 

-A24i-11 2 IA   124�Al2    21221,sinceAAilAAll I I A22- AnATM12 I and I An I >0. Consider- 
                               /121.22 

ing Lemma (i), (ii) and positive definiteness of ATil and A22- A2lAi-11Al2, we have (2). 

   PROOF OF FAGUET'S INEQUALITY (5). Since 

          A =Al2rn-1(An AnIyA13)                                Ari3a—Lr131,-.32J                 2-1211'122\A21 A22/A23/ 

and 

                    A22 A23 IAIIAA 
                                    A=I22'133-1.32A221A23 I                                      /432 -,1.33 

the inequality (5) is equivalent to 

               A33-A32AgA23-�A33-[A,,Ai(AA11AA1211(An23)(8)                                            1"
P121P122-E1 

where the equality holds iff A13— /4122'4-M23=0. After some calculations we have 

         -1AnAl-ViaAAA_L.(AAAA-1AAAAI\         [A31,1-32J(AA)=,.221-"23Ik'.13 -1.12" .221-"23/1'.11.2(.13 --"12."221."23/ • 
                  .1-121 I-1222 3 

Thus we arrive at (5) by Lemma (i), (ii).
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    Faguet's inequality has a nice version in canonical correlation analysis. Let 
 X'=(Xi, X(2, XD be a random vector with mean vector p'=(pC , itZ2, 13) and covariance 

     P1 P2 P3 

   II 
matrix 1=12111/219:12133                          Let 212)�222)� ••• �22be the squares of canonical cor- 

            131132 /33 
relation coefficients between X1 and X2. Similarly Al23)�2223)� ••• 42'13' are those between 

X1 and (.`,Y,,.2). Since AF(1�- j),) and 27)(1� j_pl) are the roots of the characteristic 
equations 

        2/11—/12/221/211 =0 and 2/11—Efl2T131(122 ff 11(2,) -0 
respectively (c. f. Anderson [11, Ch. 12), it follows that 

                                                      Ill 112 
                   Pl

(1 —2i20)=1/11/1212211211121-122              II              i=1I/111=11111 1 /221 

and 

                                    4/22/23)-1(2'21) 
                  P1f11—[112.-'13_12,322'33/\1311                  (

1-2p3))= 
     1=11/111 

                  III  

                                     22123                         1/
111y 

                                              -32-33 

Thus the inequality 

                          PI (P1                 H (1-2i2))� H (1—P3))( 9 ) 
                i=11=1 

is equivalent to Faguet's inequality (5). 

   SimilarlyHP'2(i2)= 1E1221,1E211and 
         i=11/111 

                   [I12`122/23/21)                       1213(2,32 133)-1(131                  P1 

    Hii;23)=       i=11 /111 

                   =  I /12/2721/21 +(131--/32/221/21)//3312(/31 -132/LT21/20 1  
                                1/111 

therefore Lemma (i), (ii) shows that 

                    P1 P1 

          H H 2P) ,(10) 
                            i=1 i=1 

where the equality holds iffTZ12 - 221T                         _— 13-- 23=0 provided that 112 is the matrix of 

full rank. 
           P1  ) i                                         1/2    We note that ( 11 (1-2,2 )is called the (vector) alienation coefficient between 

                               i=1
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 X1 and X2 (Rozeboom [5]). Since              

12Iii—Ei2Z212721I = 121E21 I 2/—Iiii"fi2E,721E212Y2I 
we have 

                             P1 
9                          EfirTi2E221f2ifill/2 

                                                          i=-1 

and 

          Ai23)=tr(IT1"2[I1 2113]()I72fy23) 1(y21)ET1") 
   i=1323331 

                 ----trfi-i1/2f,,fi-2127212Y2+ tr(271"2"13 .2/V2)(21/22'13.221V2)1. 

Thus we have the inequality 

                    P1P1 
       AP)-(11) 

                            1=1i=1 

where the equality holds if 2'13.2=0. 

   REMARK 1. Courant-Fischer min-max theorem presents the far stronger inequality 
than those of (9), (10) and (11) : 

                Ac2).<223) ,1 <i< pi(12) 

   REMARK 2. The partial canonical correlation coefficients (Rao [4]) between X1 

andX3 w. r. t. X2 are defined as the canonicalcorrelationcoefficientsbetween 
—Ii2E221(X2and(X)                                     - - 32- 221.--2-4-2,• SinceV(Y)                                                                     --- 11.2,V(73) - 133.2 and 
Cov (Y1, 1, -=- 13.2, the squares of the partial canonical correlation coefficients are the 
roots of the characteristic equation 12T                                         — 11.2 X13.2E331.2131.21 =0. Thus the equality 
condition 2718.2=0 on the inequalities (9), (10), (11) and (12) is equivalent to that all 

of the partial correlation coefficients vanish. When the joint distribution of X1, X2 

and X3 is multivariate normal, the condition f13 .2=0 is equivalent to conditional in-
dependence of X1 and X3 w. r. t. X2, because the conditional joint distributionof X1 

and X3 w. r. t. X2 is multivariate normal with covariance matrix (If 11:21E13..2)
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