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Abstract
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intersections with lines from some �xed set O of orientations are empty or connected
 The
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We introduce and study O�halfspaces� which are analogs of standard halfspaces in the

theory of O�convexity� and directed O�halfspaces� which are restricted O�halfspaces
 We

explore some of the basic properties of them and outline their relationships to O�convex sets

and O�connected sets� which are restricted O�convex sets� in two and more dimensions


For O�halfspaces� we prove that
 Every O�halfspace is O�convex� if O has the point�

intersection property� then the number of connected components of an O�halfspace in d di�

mensions is at most �d��� and this bound is attainable� and the closed complement of an

O�halfspace is an O�halfspace if and only if the boundary of the O�halfspace is O�convex
 In

addition� for directed O�halfspaces� we prove that
 Every O�halfspace is O�connected� and

the closed complement of a directed O�halfspace is a directed O�halfspace
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Generalized Halfspaces

in Restricted�Orientation Convexity�

Eugene Fink� Derick Wood�

Abstract

Restricted�orientation convexity �O�convexity� is the study of geometric objects

whose intersections with lines from some �xed set O of orientations are empty or

connected� The notion of O�convexity generalizes standard convexity� as well as several

other types of nontraditional convexity�

We introduce and study O�halfspaces� which are analogs of standard halfspaces in

the theory ofO�convexity� and directed O�halfspaces� which are restricted O�halfspaces�

We explore some of the basic properties of them and outline their relationships to O�

convex sets and O�connected sets� which are restricted O�convex sets� in two and more

dimensions�

For O�halfspaces� we prove that� Every O�halfspace is O�convex� if O has the point�

intersection property� then the number of connected components of an O�halfspace in

d dimensions is at most �d��� and this bound is attainable� an interior�closed set with

an O�convex boundary is an O�halfspace� and the closed complement of an O�halfspace

is an O�halfspace if and only if the boundary of the O�halfspace is O�convex�

In addition� for directed O�halfspaces� we prove that� Every O�halfspace is O�

connected� if O has the point�intersection property� then the intersection of a directed

O�halfspace with every O��at is connected� the boundary of a directed O�halfspace is

O�convex� if O has the point�intersection property� then the boundary of a directed

O�halfspace is O�connected� and the closed complement of a directed O�halfspace is a

directed O�halfspace�

� Introduction

The study of convex sets is a branch of geometry� analysis� and linear algebra ��� �� that
has applications in many practical areas of computer science� including VLSI design� com�
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puter graphics� architectural databases� and geographic databases ��	�
 Many notions of
nontraditional convexity have been studied� such as orthogonal convexity ��� ��� ���� 
nitely
oriented convexity ��� 	�� ���� strong convexity ���� ��� NESW convexity ��� ��� 	��� and link
convexity ��� ��� ���


Rawlins introduced the notion of restricted�orientation convexity� also called O�
convexity� in his doctoral dissertation ���� and demonstrated that this notion generalized
standard convexity and orthogonal convexity
 Rawlins and Wood have studied O�convex
sets and demonstrated that the properties of these sets are similar to the properties of
standard convex sets ���� ���
 Schuierer has continued their exploration and presented an
extensive study of geometrical and computational properties of O�convex sets in his doctoral
thesis ����


Our goal is to investigate nontraditional convexities in multidimensional space
 We gener�
alized strong O�convexity ���� to higher dimensions and explored the properties of strongly
O�convex sets ��� ��
 We then demonstrated that O�convexity can also be extended to multi�
dimensional space �	�
 We introduced O�convex sets and O�connected sets� proved some
of the major properties of them� and showed that their properties are much richer than the
properties of planar O�convex sets
 The notion of multidimensionalO�convexity generalizes
not only planar O�convexity� but also standard multidimensional convexity


We now further develop the theory of O�convexity by introducing and investigating O�
halfspaces and directed O�halfspaces� and describing their relationship to O�convex and
O�connected sets
 We restrict our attention to the exploration of closed sets
 We conjecture
that most of the results hold for nonclosed sets� however� some of our proofs work only for
closed sets


Closed�Set Assumption� We consider only closed geometric objects
 An ob�
ject is closed if� for every convergent sequence of its points� the limit of the
sequence belongs to the object


The paper is organized as follows
 In Section 	� we brie�y describe the notion of O�
convexity in two dimensions and introduce O�halfplanes
 In Section �� we extend the def�
inition of O�convexity to higher dimensions and de
ne O�halfspaces� In particular� we
prove that in d dimensions� an O�halfspace has at most 	d�� connected components and that
this bound is attainable for all d
 In Section �� we introduce directed O�halfspaces that
are O�halfspaces with several special properties
 In Section �� we study the boundaries of
O�halfspaces and present an analog of the boundary�convexity property for standard convex
sets� and� in Section �� we generalize the complementation property for standard halfspaces
to O�halfspaces
 We conclude� in Section �� with some open problems and suggestions for
further work
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Figure �� Ortho�convex sets �a�c� and ortho�halfplanes �d�h�


� O�convexity and O�halfplanes in two dimensions

We begin by reviewing the notions of orthogonal convexity ���� and O�convexity ���� in two
dimensions and de
ning analogs of halfplanes for these two types of convexity
 We then
explore basic properties of these O�convexity halfplanes


We can describe convex sets through their intersections with lines� a set of points is
convex if its intersection with every line is connected
 Note that we consider the empty set
to be connected� this convention simpli
es our de
nitions and results


We de
ne orthogonal convexity by considering the intersections of sets of points with
vertical and horizontal lines
 A closed set is ortho�convex if its intersection with every
vertical and horizontal line is connected
 We give three examples of ortho�convex sets in
Figures ��a���c�
 Note that� unlike standard convex sets� ortho�convex sets may be discon�
nected �see Figure �c�


Standard halfplanes can also be characterized in terms of their intersections with lines


Proposition ��� A set is a halfplane if and only if its intersection with every line is empty�
a ray� or a line�

We de
ne ortho�halfplanes in terms of their intersection with vertical and horizontal lines

A closed set is an ortho�halfplane if its intersection with every vertical and horizontal line
is empty� a ray� or a line
 We give 
ve examples of ortho�halfplanes in Figures ��d���h�
 The
last of these examples demonstrates that ortho�halfplanes may be disconnected
 Note that
the empty set and the whole plane are considered to be ortho�halfplanes
 This convention
also simpli
es some of the results


We now present some basic properties of ortho�halfplanes


Lemma ���

�� Every translation of an ortho�halfplane is an ortho�halfplane�

�� Every standard halfplane is an ortho�halfplane�
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�� Every ortho�halfplane is ortho�convex�

�� An ortho�halfplane is either connected or consists of two connected components�

	� A disconnected set is an ortho�halfplane if and only if each of its components is an
ortho�halfplane and no vertical or horizontal line intersects two components�

Proof�
��� If the intersection of a set with every vertical and horizontal line is empty� a ray� or

a line� then the same holds for every translation of the set

��� The intersection of a standard halfplane with every vertical and horizontal line is

empty� a ray� or a line
 Therefore� every halfplane is an ortho�halfplane

�	� The intersection of an ortho�halfplane with every vertical and horizontal line is con�

nected
 Therefore� every ortho�halfplane is ortho�convex

�
� We prove that every ortho�halfplane P has at most two connected components by

demonstrating that� for every three points p� q� x � P � two of them are in the same com�
ponent
 Since P is an ortho�halfplane� one of the two horizontal rays with endpoint p is
contained in P �we show this ray in Figure 	�
 Similarly� we may choose a horizontal ray
with endpoint q and a horizontal ray with endpoint x contained in P 


We select two of these three rays that point in the same direction
 Without loss of
generality� we assume that the two selected rays are the rays with endpoints p and q
 We
choose a vertical line that intersects the two selected rays and denote the intersection points
by y and z� respectively �see Figure 	�
 The polygonal line �p� y� z� q� is wholly in P � therefore�
p and q are in the same connected component


��� If P is the union of disjoint ortho�halfplanes and no vertical or horizontal line in�
tersects two of these ortho�halfplanes� then the intersection of P with every vertical and
horizontal line is empty� a ray� or a line and� hence� P is an ortho�halfplane


If one of P �s components is not an ortho�halfplane� the intersection of this component
with some vertical or horizontal line is not empty� not a ray� and not a line
 Then� the
intersection of P with this line is not empty� not a ray� and not a line� therefore� P is not an
ortho�halfplane
 Finally� if some vertical or horizontal line intersect two components� then
the intersection of P with this line is disconnected� therefore� P is not an ortho�halfplane
 �

We next describe O�convexity ����� which is a generalization of ortho�convexity and stan�
dard convexity ����� and a corresponding analog of halfplanes


�
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Figure �� Planar O�convex sets �b�d� and O�halfplanes �e�g�


To obtain this generalization� we 
rst introduce the notion of an orientation set
 We
de
ne an orientation set O as a �
nite or in
nite� set of lines through some 
xed point o

An example of a 
nite orientation set is shown in Figure ��a�
 A line parallel to one of the
lines of O is called an O�line
 For example� the dashed lines in Figure � are O�lines
 We
de
ne O�convex sets in terms of their intersections with O�lines


De�nition ��� �O�Convexity� A closed set is O�convex if its intersection with every
O�line is connected�

For the orientation set given in Figure ��a�� the sets in Figures ��b���d� are O�convex
�some O�lines intersecting these sets are shown by dashed lines�


We de
ne an O�halfplanes� in the same way as ortho�halfplanes� A closed set is an O�
halfplane if its intersection with every O�line is empty� a ray� or a line
 We show examples
of O�halfplanes in Figures ��e���g�


Let us recall the properties of ortho�halfplanes given in Lemma 	
	
 We can readily
generalize Properties ��� and �� These properties hold for O�halfplanes and their proofs
are the same as the proofs for ortho�halfplanes
 If the orientation set O contains at least
two distinct lines� then Property � also holds �again� the proof is the same as the one for
ortho�halfplanes�


We next present the intersection property of O�convex sets ����� which generalizes the
observation that every standard convex set is the intersection of halfplanes


Lemma ��	 A connected set is O�convex if and only if it is the intersection of O�halfplanes�

Proof� Suppose that a set P is the intersection of O�halfplanes
 For every O�line l� the
intersection of each O�halfplane with l is connected and� hence� the intersection of P with l
is also connected
 Therefore� P is O�convex


Suppose� conversely� that P is O�convex
 We show that P is the intersection of O�
halfplanes by demonstrating that� for every point p not in P � some O�halfplane contains P
and does not contain p


�
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We draw the two lines through p that support P �see Figure �a�
 If the marked angle
between these lines is less than �� then there is a standard halfplane that contains P and
does not contain p �Figure �b�
 This halfplane is the desired O�halfplane


If the marked angle is greater than or equal to �� we consider the set Q shown by shading
in Figure ��c�
 The boundary of Q consists of the segment of P �s boundary between the
supporting lines and the parts of the supporting lines that extend this segment
 We show
that Q is an O�halfplane


If the intersection of Q with some O�line l is disconnected� then there is an O�line parallel
to l whose intersection with P is disconnected �see Figure �d�� contradicting the assumption
that P is O�convex
 On the other hand� there is no line whose intersection with Q is a point
or segment
 Therefore� the intersection of Q with every O�line is empty� a ray� or a line
 �

If O contains at least three lines� O�halfplanes have some additional basic properties


Lemma ��
 Suppose that the orientation set O contains at least three distinct lines� Then�
if the intersection of an O�halfplane with two parallel O�lines forms two rays� these rays
point in the same direction 
rather than in opposite directions��

Proof� Suppose that the intersection of an O�halfplane P with parallel O�lines l� and l�
forms rays that point in opposite directions �in Figure ��b�� we show these two rays by solid
lines�
 We assume� for convenience� that l� is below l� and the lower ray points to the left


Let l be the element of O parallel to l� and l�� and let m and n be two other elements
of O �see Figure �a�
 We assume that the marked angle between l and m is smaller than
the marked angle between l and n


We choose a point p � l� and draw a line n� through p parallel to n
 We select this
point p in such a way that p is not in P and n� intersects the upper ray �see Figure �b�


�



o o

(a) (b)

Figure �� �a� O�halfplane is directed
 �b� O�halfplane is not directed
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Since n� is an O�line� its intersection with P must be empty� a ray� or a line
 Therefore� the
part of n� above l� �shown by a solid line� is in P 


We now choose a point q � l� and draw a line m� through q parallel to m
 We select q
is such a way that q is not in P and m� intersects the lower ray
 Note that m� intersects
n� above l�� that is� m� intersects the part of n� contained in P 
 Since m� is an O�line� its
intersection with P is connected� therefore� the segment of m� between l� and n� is in P �
contradicting the assumption that q is not in P 
 �

We illustrate the directed�ray property of O�halfplanes in Figure ��a�� where the in�
tersection of an O�halfplane with several parallel O�lines is shown by dashed rays
 The
O�halfplanes that satisfy this directed�ray property are called directed O�halfplanes�

IfO contains two lines� an O�halfplane may not be directed
 For example� theO�halfplane
in Figure ��b� is not directed� since the dashed O�rays point in opposite directions


In the following result� we provide two basic properties of directed O�halfplanes


Lemma ��� Suppose that O contains at least two distinct lines� Then�

�� Every directed O�halfplane is connected�

�� The boundary of every directed O�halfplane is connected and O�convex�

Proof�
���We show that every two points p and q of a directed O�halfplane P can be connected

by a polygonal line in P 
 We choose two parallel O�rays� with endpoints p and q� that are
contained in P and point in the same direction �see Figure �a�
 We next choose an O�line
that intersects these two rays and denote the intersection points by x and y� respectively

The polygonal line �p� x� y� q� is wholly in P 


��� Suppose that the boundary of a directed O�halfplane P is not connected
 Since P
is connected� the complement of P is disconnected and we may choose points p and q in

�



di�erent connected components of P �s complement
 We next choose two parallel O�rays�
with endpoints p and q� that do not intersect P and point in the same direction �we reuse
Figure ��a� to illustrate this construction�
 Finally� we choose an O�line l that intersects
these two rays and denote the intersection points by x and y� respectively


The segment of l between x and y does not intersect P � if some point z of this segment
were in P � then one of the two contained�in�l rays with endpoint z would be in P � contra�
dicting the assumption that x and y are not in P 
 Therefore� the polygonal line �p� x� y� q�
is wholly in P �s complement� contradicting the assumption that p and q are in di�erent
components of P �s complement


Now suppose that the boundary of P is not O�convex
 Then� the intersection of some
O�line l with P �s boundary is disconnected and we may select points p� q � l that are in the
boundary and a point x � l between them that is not in the boundary �see Figure �b�
 We
assume� for convenience� that p is to the left of x


Since the intersection of P with l is connected� x is in the interior of P and we can choose
a circleBx � P centered at x
 Either all left�pointed or all right�pointed rays with endpoints
in Bx are contained in P 
 We assume that the left�pointed rays �shown by dotted lines� are
in P 
 Then� some circle Bp centered at p is wholly contained in P � therefore� p is in P �s
interior� which yields a contradiction
 �

� O�convexity and O�halfspaces in higher dimensions

We extend the notion of O�convexity and O�halfspaces to d�dimensional space Rd
 We
assume that the space Rd is 
xed� however� the results are independent of the particular
value of d
 We introduce a set O of hyperplanes through a 
xed point o� show how this set
gives rise to O�lines� and de
ne O�halfspaces in terms of their intersections with O�lines

We then explore basic properties of O�halfspaces


A hyperplane in d dimensions is a subset of Rd that is a �d����dimensional space
 For
example� hyperplanes in three dimensions are the usual planes
 Analytically� we can de
ne a
hyperplane as a set of points satisfying a linear equation� a��a�x��a�x�� � � ��adxd � �� in
Cartesian coordinates
 Two hyperplanes are parallel if they are translations of each other

Analytically� two hyperplanes are parallel if their equations di�er only by the value of a�


De�nition 	�� �Orientation set and O�hyperplanes� An orientation set O is a set
of hyperplanes through a 
xed point o� A hyperplane parallel to one of the elements of O is
an O�hyperplane�

Note that every translation of an O�hyperplane is an O�hyperplane and a particular choice
of the point o is not important
 In Figure �� we show examples of 
nite orientation sets in
three dimensions
 The set in Figure ��a� contains three mutually orthogonal planes� we call
it an orthogonal�orientation set�

�
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Figure �� Examples of 
nite orientation sets


O�lines in Rd are formed by the intersections of O�hyperplanes
 In other words� a line
is an O�line if it is the intersection of several O�hyperplanes
 Note that every translation of
an O�line is an O�line


Since every O�hyperplane is parallel to one of the hyperplanes of the orientation set O�
every O�line is parallel to some line formed by the intersection of several elements of O
 For
example� the intersections of the four planes of the orientation set given in Figure ��b� form
six di�erent lines through o and every O�line is parallel to one of these six lines


Lemma 	�� If the orientation set O is nonempty and the intersection of the elements of O
is the point o 
rather than a superset of o�� then�

�� There is at least one O�line�

�� For every line� there is an O�hyperplane that intersects it and does not contain it�

Proof�
��� We consider a minimal set of O�hyperplanes whose intersection forms o
 We denote

these hyperplanes by H��H�� � � � �Hn
 Then� H� � � � � �Hn is a �at �a�ne variety� di�erent
from the point o and the intersection of this �at with H� is o� which may happen only if
H� � � � � � Hn is a line
 This line is an O�line


���We consider a line l and assume� without loss of generality� that this line is through o

The intersection of all elements of O is o� therefore� for some O�hyperplane H � O� the line l
is not contained in H
 �

When O is nonempty and the intersection of the elements of O is the point o� we say that
O has the point�intersection property� For example� the orientation sets in Figures ��a�
and ��b� have this property� whereas the set in Figure ��c� does not
 Some of our results
hold only for orientation sets with the point�intersection property and we use Lemma �
� to
prove these results


If the orientation setO does not have the point�intersection property� then the intersection
of the elements of O is either a line or a higher�dimensional �at �a�ne variety�
 If this
intersection is a line �see Figure �c�� then there is exactly one O�line through o and all other

�



(f) (h) (i)

(d) (e)(c)(b)(a)

o

(g)

Figure �� O�convex sets �b�e� and O�halfspaces �f�i� in three dimensions


O�lines are parallel to this O�line
 If the intersection is neither a point nor a line� then there
are no O�lines at all


We de
ne O�convex sets in higher dimensions in the same way as in two dimensions� a
closed set in Rd is O�convex if its intersection with every O�line is connected
 For exam�
ple� the sets in Figures ��b���e� are O�convex for the orthogonal�orientation set shown in
Figure ��a�
 The notion of O�halfspaces is the higher�dimensional analog of O�halfplanes


De�nition 	�� �O�halfspaces� A closed set in Rd is an O�halfspace if its intersection
with every O�line is empty� a ray� or a line�

Figures ��f���i� provide examples of O�halfspaces for the orthogonal�orientation set
 We use
dashed lines to show in
nite planar regions in the boundaries of these O�halfspaces
 Note
that disconnected O�halfspaces in higher dimensions may have more than two components

For example� the O�halfspace in Figure ��i� consists of three components� located around
the dotted cube


We next present some simple properties of O�halfspaces and compare them with prop�
erties of O�halfplanes
 We begin by recalling the properties of ortho�halfplanes given in
Lemma 	
	
 Properties ��� hold for O�halfspaces and their proofs are the same as the proofs
for ortho�halfplanes
 The most important of them is Property �� every O�halfspace is O�
convex� which is a generalization of the convexity property of standard halfspaces
 In the
next result� we give necessary and su�cient conditions under which an O�convex set is an
O�halfspace


Lemma 	�� A set P is an O�halfspace if and only if the following two conditions hold�

�� P is an O�convex set�

��



�� For every point p in P and every O�line l� one of the two parallel�to�l rays with endpoint
p is wholly contained in P �

Proof� Clearly� Conditions � and 	 hold for every O�halfspace
 Suppose� conversely� that
P satis
es the two conditions and let us show that the intersection of P with every O�line
is empty� a ray� or a line
 Since P is O�convex �Condition ��� the intersection of P with
an O�line is empty� a point� a segment� a ray� or a line
 By Condition 	� the intersection is
neither a point nor a segment� therefore� it is empty� a ray� or a line
 �

We next generalize Properties � and � of O�halfplanes to O�halfspaces
 We show that
every component of a disconnected O�halfspace is an O�halfspace and that� if the orientation
set has the point�intersection property� then the number of components of an O�halfspace is
bounded


Theorem 	�	

�� A disconnected set is an O�halfspace if and only if every connected component of the
set is an O�halfspace and no O�line intersects two components�

�� In d dimensions� if the orientation set O has the point�intersection property� then the
number of connected components of an O�halfspace is at most 	d���

Proof�
��� If P is the union of O�halfspaces and no O�line intersects two of them� then� clearly�

P is an O�halfspace
 If some connected component of P is not an O�halfspace� then the
intersection of this component with some O�line is not empty� not a ray� and not a line�
therefore� the intersection of P with this O�line is not empty� not a ray� and not a line

Finally� if some O�line intersects two components� the intersection of P with this line is
disconnected


���We show that� for every �	d����� points of an O�halfspace P � two of these points are
in the same connected component
 We use induction on the dimension d
 We have already
proved this result for O�halfplanes� which provides us with an induction base


The induction step is based on Lemma �
�� which we will present in Section �� the
intersection of an O�halfspace P with an O�hyperplane H is an O�halfspace in the �d � ���
dimensional space H
 That is� the intersection of P �H with every O�line contained in H is
empty� a ray� or a line


We denote the �	d�� � �� points in P by p�� p�� � � � � p�d�� �in Figure ��� we illustrate the
proof for d � ��
 By Lemma �
�� since O has the point�intersection property� we may choose
some O�line l and an O�hyperplane H that intersects l and does not contain it
 For every
point pk� one of the two parallel�to�l rays with endpoint pk is contained in P 
 Thus� we get
�	d�� ��� parallel rays in P � and at least �	d�� ��� of these rays point in the same direction

We assume that these �	d����� same�direction rays correspond to the points p�� p�� � � � � p�d��
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Figure ��� O�halfspace with 	d�� connected components in �a� two and �b� three dimensions


We select an O�plane H�� parallel to H� that intersects these �	d�� � �� rays and denote the
intersection points by q�� q�� � � � � q�d��� respectively


P � H� �shaded in Figure ��� is an O�halfspace in the �d � ���dimensional space H

Therefore� by the induction hypothesis� some points qk and qm belong to the same connected
component of P �H�� which implies that pk and pm belong to the same component of P 
 �

If the orientation setO does not have the point�intersection property� then anO�halfspace
may have in
nitely many components
 For example� if there is only one O�line through o�
then any collection of lines parallel to this O�line forms an O�halfspace
 Such an O�halfspace�
formed by the union of parallel lines� may have in
nitely many components


We next demonstrate that the bound on the number of components given in Theorem �
�
is tight


Example� An O�halfspace that has 	d�� connected components�
We consider the orthogonal�orientation set in d dimensions and construct an O�halfspace P
whose components are rectangular polyhedral angles �quadrants�
 Note the orthogonal�
orientation set has the point�intersection property
 In Figure ��� we illustrate the construc�
tion for two and three dimensions


We choose a cube �shown by dotted lines� whose facets are parallel to elements of O

The cube has 	d vertices� we select 	d�� vertices no two of which are adjacent
 We de
ne P
as the union of the 	d�� polyhedral angles vertical to the selected angles of the cube


Wemay describe P analytically� usingO�lines through the cube�s center �shown by dashed

�	
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Figure �	� Every O�halfspace containing the O�convex set P also contains the point p �� P 


lines in Figure ��a� as coordinate axes and taking one of the cube�s vertices for ��� �� � � � � ��

The equation for P is as follows�

jx�j� jx�j� � � � � jxdj � � and x� � x� � � � � � xd � ��

To show that P is indeed an O�halfspace� we observe that each O�line either intersects
one component� in which case the intersection is a ray� or does not intersect any component
�

We have shown� in Lemma 	
�� that� in two dimensions� every connected O�convex set is
formed by the intersection of O�halfplanes
 In higher dimensions� the analog of this result
does not hold


Example� A connected O�convex set that is not the intersection of O�halfspaces�
We consider the orthogonal�orientation set O and the set P shown in Figure �	�b�
 This set
is a horizontal disk on eight vertical� equally spaced �pillars
� The pillars are rays located
in such a way that no O�line intersects two of them
 Clearly� P is O�convex
 We readily see
that every O�halfspace containing P also contains the point p �� P � located under the center
of the disk
 Thus� the intersection of all O�halfspaces containing P is not P 
 �

� Directed O�halfspaces

We now consider the O�halfspaces that have the directed�ray property as described in Sec�
tion 	 and establish their special properties


De�nition 
�� �Directed O�halfspaces� An O�halfspace is a directed O�halfspace if�
for every two parallel O�lines whose intersection with the O�halfspace forms rays� these rays
point in the same direction�

For example� the O�halfspaces in Figures ���b� and ���c� are directed for the orthogonal�
orientation set shown in Figure ���a�
 On the other hand� the O�halfspace in Figure ���d�
is not directed� because the two dotted rays� formed by the intersection of this O�halfspace
with vertical O�lines� point in opposite directions


The next result immediately follows from the de
nition of directed O�halfspaces


��
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Figure ��� O�halfspaces �b� and �c� are directed
 O�halfspace �d� is not directed


Lemma 
��

�� Every translation of a directed O�halfspace is a directed O�halfspace�

�� Every standard halfspace is a directed O�halfspace�

We next introduce the notion of O�
ats� which are formed by the intersections of O�
hyperplanes� and demonstrate that� for the orientation set with the point�intersection prop�
erty� the intersection of a directed O�halfspace with every O��at is connected
 This property
of directed O�halfspaces is one of the main tools in our exploration


A 
at� also known as an a�ne variety� is a subset ofRd that is itself a lower�dimensional
space
 For example� points� lines� two�dimensional planes� and hyperplanes are �ats
 The
whole space Rd is also a �at
 Analytically� a k�dimensional �at is represented in Cartesian
coordinates as a system of �d � k� independent linear equations
 We will use the following
properties of �ats


Proposition 
�� �Properties of 
ats�

�� The intersection of a collection of �ats is either empty or a �at�

�� The intersection of a k�dimensional �at � and a hyperplane is empty� �� or a �k � ���
dimensional �at�

We now de
ne O��ats


De�nition 
�� �O�
ats� A �at formed by the intersection of several O�hyperplanes in an
O�
at� O�hyperplanes themselves and the whole space Rd are also O��ats�

Since every O�hyperplane is a translation of some element of O� every O��at is a trans�
lation of some �at formed by the intersection of several elements of O
 For example� the
orthogonal�orientation set in three dimensions �Figure �a� gives rise to the following O��ats
through o� the whole space R�� the three mutually orthogonal O�planes� the three O�lines
formed by the intersections of these planes� and the point o


The next two properties of O��ats readily follow from the de
nition


��
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Figure ��� Lower�dimensional orientation sets


Lemma 
�	

�� Every translation of an O��at is an O��at�

�� The intersection of a collection of O��ats is either empty or an O��at�

We now describe lower�dimensional orientation sets contained in O��ats
 We consider an
O��at � and denote the dimension of � by k
 We treat � as an independent k�dimensional
space and de
ne the orientation set O� and O���ats in this lower�dimensional space


AnO��
at is anO��at contained in �
 The �k����dimensionalO���ats ��O��hyperplanes��
through some 
xed point o� form the lower�dimensional orientation set O�


For example� consider the orthogonal�orientation set in Figure ���a�
 The O�plane �
contains vertical and horizontal O�lines
 Therefore� the lower�dimensional orientation set O�

contains the vertical and horizontal line through o�
 In Figure ���b�� we show another
example of a lower�dimensional orientation set


We demonstrate that O���ats have all necessary properties of O��ats and that� if O has
the point�intersection property� then O� also has this property


Lemma 
�
 Let � be an O��at and k be the dimension of ��

�� Every translation of an O���at within the space � is an O���at�

�� A set H � � is an O���at if and only if it is either � itself or the intersection of several
�k � ���dimensional O���ats�

�� If the orientation set O has the point�intersection property� then O� also has the point�
intersection property� that is� the orientation set O� is nonempty and

T
O� � o��

Proof�
��� Every O���at is an O��at� therefore� a translation of an O���at is also an O��at

�Lemma �
��
 If the translation is in �� then it is an O���at

��� SinceO���ats are O��ats� the intersection of �k����dimensionalO���ats is an O��at


This O��at is in � and� hence� it is an O���at


��
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Figure ��� For �a� any orientation set� the intersection of �b� an O�halfspace with �c� an
O��at � is �d� an O��halfspace


We next show� conversely� that every O���at H distinct from � is the intersection of
�k� ���dimensional O���ats
 Since H is an O��at� it is formed by the intersection of several
O�hyperplanes� say H��H�� � � � �Hn
 Let H��H�� � � � �Hk be those hyperplanes among them
that do not contain �
 Then� H� � ��H� � �� � � � �Hk � � are �k � ���dimensional �ats �see
Proposition �
	�
 These �ats are O���ats and their intersection forms H


�	�We assume� without loss of generality� that o� � o
 If the intersection of the elements
of O is the point o� then� for some O�hyperplane H through o� we have � �� H
 Then� H� �
is a �k � ���dimensional O���at� which implies that O� is nonempty


We next show that
T
O� � o
 Let O� be the set of O�hyperplanes through o that do not

contain � and fH � � j H � O�g be the set of their intersections with �
 Then� all elements
of the latter set are �k � ���dimensional O��planes through o and their intersection is o
 We
conclude that the intersection of all �k � ���dimensional O��planes through o is exactly o�
that is�

T
O� � o
 �

The orientation setO� gives rise to lower�dimensionalO��halfspaces in the space �
 These
lower�dimensional O��halfspaces are de
ned in the same way as O�halfspaces� in terms of
their intersection with O��lines


The following result� illustrated in Figure ��� will enable us to use induction on the
dimension d in proofs about O�halfspaces


Lemma 
�� The intersection of a 
directed� O�halfspace with an O��at � is a 
directed�
O��halfspace�

Proof� Suppose that P is an O�halfspace
 For everyO�line l � �� we have l��P��� � l�P �
which implies that the intersection of l with P � � is empty� a ray� or a line
 Thus� P � �
is an O��halfspace
 If P is a directed O�halfspace� then the rays formed by the intersection
of P � � with parallel O�lines in � always point in the same direction and� hence� P � � is a
directed O��halfspace
 �

We use Lemma �
� to prove that� for orientation sets with the point�intersection property�
the intersection of a directed O�halfspace with an O��at is always connected


��
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Figure ��� Proof of Theorem �
�


Theorem 
�� If the orientation set O has the point�intersection property� then the inter�
section of a directed O�halfspace with every O��at is connected�

Proof� We 
rst prove� by induction on the dimension d� that all directed O�halfspaces are
connected
 By Lemma 	
�� directed O�halfplanes are connected� which provides us with an
induction base


We consider a directed O�halfspace P in d dimensions and show that every two points
p� q � P are in the same connected component
 By Lemma �
�� since O has the point�
intersection property� we may select some O�line l and an O�hyperplane H that intersects
l and does not contain it �see Figure ���
 Since P is a directed O�halfspace� there are two
parallel�to�l rays� with endpoints p and q� that are contained in P and point in the same
direction


We select an O�plane H�� parallel to H� that intersects the two rays with endpoints p
and q and denote the intersection points by x and y� respectively
 By Lemma �
�� P �H� is
a directed OH� �halfspace� that is� P �H� is a �d � ���dimensional directed O�halfspace
 By
Lemma �
�� the lower�dimensional orientation set OH� has the point�intersection property

Therefore� by the induction hypothesis� P �H� is connected
 We conclude that x and y are
in the same component of P � which implies that p and q are also in the same component


Finally� we note that the intersection of a directed O�halfspace with every O��at � is
a directed O��halfspace �Lemma �
�� and the lower�dimensional orientation set O� has the
point�intersection property �Lemma �
��
 Therefore� the intersection of P with � is con�
nected
 �

Theorem �
� cannot be extended to orientation sets that do not have the point�intersection
property
 For example� if there is only one O�line through o� then the union of several lines
parallel to this O�line is a disconnected directed O�halfspace


The property of directed O�halfspaces stated in Theorem �
� is called O�connectedness


De�nition 
�	 �O�Connectedness� A closed set is O�connected if its intersection with
every O��at is connected�

Note that O�connected sets are connected� since the whole space Rd is an O��at

Directed O�halfspaces are not the only O�connected sets
 For example� the set in Fig�

ure ���b� is O�connected� even though it is not an O�halfspace
 In fact� every standard
convex set is O�connected
 As another example� the set in Figure ���c� is O�connected for

��
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Figure ��� For the orthogonal�orientation set �a�� the sets �b� and �c� are O�connected�
whereas the sets �d�f� are not O�connected


the orthogonal�orientation set in Figure ���a�
 On the other hand� the set in Figure ���d�
is not O�connected because it is disconnected� the set in Figure ���e� is not O�connected
because its intersection with the dashed O�line is disconnected� and the set in Figure ���f�
is not O�connected because its intersection with the dashed O�plane is disconnected
 We
have studied O�connected sets as a part of our exploration of O�convexity �	�


� Boundary convexity

We explore the properties of the boundaries of O�halfspaces and present analogs of the
boundary�convexity property for standard halfspaces �see Section ��


We begin by showing that� if an orientation set has the point�intersection property� then
all points in the boundary of an O�halfspace are �in
nitely close� to its interior� that is� an
O�halfspace is the closure of its interior


Lemma ��� Let P be an O�halfspace and Pint be the interior of P � If the orientation set O
has the point�intersection property� then Closure�Pint� � P �

Proof� We show that Closure�Pint� � P by demonstrating that� for every point p in the
boundary of P and every distance �� there is an interior point within distance � of p
 We use
induction on the dimension d


By Lemma �
�� we may select some O�line l and an O�hyperplane H that intersects l
and does not contain it
 Let H� be the O�hyperplane through p parallel to H� let Q be the
intersection of P and H�� and let Qint be the interior of Q in the �d����dimensional space H�

�rather than in Rd�
 If d � 	� the set Q is a lower�dimensional O�halfspace �Lemma �
��
and� by the induction hypothesis� Closure�Qint� � Q
 On the other hand� if d � 	� then Q
is empty� a ray� or a line� therefore� Closure�Qint� � Q� which establishes an induction base


We select an interior point of Q within distance ��	 of p and a �d � ���dimensional ball
B � Q centered at this point such that the radius of B is at most ��	 �see Figure ��a�


We assume that the line l is vertical and we divide the rays parallel to l into �upward�
and �downward� rays
 For every point q � B� the upward or downward ray with endpoint q
is contained in P 
 Let U be the set of all points of B such that the upward rays from them

��
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Figure ��� Proof of Lemma �
�


are in P and D be the set of all points of B such that the downward rays from them are
in P 


We consider two cases
 First� suppose that the interior of U in the �d � ���dimensional
space H� is nonempty� which means that there is a �d � ���dimensional ball B� � U �see
Figure ��a�
 The union of the upward rays from all points of B� forms a �cylinder�� wholly
contained in P 
 Some of the interior points of this cylinder are within distance � of p
 Clearly�
the interior of the cylinder is in the interior of P � therefore� some of P �s interior points are
within � of p


Now suppose that the interior of U is empty
 Then� every �d����dimensional ball B� � B
contains a point of the set D� which implies that Closure�D� � B
 Let H�� be a plane parallel
to H� and located below H� �see Figure ��b�
 The intersection of the downward rays from all
points of D with H�� forms a translation of D
 This translation of D is in P and its closure
is a �d � ���dimensional ball� say B��� which is a translation of B


By the closed�set assumption �see Section ��� P is closed� therefore� B�� is in P 
 The
union of the vertical segments joining B and B�� forms a cylinder� wholly contained in P 

The interior of this cylinder is in P �s interior and some of the cylinder�s interior points are
within distance � of p
 �

We call sets satisfying the property stated in Lemma �
� interior�closed sets� A set P
is interior�closed if Closure�Pint� � P 


Our purpose in the rest of the section is to present O�convexity analogs of the following
boundary�convexity characterization of standard halfspaces


Proposition ��� An interior�closed set is a halfspace if and only if its boundary is a nonempty
convex set�

We 
rst generalize the �if� part of this boundary�convexity characterization


Lemma ��	 An interior�closed set with an O�convex boundary is an O�halfspace�

Proof� Let P be an interior�closed set with an O�convex boundary
 We show that the
intersection of P with every O�line l is empty� a ray� or a line
 The intersection of l with P �s
boundary may be a line� a ray� a segment� a point� or empty
 If this intersection is a line�
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Figure ��� The eight cases considered in the proof of Lemma �
�
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Figure 	�� An O�halfplane whose boundary is not O�convex


then P � l is also a line �see Figure ��a�
 If the intersection of l with P �s boundary is a ray�
then P � l is a ray or a line �Figures ��b and ��c�
 If l does not intersect P �s boundary� then
P � l is empty or a line �Figures ��d and ��e�


Finally� suppose that the intersection of l with P �s boundary is a segment or point
 We
show� by contradiction� that� in this case� P � l is a line or ray �Figures ��f and ��g�
 If
not� then P � l is a segment or point �see Figure ��h�
 We select points p� q � l that are
outside of P � on di�erent sides of the intersection
 We consider equal�sized balls� Bp and Bq�
that are centered at these points and do not intersect P 
 We next select a point x in the
intersection of l and P �s boundary and consider the ball Bx� centered at x� of the same size
as Bp and Bq
 Since P is interior�closed� we may select a point y � Bx that is in the interior
of P 
 We consider the line ly through y parallel to l
 This line intersects the balls Bp and
Bq� which are outside of P 
 Since x is in the interior of P � we conclude that the intersection
of the O�line ly with the boundary of P is not connected� contradicting the O�convexity of
P �s boundary
 �

The converse of Lemma �
� does not hold� the boundary of an O�halfspace may not
be O�convex
 In Figure 	�� we show an O�halfplane whose boundary is not O�convex� the
intersection of the boundary with the dashed O�line is disconnected
 We now present a
necessary and su�cient characterization of O�halfspaces in terms of their boundary


Theorem ��
 �Boundary of O�halfspaces� An interior�closed set P is an O�halfspace
if and only if� for every O�line l� one of the following two conditions holds�

�� The intersection of l with the boundary of P is connected�

�� The intersection of l with the boundary of P consists of two disconnected rays and the
segment of l between these rays is in P �
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Figure 	�� Proof of Theorem �
�


Proof� Suppose that the two conditions hold
 We demonstrated in the proof of Lemma �
�
that� if the intersection of l with the boundary of P is connected �Condition ��� then P � l is
empty� a ray� or a line
 On the other hand� if the intersection of l with P �s boundary satis
es
Condition 	� then P � l is a line
 We conclude that the intersection of P with every O�line
is empty� a ray� or a line� thus� P is an O�halfspace


To prove the converse� suppose that P is an O�halfspace and the intersection of an O�
line l with the boundary of P is not connected
 We show that this intersection satis
es
Condition 	


Since the boundary is closed� we can select points p� q � l in P �s boundary such that all
points of l between p and q are not in the boundary
 Since the intersection of l with P is
connected� the segment of l between p and q is in P 


We next show� by contradiction� that all points of l outside of this segment are in P �s
boundary
 Suppose that some point x is not in P �s boundary
 Without loss of generality�
we assume that x is to the left of p and that q is to the right of p �see Figure 	�a�


If x is an interior point of P � then there is a ball Bx � P centered at x �Figure 	�a�

Let y � l be some point between p and q� By � P be a ball centered at y� and Bp be a ball�
centered at p� that is no larger than Bx and By
 Since p is in the boundary of P � we may
choose a point z � Bp that is not in P 
 We consider the O�line lz through z parallel to l

This line intersects the balls Bx and By� which are in P 
 Since z is not in P � the intersection
of lz with P is disconnected� contradicting the assumption that P is an O�halfspace


If x is an exterior point of P � we may select a ball Bx centered at x that does not in�
tersect P �see Figure 	�b�
 Let y � l be some point between p and q� By � P be a ball
centered at y� and Bq be a ball� centered at q� that is no larger than Bx and By
 Since q is
in the boundary of P � we may select a point z � Bq that is not in P 
 We again consider
the O�line lz through z parallel to l
 This line intersects the balls Bx and By� which implies
that the intersection of lz with P is not empty� not a ray� and not a line� contradicting the
assumption that P is an O�halfspace
 �

Observe that� if the intersection of P �s boundary with a line l consists of two rays and
the segment of the line between these rays is in P � then l is wholly contained in P 
 We use
this observation to simplify Condition 	 in Theorem �
�


Corollary ��� An interior�closed set P is an O�halfspace if and only if� for every O�line l�
one of the following two conditions holds�

	�
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Figure 		� An O�halfspace that is not directed� even though its boundary is O�connected


�� The intersection of l with the boundary of P is connected�

�� l is wholly contained in P �

Proof� We immediately conclude from Theorem �
� that� if P is an O�halfspace� then the
two conditions hold
 Suppose� conversely� that these conditions hold
 If the intersection of l
with P �s boundary is connected �Condition ��� then P � l is empty� a ray� or a line �see the
proof of Lemma �
��
 If l is contained in P �Condition 	�� then P � l is a line
 Therefore� P
is an O�halfspace
 �

We have shown in Lemma 	
� that the boundary of a directed O�halfplane is always
O�convex
 We now observe that the proof of Lemma 	
� carries over to higher dimensions�
which gives us the following property of directed O�halfspaces


Lemma ��� The boundary of a directed O�halfspace is O�convex�

If the orientation set has the point�intersection property� then the boundary of a directed
O�halfspace is O�connected� which is a stronger property
 We will prove this result in Sec�
tion �� using properties of the complement of a directed O�halfspace
 The converse of this
result does not hold� as we demonstrate in the following example


Example� An O�halfspace� with an O�connected boundary� that is not directed�
We show such an O�halfspace in Figure 		�b�
 This O�halfspace consists of two rectangular
polyhedral angles �quadrants�� which touch each other along one of their faces
 The bound�
ary of the O�halfspace is O�connected for the orthogonal�orientation set in Figure 		�a�

The O�halfspace� however� is not directed� since the dotted rays �Figure 		c�� formed by the
intersection of this O�halfspace with vertical O�lines� point in opposite directions
 �

� Complementation

We have observed in Section � that the closure of the complement of a standard halfspace
is a halfspace
 We now generalize this result to O�halfspaces


We call the closure of the complement of a set the closed complement� In general� the
closed complement of an O�halfspace may not be an O�halfspace
 For example� the closed
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Figure 	�� For �a� the orthogonal orientation set� the set �b� is an O�halfspace� whereas �c�
its closed complement is not an O�halfplane
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complement of the O�halfplane in Figure 	��b� is not an O�halfplane� since its intersection
with the dashed O�line �Figure 	�c� is disconnected
 We state a necessary and su�cient
condition under which the closed complement of an O�halfspace is an O�halfspace


Theorem ��� �Complements of O�halfspaces� The closed complement of an O�halfspace
P is an O�halfspace if and only if the boundary of P is O�convex�

Proof� We denote the closed complement of P by Q
 Note that Q is interior�closed and the
boundary of Q is the same as the boundary of P 
 If the boundary of P is O�convex� then Q
is an interior�closed set with an O�convex boundary� which implies that Q is an O�halfspace
�Lemma �
��


Suppose� conversely� that Q is an O�halfspace
 We show� by contradiction� that the
boundary of P is O�convex
 If the boundary is not O�convex� then there are points p� x�
and q on some O�line l� such that p and q are in the boundary� whereas x� located between
p and q� is not in the boundary �see Figure 	�a�
 Note that p and q belong both to P and
to Q� whereas x is either in P �s interior or in Q�s interior
 If x is in P � then the intersection
of P with the O�line l is disconnected and� hence� P is not an O�halfspace
 Similarly� if x is
in Q� then Q is not an O�halfspace
 �

We next generalize the complementation property of halfspaces to directedO�halfspaces


Theorem ��� �Complements of directed O�halfspaces� The closed complement of a
directed O�halfspace is a directed O�halfspace�

Proof� The boundary of a directed O�halfspace P is O�convex �Lemma �
��
 Therefore�
by Theorem �
�� the closed complement of P is an O�halfspace


	�



We show� by contradiction� that the closed complement of P is directed
 Suppose that
the intersection of the closed complement with two parallelO�lines� l� and l�� forms rays that
point in opposite directions
 We denote the endpoints of these rays by p and q� respectively

In Figure 	��b�� we show the rays by solid lines
 Note that p and q are in the boundary of P
and the dashed parts of the lines are in the interior of P 


We select a point in the dashed part of l� and a ball B � P centered at this point
 Let
Bp be the same�sized ball centered at p
 Since p is in the boundary of P � we may select
a point x � Bp that is not in P 
 We consider the O�line lx through x parallel to l�
 The
intersection of lx with P is empty� a ray� or a line
 Since x is not in P and� on the other
hand� lx intersects the ball B � P � we conclude that the intersection of lx with P is a ray
pointing �to the right
�

Using a similar construction with l�� we get an O�line whose intersection with P is a ray
pointing �to the left� �see Figure 	�b�� which means that the O�halfspace P is not directed�
giving a contradiction
 �

We use the complementation property of directed O�halfspaces to demonstrate that� for
orientation sets with the point�intersection property� the boundary of a directed O�halfspace
is O�connected


Theorem ��	 �Boundaries of directed O�halfspaces� If the orientation set O has the
point�intersection property� then the boundary of every directed O�halfspace is O�connected�

Proof� To demonstrate that the boundary of a directed O�halfspace P is O�connected� we

rst show that the boundary is connected and then use this result to demonstrate that the
intersection of the boundary with every O��at � is also connected


We establish the connectedness of P �s boundary by contradiction
 Since the orientation
set O has the point�intersection property� P is connected �Theorem �
��
 Therefore� if
the boundary of P is disconnected� then the closed complement of P is also disconnected

On the other hand� the closed complement of P is a directed O�halfspace �Theorem �
	��
contradicting the connectedness of directed O�halfspaces


We next show that the intersection of P �s boundary� denoted by Bdry�P �� with every
O��at � is connected
 Let Q be the intersection of P with � and Bdry�Q� be the boundary of
Q in the lower�dimensional space � �rather than in the whole space Rd�
 Clearly� Bdry�Q� �
Bdry�P � � �
 The set Q is a directed O��halfspace �Lemma �
�� and the orientation set O�

has the point�intersection property �Lemma �
��
 Therefore� by the 
rst part of the proof�
Bdry�Q� is connected


Suppose that Bdry�P � � � is not connected
 Then� Bdry�P � � � contains a component
disconnected from the boundary of Q �see Figure 	�� where this component is shown by the
shaded region�
 This component is contained in Q� therefore� it is surrounded in the �at �
by interior points of P �the interior points are shown by the dashed region in Figure 	��


We now consider the intersection of the closed complement of P with �
 This intersection
contains Bdry�Q� and the component of the Bdry�P � � � disconnected from Bdry�Q�
 The

	�



Bdry(Q) η

Figure 	�� Proof of Theorem �
�


intersection does not contain any interior points of P 
 Therefore� the intersection of the
closed complement of P with � is disconnected
 On the other hand� the closed complement
of P is a directedO�halfspace �Theorem �
	�� which implies that the intersection of the closed
complement of P with the O��at � is connected �Theorem �
��� yielding a contradiction
 �

� Concluding remarks

We investigatedO�halfspaces and demonstrated that the properties ofO�halfspaces are some�
what similar to those of standard halfspaces
 In de
ningO�halfspaces� we lose connectedness�
therefore� we introduced directed O�halfspaces� which are always connected


We established many basic properties ofO�halfspaces and directedO�halfspaces� however�
we are unable to prove the following two appealing� and tantalizing� conjectures� which we
leave as open problems
 An O�connected set is the intersection of the directed O�halfspaces
that contain it
 A connected O�halfspace is the intersection of the directed O�halfspaces
that contain it


The work presented here extends our previous studies of strong O�convex sets� O�convex
sets� and O�connected sets ��� 	�
 We plan to further develop the theory of O�convexity and
also study the computational properties of O�convex sets and O�halfspaces
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