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Generalized Hamilton–Jacobi–Bellman Formulation
-Based Neural Network Control of Affine

Nonlinear Discrete-Time Systems
Zheng Chen, Student Member, IEEE, and Sarangapani Jagannathan, Senior Member, IEEE

Abstract—In this paper, we consider the use of nonlinear net-
works towards obtaining nearly optimal solutions to the control
of nonlinear discrete-time (DT) systems. The method is based on
least squares successive approximation solution of the generalized
Hamilton–Jacobi–Bellman (GHJB) equation which appears in
optimization problems. Successive approximation using the GHJB
has not been applied for nonlinear DT systems. The proposed re-
cursive method solves the GHJB equation in DT on a well-defined
region of attraction. The definition of GHJB, pre-Hamiltonian
function, HJB equation, and method of updating the control
function for the affine nonlinear DT systems under small pertur-
bation assumption are proposed. A neural network (NN) is used
to approximate the GHJB solution. It is shown that the result is a
closed-loop control based on an NN that has been tuned a priori
in offline mode. Numerical examples show that, for the linear
DT system, the updated control laws will converge to the optimal
control, and for nonlinear DT systems, the updated control laws
will converge to the suboptimal control.

Index Terms—Generalized Hamilton–Jacobi–Bellman (BHJB)
equation, neural network (NN), nonlinear discrete-time (DT)
system.

I. INTRODUCTION

I
N the literature, there are many methods of designing stable
control of nonlinear systems. However, stability is only a

bare minimum requirement in a system design. Ensuring op-
timality guarantees the stability of the nonlinear system; how-
ever, optimal control of nonlinear systems is a difficult and chal-
lenging area. If the system is modeled by linear dynamics and
the cost function to be minimized is quadratic in the state and
control, then the optimal control is a linear feedback of the
states, where the gains are obtained by solving a standard Ric-
cati equation [9]. On the other hand, if the system is modeled by
the nonlinear dynamics or the cost function is nonquadratic, the
optimal state feedback control will depend upon obtaining the
solution to the Hamilton–Jacobi–Bellman (HJB) [10] equation
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which is generally nonlinear. The HJB equation is difficult to
solve directly because it involves solving either nonlinear par-
tial difference or differential equations.

To overcome the difficulty in solving the HJB equation, re-
cursive methods are employed to obtain the solution of HJB
equation indirectly. Kleinman [14] pointed out that the solu-
tion of the Riccati equation can be obtained by successively
solving a sequence of Lyapunov equations, which is linear in
the cost function of the system, and thus, it is easier to solve
when compared to a Riccati equation, which is nonlinear in
the cost function. Saridis [11] extended this idea to the case of
nonlinear continuous-time systems where a recursive method
is used to obtain the optimal control of continuous system by
successively solving the generalized Hamilton–Jacobi–Bellman
(GHJB) equation, and then, updating the control if an admissible
initial control is given. There has been a great deal of effort to ad-
dress this problem in the literature in continuous time. Approx-
imate HJB solution has been confronted using many techniques
by Saridis [11], Beard [19]–[21], Bernstein [1], Bertsekas and
Tsitsiklis [2], Han and Balakrishnan [12], Lyshevski [15], Lewis
[6], [7], and others.

Although the GHJB equation is linear and easier to solve than
HJB equation, no general solution for GHJB is demonstrated.
Galerkin’s spectral approximation method is employed in [19]
to find approximate but close solutions to the GHJB at each it-
eration step. Beard [20] employed a series of polynomial func-
tions as basic functions to solve the approximate GHJB equa-
tion in continuous time but this method requires the compu-
tation of a large number of integrals. Park [4] employed in-
terpolating wavelets as the basic functions. On the other hand,
Lewis and Abu-Khalaf [8], based on the work of Lyshevski [15],
employed nonquadratic performance functional to solve con-
strained control problems for general affine nonlinear contin-
uous-time systems using neural networks (NNs). In addition, it
was also shown how to formulate the associated Hamilton–Ja-
cobi–Isaac (HJI) equation using special nonquadratic supply
rates to obtain the nonlinear state feedback control. Huang
[25], [26] reduced the gain optimization and nonlinear
problems to solving a single algebraic Riccati equation (ARE)
along with a sequence of linear algebraic equations in discrete
time (DT). Here, the value function is expanded by Taylor se-
ries consisting of higher order terms into a series of polynomial
functions and approximating them but this approach requires
significant computations. Additionally, the ARE in DT is still
nonlinear which is difficult to solve.

Since NN can effectively extend adaptive control techniques
to nonlinearly parameterized systems, Miller [16] proposed

1045-9227/$25.00 © 2007 IEEE
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using NN to obtain optimal control laws via the HJB equa-

tion. On the other hand, Parisini and Zoppoli [18] used NN

to derive optimal control laws for DT stochastic nonlinear

systems. Similarly, Lin and Brynes [24] presented control

of DT nonlinear systems. Although many papers, i.e., [6],

[7], [11], [19], and [20], have discussed the GHJB method for

continuous-time systems, currently there is very minimal work

available on the GHJB method for DT nonlinear systems. DT

version of the approximate GHJB-equation-based control is im-

portant since all the controllers are typically implemented using

embedded digital hardware. Ferrari and Stengel [27] solved

DT HJB problem through adaptive critic designs (ACD). The

cost function and control is updated through heuristic dynamic

programming (HDP), dual heuristic dynamic programming

(DHP), global dual heuristic dynamic programming (GDHP),

and action-dependent (AD) designs. Recent work on solving

HJB for continuous time has appeared in the edited book, where

[27] was published.

In this paper, we will apply the idea of GHJB equation in

DT and set up the practical method for obtaining the near-op-

timal control of DT nonlinear systems by using Taylor series

extension of the cost function. The higher terms (third order

and higher) in the Taylor series expansion of the cost or value

functional are ignored by using small signal perturbation as-

sumption around the operating point while keeping a tradeoff

between computation and accuracy. With an initial admission

control, the cost function can be obtained by solving a so-called

GHJB equation in DT. Subsequently, the updated control is ob-

tained by minimizing the pre-Hamiltonian function. It is also

demonstrated that the updated control will converge to the op-

timal control, which renders an approximate solution of the HJB

equation in DT. The theory of GHJB in DT has also been applied

to the linear DT case which indicates that the optimal control is

nothing but the solution of the standard Riccati equation.

We use successive approximation techniques by employing

NN in the least squares sense to solve the GHJB in DT and

using the quadratic cost function. It is demonstrated that if the

activation functions of the NN are linearly independent, the NN

weight matrix has a unique solution. It is also shown that the re-

sult is a closed-loop control based on an NN that has been tuned

a priori in offline mode. The theoretical results are verified

through extensive rigorous simulation studies performed using

linear and nonlinear DT systems and a two-link planar robot

arm system. In the linear case, the updated control is shown

to converge to the optimal control. In the nonlinear case, as

expected, the updated control will converge to the suboptimal

control.

It is also important to note that the proposed approach is

different than a conventional DT linear quadratic regulator

(DTLQR). DTLQR will not render the same solution as that of

the one presented in this paper as we have considered several

higher order terms in the Taylor series expansion making it

nonlinear and yet it is an approximated and sufficiently accurate

methodology. Additionally, similarities between dynamical

programming (DP) and GHJB theory and the differences be-

tween GHJB theory in discrete and continuous time are also

highlighted in this paper.

The remainder of this paper is organized as follows. Section II

introduces the DT GHJB theory. The method of obtaining the

optimal control is discussed and verification for linear DT case

is given. The NN method to approximately solve the GHJB

equation is described and the Galerkin’s spectral approxima-

tion method is applied in Section III. The GHJB-based con-

troller design is demonstrated on a linear and nonlinear DT

system through simulation in Section IV. Additionally, we apply

the GHJB method to obtaining the near-optimal control of a

two-link planar robot arm system. Finally, concluding remarks

and future works are provided in Section V.

II. OPTIMAL CONTROL AND GHJB EQUATION FOR

NONLINEAR DT SYSTEMS

Consider an affine in the control nonlinear DT dynamic

system of the form

(1)

where , , , and

. Assume that is Lipschitz continuous

on a set in containing the origin, and that the system (1)

is controllable in the sense that there exists a continuous control

on that asymptotically stabilizes the system. It is desired to

find a control function , which minimizes the

generalized quadratic cost function

(2)

where is a positive–definite matrix, is a symmetric posi-

tive–definite matrix, and is a final state punishment

function which is positive definite.

A. Control Objective

The objective is to select the feedback control law of

in order to minimize the cost-functional value.

Remark 1: It is important to note that the control

must both stabilize the system on and make the cost-func-

tional value finite so that the control is admissible [21].

Definition 2.1 (Admissible Controls): Let denote the set

of admissible controls. A control function

is defined to be admissible with respect to the state penalty

function and control energy penalty function

on , denoted as , if the fol-

lowing is true:

• is continuous on ;

• ;

• stabilizes system (1) on ;

•

, .

Remark 2: The admissible control guarantees that the control

converges but, in general, any converged control cannot guar-

antee that it is admissible. For example, consider the nonlinear

DT system

(3)
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A feedback control is given as and the system solution

will be

for

for

As , . This system with this feedback control

is considered stable. However, and the

sum is infinite. We can

conclude that this feedback control is stable but not admissible.

Hence, we should restrict the systems that decay sufficiently

fast.

Given an admissible control and the state of the system at

every instant of time, the performance of this control is eval-

uated through a cost function. If the solution of the dynamic

system is known and

given the cost function, the overall cost is the sum of the cost

value calculated at each time step . However, for complex non-

linear DT systems, the closed-form solution is difficult to

determine and the solution can depend upon the initial condi-

tions. Therefore, another suitable cost function, which is inde-

pendent of the solution of the nonlinear dynamic system ,

is needed. In general, it is very difficult to select the cost func-

tion; however, Theorem 2.1 will prove that there exists a pos-

itive–definite function , denoted in this paper for sim-

plicity as , referred to as the value function, whose initial

value is equal to the cost-functional value of given

an admissible control and the state of the system.

Theorem 2.1: Assume is an admissible control

law arbitrarily selected for the nonlinear DT system. If there ex-

ists a positive–definite, uniformly convex, and continuously dif-

ferentiable value function on satisfying the following:

(4)

(5)

where and are the gradient vector and Hessian

matrix of , then is the value function of the system

defined in (1) for all when the feedback control

is applied and

(6)

Proof: Assume that exists and is continu-

ously differentiable. Then

(7)

where is the first differ-

ence. Since is a continuously differentiable function,

expanding the function using Taylor series about the op-

erating point of renders

(8)

where is the gradient vector defined as

(9)

and is the Hessian matrix defined as

...
...

...

(10)

By assuming small perturbation about the operating point

, the first three terms of Taylor series

expansion can be considered and we can ignore terms higher

than second order to receive

(11)

From (7) and (11), using system dynamics (1), we can get

(12)

where , , and . For

convenience, we denote

(13)

Then, we rewrite (12) to get

(14)

Similarly, we rewrite (2) as

(15)

We add (14) on both sides of (15) and rewrite (14) as
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(16)

Because , from (4) and (5), we also have

(17)

(18)

Applying (17) and (18) into (16) renders

for (19)

More specifically, for , .

Remark 3: An optimal control function for a non-

linear DT system is the one that minimizes the value function

.

Remark 4: If is quadratic function of , since

, then Theorem 2.1 can be applicable to

nonlinear DT systems without making the small perturbation

assumption.

Definition 2.2 (GHJB Equation for Nonlinear DT System):

(20)

(21)

where .

In this paper, the infinite-horizon optimal control problem for

the nonlinear DT system (1) is attempted. The cost function of

the infinite-horizon problem for the DT system is defined as

(22)

The GHJB (20) with the boundary condition (21) can be used as

(4) and (5) for the infinite-horizon problems, because, as

, and ;

so if an admissible control is specified, for any infinite-horizon

problem, we can solve the GHJB equation to obtain the value

function which in turn can be used in the cost function

along with to calculate the cost of the admissible

control.

We already know how to evaluate the performance of the cur-

rent admissible control, but this is not our final goal. Our objec-

tive is to improve the performance of the system over time by

updating the control so that a near-optimal controller can be ob-

tained. Besides deriving an updated control law, it is required

that the updated control functions render admission control in-

puts to the nonlinear system while ensuring that the performance

is enhanced over time. The updated control function is obtained

by minimizing a pre-Hamiltonian function. In fact, Theorem 2.2

demonstrates that if the control function is updated by mini-

mizing the pre-Hamiltonian function defined in (23), then the

system performance can be enhanced over time while guaran-

teeing that the updated control function is admissible for the

original nonlinear system (1). Next, the pre-Hamiltonian func-

tion for the DT system is introduced.

Definition 2.3 (Pre-Hamiltonian Function for the Nonlinear

DT System): A suitable pre-Hamiltonian function for the non-

linear system (1) is defined as

(23)

where . It is important to note that the pre-Hamiltonian

is a nonlinear function of the state and cost value function

the control functions. If a control function and cost value

function satisfy , an updated control function

GHJB can be obtained by differentiating

the pre-Hamiltonian function (23) associated with the value

function . In other words, the updated control function can

be obtained by solving

(24)

so that

(25)

In Theorem 2.1, since the positive–definite function is uni-

formly convex on , is a positive–definite function

on and the matrix is positive definite; so it can be concluded

that is a positive–definite matrix on

. We can rewrite (25) as

(26)

Theorem 2.2 demonstrates that the updated control function is

not only an admissible control but also improved control for the

nonlinear DT system described by (1).

Theorem 2.2 (Improved Control): If and

and the positive–definite and convex function

satisfies GHJB with the boundary condition

, then the updated control function derived in (26)

by using the pre-Hamiltonian results in an admissible control

for the system (1) on . Moreover, if is the unique pos-

itive–definite function satisfying GHJB ,

then

(27)
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Proof of Admissibility: First, we should investigate the sta-

bility of the system with the control . We take the differ-

ence of along the system trajectories to

obtain

(28)

Rewriting the GHJB equation GHJB for

, we have

(29)

Substituting (29) into (28), (28) can be rewritten as

(30)

Substituting (26) into (30), the difference can be obtained as

(31)

Since and and are positive–definite ma-

trixes, we get

(32)

This implies that the difference of along the system

trajectories is negative for . Thus,

is a Lyapunov function for on and the system

with feedback control is locally asymptotically stable.

Second, we need to prove that the cost function of the system

with the updated control is finite. Since is an admis-

sible control, from Definition 2.1 and (4), we have

for (33)

The cost function for can be written as

(34)

where is the trajectory of system with admission control

. From (31) and (34), we have

(35)

Since and , we get

. Rewriting (35), we have

(36)

From (33) and (36), and considering that is a

positive–definite matrix function, we obtain

(37)

Third, since is continuously differentiable and

is a Lipschitz continuous function on the set in , the

new control law is continuous. Since is a posi-

tive–definite function, it attains a minimum at the origin, and

thus, and must vanish at the origin. This

implies that .

Finally, following the Definition 1.1, one can conclude that

the updated control function is admissible on .

Proof of the Improved Control: To show the second

part of the Theorem 2.2, we need to prove that

which means the cost function will be reduced

by updating the feedback control. Because is an admis-

sible control, there exists a positive–definite function

such that on . According

to the Theorem 2.1, we can get

(38)

From (36) and (38), we know that

(39)

Theorem 2.2 suggests that after solving the GHJB equation and

updating the control function by using (26), the system perfor-
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mance can be improved. If the control function is iterated suc-

cessively, the updated control will converge close to the solution

of HJB, which then renders the optimal control function. The

GHJB becomes the Hamilton–Jacobi–Bellman (HJB) equation

on substitution of the optimal control function . The HJB

equation can now be defined in DT as follows.

Definition 2.4 (HJB Equation for the Nonlinear DT): The

HJB equation in DT in this framework can be expressed as

(40)

(41)

where the optimal control function for the DT system is given

by

(42)

Note is the optimal solution to the HJB (40). It is impor-

tant to note that the GHJB is linear in the value function deriva-

tive while the HJB equation is nonlinear in the value function

derivative. Solving the GHJB equation requires solving linear

partial difference equations, while the HJB equation solution in-

volves nonlinear partial difference equations, which may be dif-

ficult to solve. This is the reason for introducing the successive

approximation technique using GHJB. In the successive approx-

imation method, one solves (20) for given a stabilizing

control , and then, finds an improved control based on

using (26). In the following, Corollary 2.1 indicates that if the

initial control function is admissible, then repetitive application

of (20) and (26) is a contraction map, and the sequence of solu-

tions converges to the optimal HJB solution .

Corollary 2.1 (Convergence of Successive Approximations):

Given an initial admissible control by iteratively

solving GHJB (20) and updating the control function using (26),

the sequence of solutions will converge to the optimal

HJB solution .

Proof: From the proof of Theorem 2.2, it is clear that after

iteratively solving the GHJB equation and updating the control,

the sequence of solutions is a decreasing sequence with a

lower bound. Since is a positive–definite function,

, and , the sequence of solutions will

converge to a positive–definite function ,

when . Due to the uniqueness of solutions of the HJB

equation [11], now it is necessary to show that . When

, from (39), we can only obtain

. Using (26) and taking , we obtain

(43)

The GHJB equation for can now be expressed as

(44)

(45)

From (43)–(45), we can conclude that these equations are

nothing but the well-known HJB equation, which is presented in

Definition 2.4. This implies that converges to and

converges to .

Note that (40)–(42) are the HJB equations under the small

perturbation assumption. The more general and ideal HJB equa-

tions are, then

(46)

(47)

where is the solution of

(48)

The ideal GHJB equations are given by

(49)

(50)

Although for the given admissible control , the ideal

GHJB (46) can be solved using an NN to get . However,

without the small perturbation assumption, the updated control

law cannot be easily solved from

(51)

Additionally, it is quite difficult to show as an admis-

sible and improved control.

Next, we show the consistency between proposed GHJB and

DP using small perturbation assumption.

Remark 5: Consistency Between GHJB and DP: From the

DP principle [2], the optimal controller can be given as

(52)

However, the optimal controller for a general nonlinear DT

system is difficult to design and only for the special case of linear

systems, when can be solved in terms of and not in

terms of . But consider the derivative of function

expressed as

(53)
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Since the small perturbation assumption is considered, the high-

order terms in Taylor expansion of can be ignored to get

(54)

Considering system (1), (54) can be rewritten as

(55)

Using (55), (52) can be written as

(56)

By solving in (56), we can obtain

(57)

Equation (57) shows that can be solved only in terms of

under the assumption that higher than second-order terms

in the Taylor series expansion can be ignored. Equation (52)

is consistent with (42). It is important to note that nonlinear

approximation theory will be utilized later to approximate the

value function which provides a tradeoff between computation

and accuracy. In summary, the value function in the proposed

method is approximated and iterated until convergence. Then,

the policy iteration is performed using the optimal value func-

tion. The value and policy iterations are quite similar to the case

of approximate DP [16].

In order to verify HJB for a linear DT system, the proposed

approach is utilized next.

Remark 6: The ARE associated with the optimal control of

linear DT system can be derived from the DT HJB equation.

Consider the following linear DT system and cost function de-

fined in (22) as:

(58)

where and is a symmetric positive–definite

matrix. The gradient vector and Hessian matrix of can be

derived as and . The HJB (40)

and (42) can be rewritten as

(59)

(60)

After simplifying (59) and (60), we obtain

(61)

(62)

Equation (61) is nothing but ARE [9] for linear DT system and

(62) is the optimal control of linear DT system. Next, we show

the difference between GHJB in continuous and DT.

Remark 7: Difference Between GHJB in Continuous- and

Discrete-Time Systems With Small Perturbation: When the first-

order term in Taylor extension of cost function is consid-

ered alone, (8) can be rewritten as

(63)

By following the same steps in Theorems 2.1 and 2.2, we can

obtain GHJB equation for this case

(64)

(65)

and the updated control law

(66)

These equations are nothing but the GHJB equations in con-

tinuous time [21]. If the second-order terms from the Taylor se-

ries expansion of the cost function are considered, the GHJB

equations in DT derived in this paper show improvements in ap-

proximating the cost function provided the perturbation is suffi-

ciently small. In many cases, the cost function is quadratic

function in . Then, cost function and also the optimal

control can be exactly calculated by the proposed GHJB

method. Therefore, the proposed GHJB in DT appears to be

more accurate than directly applying the continuous-time GHJB

method to a nonlinear DT system.

By considering the higher order terms, approximation accu-

racy can be improved but a tradeoff exists between accuracy and

computational complexity for practical realization of optimal

control [11]. Therefore, for practical design considerations, cost

or value function should be approximated using the aforemen-

tioned approach.

III. NN LEAST SQUARES APPROACH

In Section II, we described that by recursively solving the

GHJB equation and by updating the control function, we could

improve the closed-loop performance of control laws that are

known to be admissible. Furthermore, we can get arbitrarily

close to the optimal control by iterating the GHJB solution

enough number of times. Although the GHJB equation is in

theory easier to solve than the HJB equation, there is no general

closed-form solution available to this equation. In [19], Beard

used Galerkin’s spectral method to get approximate solution

to GHJB in continuous time at each iterating step and the

convergence is shown in the overall run. This technique does

not set the GHJB equation to zero at each iterating step, but to

a residual error instead. The Galerkin spectral method requires

the computation of a large number of integrals in order to

minimize this residual error.

The purpose of this section is to show how we approximate

the solution of the GHJB equation in DT using NNs such that

the controls which result from the solution are in feedback form.

It is well known that NNs can be used to approximate smooth
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functions on prescribed compact set [6]. We approximate

with an NN

(67)

where the activation function vector is con-

tinuous, , the NN weights are , and is

the number of hidden layer neurons. The vectors

and

are the vector of activation function and NN weight matrix,

respectively. The NN weights will be tuned to minimize the

residual error in a least squares sense over a set of points within

the stability region of the initial stabilizing control. Least

squares solution [5] attains the lowest possible residual error

with respect to the NN weights.

For the GHJB , is replaced by having a

residual error as

GHJB (68)

To find the least squares solution, the method of weighted resid-

uals is used [5]. The weights are determined by projecting

the residual error onto and setting the result

to zero , i.e.,

(69)

When expanded, (69) becomes

(70)

where

In order to proceed, the following technical results are needed.

Lemma 3.1: If the set is linearly independent and

, then the set

(71)

is also linearly independent.

Proof: Calculating the along the system trajecto-

ries for by using the similar formulation of

(7) and (11), we have

(72)

Since is an admissible control, the system is

stable and . With the condition on the active function

, we have . Rewriting (72) with

the previous results, we have

(73)

Extending (73) into the vector formulation gives

(74)

Now, suppose that the Lemma 3.1 is not true. Then, there exists

a nonzero such that

for

(75)

From (74) and (75), we have

for (76)

which contradicts the linear independence of ; so the

set (71) must be linearly independent. Equation (76) can be

rewritten, after defining

as

(77)

Because of Lemma 3.1, the term is full rank, and thus,

is invertible. Therefore, a unique solution for exists. From

(77), we need to calculate the inner product of . In

Hilbert space, we define the inner product as

(78)

Executing the integration in (78) is computationally expensive.

However, the integration can be approximated to a suitable de-

gree using the Riemann definition of integration so that the inner

product can be obtained. This in turn results in a nearly optimal,

computationally tractable solution algorithm.

Lemma 3.2 (Riemann Approximation of Integrals): An inte-

gral can be approximated as

(79)

where and is bounded on [3].

Introducing a mesh on , with mesh size equal to , which is

taken very small, we can rewrite some terms in (77) as (80) and
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(81), shown at the bottom of the page, where in represents

the number of points of the mesh. This number increases as the

mesh size is reduced. Using Lemma 3.2, we can rewrite (70) as

(82)

This implies that we can calculate

(83)

An interesting observation is that (83) is the standard least

squares method of estimation for a mesh on . Note that the

mesh size should be such that the number of points is

greater or equal to the order of the approximation and the

activation functions should be linearly independent. These

conditions guarantee a full rank for .

The optimal control of nonlinear DT system can be obtained

offline by going through the following six steps.

1) Define an NN as to approximate

smooth function of .

2) Select an admissible feedback control law .

3) Find associated with to satisfy GHJB by applying

least square method (LSM) to obtain the NN weights ;

4) Update the control as

(84)

5) Find associated with to satisfy GHJB by using

LSM to obtain .

6) If , where is a small positive constant,

then and stop. Otherwise, go back to step 4) by

increasing the index by one.

After we get , the optimal state feedback control, which can

be implemented online, can be described as

(85)

IV. NUMERICAL EXAMPLES

The power of the technique is demonstrated for the case of

HJB by using three examples. First, we take on a linear DT

system to compare the performance of the proposed approach

to that of the standard solution obtained by solving Riccati

equation. This comparison will present that the proposed

approach works for a linear system and renders an optimal

solution. Second, we will use a general nonlinear practical

system and a real-world two-link planar revolute–revolute (RR)

robot arm system to demonstrate that the proposed approach

renders a suboptimal solution for nonlinear DT systems.

In all of the examples that we present in this section, the basis

functions required will be obtained from even polynomials so

that the NN can approximate the positive–definite function or

value function. If the dimension of the system is and the order

of approximation is , then we use all of the terms in expansion

of the polynomial [21]

(86)

The resulting basis functions for a 2-D system is

(87)

1) Example 1 (Linear DT System): Consider the linear DT

system (52), where

(88)

Define the cost function

(89)

Define the NN with the activation functions containing polyno-

mial functions up to the sixth order of approximation by using

and . From (86), the NN can be constructed as

(90)

Select the initial control law , which is admis-

sible. Update the control with

(91)

where and satisfy the GHJB equation

(92)

In the simulation, the mesh size is selected as 0.01 and the

asymptotic stability region is chosen for the states as

(80)

... (81)
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Fig. 1. Cost function at each updating step.

Fig. 2. Norm of NN weights at each updating step.

and . The small positive approx-

imation error constant is selected as . The initial

states are selected as . The simulation

step is selected as . After updating five times, the

optimal value function and the optimal control are ob-

tained. Fig. 1 shows the cost-functional value and Fig. 2 shows

the norm of NN weights at each updating step. From these plots,

it is clear that the cost-functional value continues to decrease

until it reaches a minimum and, afterwards, it remains constant.

After we obtain the optimal control based on the GHJB

method, we implement the initial admissible control and the

optimal control on the system, respectively. Fig. 3 shows the

trajectory with an initial admissible control, whereas

Fig. 4 illustrates the trajectory with the GHJB-based

optimal control. From these figures, we can conclude that the

updated control is not only an admissible control but it also

Fig. 3. State trajectory (x ; x ) with the initial control.

Fig. 4. State trajectory (x ; x ) with the GHJB-based optimal control.

TABLE I
COST VALUE WITH ADMISSIBLE CONTROLS

converges to the optimal control.Table I presents this with

different initial admissible controls we arbitrarily selected; the

final NN weights, the optimal cost-functional values, and the

updated control function will converge to the unique optimal

control. This method is independent on the selection of the

initial admissible control for the linear DT systems.
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Fig. 5. State trajectory (x ; x ) with Riccati-based optimal control.

Fig. 6. Difference between the two optimal controls.

In order to evaluate whether the proposed method converges

to the optimal control obtained from classical optimal control

methods, we use the Riccati equation in DT to solve the LQR

optimal control problem for this system [9]. Riccati equation in

DT is given by [9]

(93)

(94)

(95)

Fig. 5 displays that the optimal trajectory generated

by solving Riccati equation whereas Fig. 6 depicts the error

between the control inputs obtained from the proposed and the

TABLE II
COMPARISON OF CONTROL METHODS

Fig. 7. Cost-functional value of at each updating step.

Riccati methods. Table II shows the optimal cost-functional

value obtained from the two methods. Comparing Fig. 5 with

Fig. 3, and from Fig. 6 and Table II, we can observe that the

trajectories and the optimal control inputs are the same. We

can conclude that for linear DT system, the updated control

associated with GHJB equation will converge to the optimal

control.

2) Example 2 (Nonlinear DT System): Consider the non-

linear DT system given by

(96)

where

(97)

We select the initial control law as and the

NN is also selected from (90). The simulation parameters and

cost function are defined the same as in the Example 1. Fig. 7

shows the cost-functional value at each updating time and Fig. 8

shows the norm of NN weights. After updating 11 times, we

get the optimal control offline, and then, the optimal con-

trol is implemented with several initial conditions. Fig. 9 shows

the state trajectory with initial admissible control. By

contrast, Fig. 10 shows the state trajectory by solving

the GHJB-based control with successive approximation. Dif-

ferent values of initial admissible controls are used to obtain the

near-optimal control result. Table III shows, with different ini-

tial admissible controls, that the final norm of NN weights and
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Fig. 8. Norm of NN weights at each updating step.

Fig. 9. State trajectory with initial admissible control.

the optimal cost-functional value are almost the same demon-

strating the validity of the proposed GHJB-based solution.

3) Example 3 (Two-Link Planar RR Robot Arm System): A

two-link planar RR robot arm used extensively for simulation

in the literature is shown in Fig. 11. This arm is simple enough

to simulate yet has all the nonlinear effects common to general

robot manipulators. The DT dynamics of the two-link robot

arm system is obtained by discretizing the continuous-time

dynamics. In simulation, we apply the GHJB-based near-op-

timal control method to solve the nonlinear quadratic regulator

problem. In other words, we seek a suboptimal control to

move the arm to the desired position while minimizing the

cost-functional value.

Fig. 10. State trajectory with GHJB-based optimal control.

TABLE III
GHJB-BASED NEAR-OPTIMAL CONTROL WITH INITIAL ADMISSIBLE CONTROL

Fig. 11. Two-link planar robot arm.

The continuous-time dynamics model of two-link planar RR

robot is given [6] as

(98)

where , , , and

. We define the state and control variables as
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and . For simula-

tion purposes, the parameters are selected as 1 kg,

1 m, and 10 m/s ; then, , , ,

and . Rewriting the continuous-time dynamics as state

equation, we get

(99)

where (100) and (101), shown at the bottom of the page,

hold. The control objective is moving the arm from an ini-

tial state to the final state

with the cost function defined as

(102)

First, we will convert the continuous-time dynamics system and

cost function into DT. Let us consider a DT system with a sam-

pling period and denote a time function at as

, where is a sampling number. If the sampling period

is sufficiently small compared to the time constant of the system,

the response evaluated by DT methods will be reasonably accu-

rate [9]. Therefore, we use the following approximation for the

derivative of :

(103)

Using this relation with the sampling interval of 1 ms,

the continuous-time dynamics system can be converted to an

equivalent DT nonlinear system as

(104)

where (105) and (106), shown at the bottom of the page, hold,

with cost-functional value in DT chosen as

(107)

where and . The problem solu-

tion is almost the same as the linear system example except that

we move the original point of axis to

and use the new axis as . The NN to

approximate the GHJB equation is selected as polynomial func-

tions for up to the fourth order of approximation, which means

that and . From (86), the NN can be constructed

as

(108)

Associated gradient vector and Hessian matrix are derived as

(100)

(101)

(105)

(106)



CHEN AND JAGANNATHAN: GHJB FORMULATION-BASED NN CONTROL OF AFFINE NONLINEAR DT SYSTEMS 103

Fig. 12. Cost function at each updating step.

(109)

We select the initial admissible control law as

(110)

Control function updating rule is taken as

(111)

The and satisfy the GHJB equation

In the simulation, the mesh size is selected as 0.2, the asymp-

totic stability region is chosen as , ,

, and . The small positive constant

is selected as . The simulation steps are selected as

. We use the GHJB method to obtain the near-optimal

control. After updated five times, the control has converged to

the suboptimal control . Fig. 12 shows the cost-functional

value over updating step. On the other hand, Fig. 13 shows the

norm of the NN weights at each updating step.

After we get the optimal control, we implement the initial ad-

missible and suboptimal controls on the two-link planar robot

arm system, respectively. Fig. 14 displays the state trajectory

with the initial admissible control and GHJB-based

Fig. 13. Norm of the weights at each updating step.

Fig. 14. State trajectory of (x ; x ).

suboptimal control. Similarly, Fig. 15 illustrates the state tra-

jectory with initial admissible and GHJB-based subop-

timal control. From these trajectory figures, we know that the

robot arm has moved from the starting point to the final goal.

On the other hand, Fig. 16 depicts the initial admissible control

and GHJB-based suboptimal control and Fig. 17 depicts

the initial admissible control and GHJB-based suboptimal

control . Table IV shows that with different initial admissible

controls, the converged norm of the NN weights and the sub-

optimal cost-functional values are almost close to each other. It

is important to note that with different admissible control func-

tion values, the successive approximation-based updated con-

trols will converge to a unique improved control and the im-
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Fig. 15. State trajectory of (x ; x ).

Fig. 16. Initial control � and suboptimal control � .

proved cost function values are almost the same. Since a small

function approximation error value is used in solving the GHJB

equation, the approximation-based GHJB solution renders the

suboptimal control, which is quite close to the optimal control

solution.

From Fig. 14, the trajectory with suboptimal control is a little

longer than the trajectory with initial admissible control even

though the cost-functional value with GHJB-based suboptimal

control is significantly lower. This is due to the tradeoff ob-

served between the trajectory selection and energy of the con-

trol input. The selection of the weighting and matrices will

Fig. 17. Initial control � and suboptimal control � .

Fig. 18. State trajectory (x ; x ) with suboptimal control.

dictate the selection. If we are more interested in perfect trajec-

tory, we can select higher or reduce . If we are more

interested in saving control energy, we can select lower or

increase . For example, if we select and

, Figs. 18 and 19 show that the results obtained

are different from those of Figs. 14, 16, and 17. It is important

to note that the trajectory in Fig. 18 is close to a straight line but

at the expense of the control input.

In Table IV, optimal cost values with different initial con-

trol are not exactly the same as those of the previous two ex-

amples, but are still reasonable due to the selection of the mesh

size of 0.2. By decreasing the mesh size, one can increase the

accuracy of convergence in the cost function. In the previous

second-order system examples, the mesh size is selected as 0.01,

which is quite small. However, in the fourth-order robot system,
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TABLE IV
GHJB-BASED SOLUTION WITH ADMISSIBLE CONTROL

Fig. 19. Suboptimal control input.

a mesh size of 0.2 is chosen as a tradeoff between accuracy and

computation. Decreasing the mesh size requires more memory

to store the values due to an increase in computation.

V. CONCLUSION

In this paper, HJB, GHJB, and pre-Hamiltonian functions for

the nonlinear DT system based on small perturbation assump-

tion are introduced. A systematic method of obtaining the op-

timal control for general affine nonlinear DT system is pro-

posed. Given an admissible control, the updated control through

NN successive approximation of the GHJB equation renders

an admissible control. For LQR problem, the updated control

will converge to the optimal control. For nonlinear DT system,

the updating control law will converge to an improved control,

which renders a suboptimal control.

Future works will include improving NN approximation for

value function, selecting better active functions, and reducing

the computation complexity of NN. Further study will also focus

on how to apply GHJB method to solve HJI equation in non-

linear DT system with uncertainties.
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