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1 Introduction

The basic mathematical apparatus of nonlinear optics consists of an array
of nonlinear PDEs for the complex amplitudes of an envelope of interacting
wave trains. In the general case, these equations include linear and nonlinear
dissipative terms. However, in many important cases, they are small and
can be neglected: therefore the equations are conservative, and the medium
is transparent. According to the Kramers–Kronig relations, stemming from
the principle of causality, the transparency can be realized at most in a
limited spectral band, and even in this case some dissipation inevitably exists.
Nevertheless, such fundamental nonlinear effects as the generation of high
harmonics, induced Raman scattering, and self-focusing can be described by
the conservative equations, preserving energy.

It is remarkable that these equations are not just conservative. It is
an experimental fact that in all known cases, the conservative equations of
nonlinear optics are also Hamiltonian systems. The nonlinear Schrödinger
equation is a perfect example of that sort.

Actually, it is not astonishing. All macroscopic equations describing real
media can be derived, at least in principle, from the microscopic quantum
equations, which are Hamiltonian by definition. The original Hamiltonian
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structure of the interlying microscopic equations should be somehow inher-
ited by the macroscopic equations. In the simplest cases, this heredity means
that a Hamiltonian structure exists in the macroscopic equations. The situ-
ation is more complicated in the general case.

In nonlinear optics, a medium is described by the Maxwell equations,
where the electric induction is a nonlinear operator on the electric field. In
reality, the fields are sufficiently weak to expand in powers of the electric field.
Usually, only the linear, quadratic, and cubic terms are considered. They are
characterized by tensors of linear, quadratic, and cubic dielectric permittivity.
Transparency of the media can be formulated in terms of symmetry properties
of these tensors. This correspondence was first traced in 1962, in the classic
paper by J. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan [1].
It is discussed in detail in [2].

In this article, we claim the following : the symmetry conditions of the
tensors of dielectric permittivity appearing in the transparent medium mean
the existence of variotional principle for the nonlinear Maxwell equations. In
other words, these equations can be obtained by minimizing the action, which
is a functional on the vector potential. This functional is represented as power
series starting from quadratic terms. In the general case, this functional is
very nonlocal both in space and time.

This result is so simple and natural that it maybe is not new. How-
ever, we have not yet found it in the literature. The result seems important
because the variational formulation of the nonlinear Maxwell equations is
an ideal starting point for developing approximate models of any kind. If
we properly approximate directly in the Lagrangian, we can be sure that
the basic symmetries of the equation, including the Hamiltonian structure,
are not violated. The conservation laws in such an approach are satisfied
automatically.

This makes the variational approach an ideal tool for constructing an
averaged equation for wave envelopes in all orders of nonlinearity and aspect
ratio. In this article, we take just the first steps in this direction. We pay
special attention to the isotropic medium with Kerr-type nonlinearity.

2



2 The Maxwell equations in the nonlinear trans-

parent medium

We study the most general case of weakly nonlinear homogenous medium
with spatial dispersion. For the Maxwell equations, in terms of Fourier trans-
forms for electric field and induction we have:

(k2δαβ − kαkβ)Eβ(k, ω) =
ω2

c2
Dα(k, ω), (2.1)

where

Dα(k, ω) = ε
(0)
αβ(k, ω) Eβ(k, ω) +

+
∫

ε
(1)
αβγ(k1, ω1, k2, ω2) Eβ(k1, ω1) Eγ(k2, ω2)δk−k1−k2 δω−ω1−ω2 dk1 dk2 dω1 dω2 +

+
∫

ε
(2)
αβγδ(k1, ω1, k2, ω2, k3, ω3) Eβ(k1, ω1) Eγ(k2, ω2) Eδ(k3, ω3)×

×δk−k1−k2−k3 δω−ω1−ω2−ω3 dk1 dk2 dk3 dω1 dω2 dω3. (2.2)

It is clear that ε
(1)
αβγ(k1, ω1, k2, ω2) is symmetric with respect to permutations

β ⇐⇒ γ, 1 ⇐⇒ 2, (2.3)

while ε
(2)
αβγδ(k1, ω1, k2, ω2, k3, ω3) is symmetric with respect to permutations

β ⇐⇒ γ, 1 ⇐⇒ 2;

β ⇐⇒ δ, 1 ⇐⇒ 3;

γ ⇐⇒ δ, 2 ⇐⇒ 3. (2.4)

The elements of dielectic permittivity,

ε
(0)
αβ(k, ω), ε

(1)
αβγ(k1, ω1, k2, ω2), ε

(2)
αβγδ(k1, ω1, k2, ω2, k3, ω3),

are Fourier transforms of real functions. Hence, they obey the following
symmetry conditions,

ε
(0)
αβ(−k,−ω) = ε

(0)∗
αβ (k, ω),

ε
(1)
αβγ(−k1,−ω1,−k2,−ω2) = ε

(1)∗
αβγ(k1, ω1, k2, ω2),

ε
(2)
αβγδ(−k1,−ω1,−k2,−ω2,−k3,−ω3) = ε

(2)∗
αβγδ(k1, ω1, k2, ω2, k3, ω3).(2.5)
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The symmetry conditions (2.3)-(2.5) are universal; they hold in any ho-
mogenous media. In the transparent media, the tensors εi obey the additional
conditions (see, for instance, [3]),

ε
(0)∗
αβ (k, ω) = ε

(0)
αβ(k, ω), (2.6)

ε
(1)
αβγ(k1, ω1, k2, ω2) = ε

(1)
βαγ(−k,−ω, k2, ω2) = ε

(1)
γβα(k1, ω1,−k,−ω),

(k = k1 + k2, ω = ω1 + ω2) (2.7)

ε
(2)
αβγδ(k1, ω1, k2, ω2, k3, ω3) = e

(2)
βαγδ(−k,−ω, k2, ω2, k3, ω3) =

= ε
(2)
γβαδ(k1, ω1,−k,−ω, k3, ω3) = ε

(2)
δβγα(k1, ω1, k2, ω2,−k,−ω).

(k = k1 + k2 + k3, ω = ω1 + ω2 + ω3) (2.8)

The symmetry conditions (2.6)-(2.8) allow us to rewrite the relation (2.2) in
the following form:

Dα(k, ω) = ε0
αβ(k, ω) Eβ(k, ω) +

+
∫

fαβγ(−k,−ω, k1, ω1, k2, ω2) Eβ(k1, ω1) Eγ(k2, ω2)×
×δk−k1−k2 δω−ω1−ω2 dk1 dk2 dω1 dω2 +

+
∫

gαβγδ(−k,−ω, k1, ω1, k2, ω2, k3, ω3) Eβ(k1, ω1) Eγ(k2, ω2) Eδ(k3, ω3)×
×δk−k1−k2−k3 δω−ω1−ω2−ω3 dk1 dk2 dk3 dω1 dω2 dω3. (2.9)

Here

fαβγ(ω, ω1, ω2) =
1

3

[
ε
(1)
αβγ(ω1ω2) + ε

(1)
βαγ(ω1ω2) + ε

(1)
γβα(ω1ω)

]
, (2.10)

gαβγδ(ω, ω1, ω2, ω3) =
1

4

[
ε
(2)
αβγδ(ω1, ω2, ω3) + ε

(2)
βαγδ(ω, ω2, ω3)+

+ ε
(2)
γβαδ(ω1, ω, ω3) + ε

(2)
δβγα(ω1, ω2, ω)

]
. (2.11)

In (2.10), (2.11) we omitted the vector arguments ki for simplicity.
We see that fαβγ and gαβγδ are completely symmetric functions. The

permutation of their tensors should be done simultaneously with the permu-
tation of corresponding frequencies and wave vectors.

Further, let us introduce a vector-potential,

Eα(k, ω) = iω Aα(k, ω), (2.12)
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that satisfies the following equations,

(
k2 δαβ − kαkβ

ω2

c2
ε
(0)
αβ

)
Aβ(k, ω) =

+i
∫

ωω1ω2 fαβγ(−k,−ω, k1, ω1, k2, ω2) Aβ(k1, ω1) Aγ(k2, ω2)×
×δk−k1−k2 δω−ω1−ω2 dk1 dk2 dω1 dω2 −

−
∫

ωω1ω2ω3 gαβγδ (−k,−ω, k1, ω1, k2, ω2, k3, ω3) Aβ(k1, ω1) Aγ(k2, ω2) Aδ(k3, ω3)×
×δk−k1−k2−k3 δω−ω1−ω2−ω3 dk1dk2dk3dω1dω2dω3, (2.13)

and mention that

Eα(−k,−ω) = E∗
α(k, ω),

Aα(−k,−ω) = A∗
α(k, ω). (2.14)

3 Variational principle and normal variables

We can easily check that the symmetry properties of ε
(0)
αβ , fαβγ and gαβγδ in

the transparent media allow us to rewrite the equation (2.13) in a variational
form,

δS

δA∗
α

= 0, (3.1)

where the action S can be given by a non-local functional on Aα(k, ω),

S =
1

2

∫ (
k2 δαβ − kαkβ − ω2

c2
ε0
αβ(k, ω)

)
A∗

α(k, ω) Aβ(k, ω) dk dω +

+
i

3

∫
ωω1ω2 fαβγ(k, ω, k1, ω1, k2, ω2) Aα(k, ω) Aβ(k1, ω1) Aγ(k2, ω2)×

×δk+k1+k2 δω+ω1+ω2 dk dk1 dk2 dω dω1 dω2 −
− 1

4

∫
ωω1ω2ω3 gαβγδ(k, ω, k1, ω1, k2, ω2, k3, ω3) Aα(k, ω) Aβ(k1, ω1) Aγ(k2, ω2) Aδ(k3, ω3)×

×δk+k1+k2+k3 δω+ω1+ω2+ω3 dk dk1 dk2 dk3 dω dω1 dω2 dω3. (3.2)

In the general case, it is not possible to develop a regular Hamiltonian dy-
namics for a non-local functional. However, in some cases the nonlocality
is even convinient. Operating with the non-local action functional, we can
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broadly extend the class of admittable transformations. In Hamiltonian dy-
namics, it is admittable only the canonical transformation that preserves a
simplest form of a simplectic structure. In our case, we can study absolutely
general transformations from initial variables Aα(k, ω) to any arbitrary new
variables Bα(k, ω). We choose these new variables depending on the physical
problem, which is solved. In a sense, this is a question of ability and skill
of the analyst. Still, some simplification principles for the action S and the
Maxwell equations can be formulated in the general form.

Let us consider the linearized equation
(
k2 δαβ − kαkβ − ω2

c2
ε
(0)
αβ(k, ω)

)
Aβ(k, ω) = 0. (3.3)

The general solution of this equation can be found in the following form:

Aα(kω) =
A0

α(k)

ω
δ(ω) +

N∑

n=−N

A(n)
α (k) δ

(
ω − ω(n)(k)

)
. (3.4)

Here the first term is a constant potential electric field, which can exist in
a dielectric when ε

(0)
ij (0) = const. In plasmas, metals, and superconductors

A(0)
α (k) = 0. The second term in (3.4) corresponds to electromagnetic waves.

Further, from the condition A∗
α(−k,−ω) = Aα(k, ω), we obtain

A0∗
α (−k) = A0

α(k),

ω−n(k) = −ωn(−k),

A−n
α (k) = An∗

α (k). (3.5)

Thereafter, we assume that the medium is invariant with respect to the
reflection of coordinates. This implies that

ω+n(−k) = ωn(k), ω−n(k) = −ωn(k). (3.6)

We can consider that ω±(n)(k) belongs to the same branch of oscillations.
For the total number of branches, N , the minimal value is N = 2. This case
corresponds to electromagnetic waves of different polarization in dielectric,
in absence of non-decaying optical oscillations. In plasmas, metals, and semi-
conductors as well as in dielectrics, N can be arbitrary large, depending on
complexity of situation. For instance, in the magnetized plasma N = 7, in
the isotropic plasma N = 3.

6



In the general case, we can perform a decomposition,

Aα(kω) = Cα(kω) + C∗
α(−k,−ω), (3.7)

where

Cα(k, ω) = Aα(k, ω) Θ(ω − ωk),

Θ =

{
1 ξ > 0
0 ξ < 0.

(3.8)

The action S can now be represented in the following form:

S = S2 + S3 + S4,

S2 =
∫

ω>0

[
k2δαβ − kαkβ − ω2

c2
ε
(0)
αβ(k, ω)

]
C∗

α(k, ω) Cβ(k, ω) dk dω,(3.9)

S3 = S
(1)
3 + S

(2)
3 ,

S4 = S
(1)
4 + S

(2)
4 + S

(3)
4 . (3.10)

Here

S
(1)
3 =

1

3

∫

ωi>0
F

(1)
αβγ(ωω1ω2, kk1k2) [Cα(k, ω) Cβ(k1, ω1) Cγ(k2, ω2)

+ C∗
α(k, ω) C∗

β(k1, ω1) C∗
γ(k2, ω2)

]
δk+k1+k2δω+ω1+ω2dk dk1 dk2 dω dω1 dω2,

F
(1)
αβγ = iω ω1 ω2 fαβγ(k, ω, k1, ω1, k2, ω2), (3.11)

S
(2)
3 =

∫

ωi>0
F

(2)
αβγ(ωω1ω2, kk1k2) [C∗

α(k, ω) Cβ(k1, ω1) Cγ(k2, ω2)+

+Cα(k, ω) C∗
β(k1, ω1) C∗

γ(k2, ω2)
]
δk−k1−k2δω−ω1−ω2dk dk1 dk2 dω dω1 dω2,

F
(2)
αβγ = −iω ω1 ω2 fαβγ(−k,−ω, k1, ω1, k2, ω2), (3.12)

S
(1)
4 =

1

4

∫

ωi>0
F

(1)
αβγδ(ωω1ω2ω3, kk1k2k3) [Cα(k, ω) Cβ(k1, ω1) Cγ(k2, ω2) Cδ(k3, ω3)+

+C∗
α(k, ω) C∗

β(k1, ω1) C∗
γ(k2, ω2) C∗

δ (k3, ω3)
]
×

×δω+ω1+ω2+ω3δk+k1+k2+k3dω dω1 dω2 dω3 dk dk1 dk2 dk3, (3.13)

F
(1)
αβγδ(ωω1ω2ω3, kk1k2k3) = −ωω1ω2ω3 gαβγδ(k, ω, k1, ω1, k2, ω2, k3, ω3),
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S
(2)
4 =

1

3

∫

ωi>0
F

(2)
αβγδ(ωω1ω2ω3, kk1k2k3) [C∗

α(k, ω) Cβ(k1, ω1) Cγ(k2, ω2) Cδ(k3, ω3)+

+Cα(k, ω) C∗
β(k1, ω1) C∗

γ(k2, ω2) C∗
δ (k3, ω3)

]
×

×δω−ω1−ω2−ω3δk−k1−k2−k3dω dω1 dω2 dω3 dk dk1 dk2 dk3, (3.14)

F
(2)
αβγδ(ωω1ω2ω3, kk1k2k3) = 3ωω1ω2ω3 gαβγδ(−k,−ω, k1, ω1, k2, ω2, k3, ω3),

S
(3)
4 =

1

2

∫

ωi>0
F

(3)
αβγδ(ωω1ω2ω3, kk1k2k3) C∗

α(k, ω) C∗
β(k1, ω1) Cγ(k2, ω2) Cδ(k3, ω3)×

×δω+ω1−ω2−ω3δk+k1−k2−k3dω dω1 dω2 dω3 dk dk1 dk2 dk3, (3.15)

F
(3)
αβγδ(ωω1ω2ω3, kk1k2k3) = −6ωω1ω2ω3 gαβγδ(−k,−ω,−k1,−ω1, k2, ω2, k3, ω3).

In (3.9)-(3.15), we integrate along the positive frequencies only. We
should stress once more that the transparency takes place in some limited
band of frequencies,

ωmin < ω < ωmax.

For the further simplification of the action, we should mention that in the
transparent medium the matrix

Lαβ = k2δαβ − kαkβ − ω2

c2
ε
(0)
αβ(k, ω), (3.16)

is Hermitian for all k, ω,
Lαβ = L∗βα,

and can be transformed to a diagonal form by some unitary transformation,

B = UA, UU+ = I.

The action S can be represented in new variables as

S =
3∑

i=1

∫

ω>0
λi(k, ω) |Bi(k, ω)|2 dk dω, (3.17)

where λi(k, ω) are eigenvalues of Lαβ. In the linear approximation, the mo-
tion equations are

λi(k, ω) Bi(k, ω) = 0, (3.18)
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therefore each eigenvalue λi can be written in the following way:

λ1(k, ω) = l1(k, ω) (ω − ω1(k)) · · · (ω − ωp(k)) ,

λ2(k, ω) = l2(k, ω) (ω − ωp+1(k)) · · · (ω − ωp+q(k)) ,

λ3(k, ω) = l3(k, ω) (ω − ωp+q+1(k)) · · · (ω − ωN(k)) . (3.19)

Here ωi(k) are normal modes. In general, the positions of all normal modes
are different. If degeneration takes place and ωl(k) = ωm(k), i 6= j, then
factors ω − ωl(k) and ω − ωm(k) must be divisors of different eugenvalues.

Let us choose an eigenvalue λi and divide the half-axis, 0 < ω < ∞, into
intervals such that each interval contains one normal mode ωl(k) only. Each
of these intervals makes some contribution to the action S2. In other words,

S2 =
N∑

n=0

∫
dk

∫ ω+
n

ω−n
dω rn(k, ω) (ω − ωn(k)) |Bin(k, ω)|2, rn 6= 0. (3.20)

The total sum of all intervals (ω−n , ω+
n ) covers the half-axis three times. Inside

of each interval, the function rn(k, ω) has a definite sign.
Now, we can introduce new variables,

an(k, ω) =
Bin(k, ω)√
|rn(k, ω)|

,

and obtain finally

S2 =
N∑

n=0

∫
dk

∫ ω+
n

ω−n
(−1)λn (ω − ωn(k)) |an(k)|2dω. (3.21)

Formula (3.21) is a canonic form for the quadratic part of the action S in
a nonlinear medium. In the dielectric ω0(k) = 0, as well as ω−0 = 0. In the
isotropic plasma ω−0 = ωpl, where ωpl is a Langmuir plasma frequency.

We call the variables an(k) normal variables. If we introduce new vari-
ables, as

n(k), s = ±1, such that a1
n(k) = an(k), a−1

n (k) = a∗n(k), then the
cubic and the quartic parts of the action S take more compact form:

S3 =
1

3

∫
V ss1s2

nmp (ωω1ω2, kk1k2)δsk+s1k1+s2k2δsω+s1ω1+s2ω2 ×
×as

n(k, ω) as1
m(k1, ω1) as2

p (k2, ω2) dk dk1 dk2 dω dω1 dω2, (3.22)

S4 =
1

4

∫
W ss1s2s3

nmpl (ωω1ω2ω3, kk1k2k3)δsk+s1k1+s2k2+s3k3δsω+s1ω1+s2ω2+s3ω3 ×
×as

n(k, ω)as1
m(k1, ω1)a

s2
p (k2, ω2)a

s3
l (k3, ω3) dk dk1 dk2 dk3 dω dω1 dω2 dω3.(3.23)
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The coefficients V ss1s2
nmp and W ss1s2s3

nmpl can be easily expressed through F a
αβγ and

F b
αβγδ.

In the normal variables the Maxwell equations take the form

(ω − ωk) akω =
δH

δa∗kω

,

H = (−1)al(S3 + S4), (3.24)

which can be called the generalized Hamiltonian equations. These equations
are not rigorously Hamiltonian. The functional H after the Fourier trans-
formation, ω → i ∂

∂t
, becomes non-local in time. Nevertheless, the equations

(3.24) do inherit many important properties of the Hamiltonian systems.
For example, we can perform transformations, which preserve the linear

part of equation (3.24):

a
(n)
kω = b

(n)
kω +

∫
Anmp(ω, ω1, ω2, k, k1, k2) bm(k1, ω1) bp(k2, ω2)×

×δω−ω1−ω2δk−k1−k2dω1 dω2 k1 k2 +

+
∫

Bnmp(ω, ω1, ω2, k, k1, k2) b∗m(k1, ω1) bp(k2, ω2)×
δω+ω1−ω2δk+k1−k2dk1 dk2 dω1 dω2 +

+
∫

Cnmp(ω, ω1, ω2, k, k1, k2) b∗m(k1, ω1) b∗p(k2, ω2)×
×δω+ω1+ω2δk+k1+k2dk1 dk2 dω1 dω2. (3.25)

Here A,B and C are arbitrary coefficients obeying trivial symmetry relations.
Transformation (3.25) is a substitute of canonical transformations in

Hamiltonian dynamics. However, this class of transformations is much broader
than the class of canonical transformations defined by a single generating
functional. In particular, the coefficients Anmp and Bnmp for canonical trans-
formations are connected. Plugging (3.25) to S we can try to simplify the
cubic and the quartic parts of the action. Moreover, we can try to eliminate
the cubic terms. This procedure leads to appearance of resonant denomina-
tors,

δk−k1−k2δω−ω1−ω2

ωn
k − ωm

k1
− ωp

k2

. (3.26)

If the denominators are not zero, the elimination of cubic terms is possible;
but we will not discuss this interesting question now. Another interesting
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question is more mathematical. Is it possible to transform the nonlocal gen-
eralized Hamiltonian H to a classical, local in time Hamiltonian by a proper
choice of variables? In some important cases, as an example, for the plasma
described by hydrodynamic equations, it is certainly possible. However, these
questions are out of the scope of this article.

4 Isotropic medium with Kerr-type nonlin-

earity

In the most general case of a transparent isotropic medium, the linear parts
of electrical induction and electric field are connected by the expession

~Dk = εtr ~Ek + (εl − εtr)
~k

k2
(~k ~E) +

iγ

|k| [
~k, ~E], (4.1)

where εtr, εl and γ are real functions. We suppose that they depend on
frequency ω only.

According to (4.1), the quadratic part of the action takes the following
form:

S2 =
∫ ∞

0
dω

∫
dk

{(
k2 − ω2

c2
εtr(ω)

)
| ~Ak|2−

−
(

1 +
ω2

c2

εl(ω)− εtr(ω)

k2

) (
|(~k ~Ak)|2 +

iγk

k
( ~A∗[~k, ~A])

)}
. (4.2)

Now, we assume that the cubic part of the action vanishes and consider a
simple quartic action,

S4 = −1

2

∫

ωi

ωω1ω2ω3

{
α( ~Ak

~A∗
k1

)( ~Ak2
~A∗
k3

) + β( ~Ak1
~Ak2)( ~A∗

k1
~A∗
k3

)
}
×

×δk−k1+k2−k3δω−ω1+ω2−ω3 dk dk1 dk2 dk3 dω dω1 dω2 dω3, (4.3)

where α, β are real constants. This is the most simple action in an isotropic
medium with instant nonlinearity and absence of spatial dispersion.

Let us introduce the vector field ~S(k) satisfying conditions

i[~k, ~S] = |k|~S, ~S(−k) = ~S(k), |~S(k)|2 = 1. (4.4)
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We can represent the electric potential as

A = A+(k, ω)~S(k) + A−(k, ω) ~S∗(k) + A0(k, ω)
~k

k
(4.5)

and obtain for the quadratic part of the action the following expression:

S2 =
∫

dω
∫

d~k

{(
k2 − ω2

c2
ε+

)
|A+|2 +

(
k2 − ω2

c2
ε−

)
|A−|2+

+
ω2

c2
εl|A0|2

}
. (4.6)

Here ε±(ω) = εtr(ω) ± γ(ω); if γ 6= 0, the medium is birefringerant. The
components A± are amplitudes of circular polarized waves and A0 is a longi-
tudinal wave. If εl(ω) 6= 0, the wave is a ”slave” wave. It appears as a result
of interaction of transverse waves.

From (4.6) we obtain

( ~Ak1ω1 , ~Ak2ω2) =
(
~S(k1) ~S∗(k2)

)
A+

k1ω1
A−

k2ω2
+ ~S∗(k1)~S(k2)A

−
k1ω1

A+
k2ω2

+

+
(
~S(k1)~S(k2)

)
A+

k1ω1
A+

k2ω2
+

(
~S∗(k1) ~S∗(~k2)

)
A−

k1ω1
A−

k2ω2
+

+
A0(k1ω1)

k1

(
~k1, ~S(k2)A

+(k2) + ~S∗(k2)A
−(k2)

)
+ (4.7)

+
A0(k2, ω2)

k2

(
~k2, ~S(k1)A

+(k1) + ~S∗(k1)A
−(k1)

)
+

(k1k2)

k1k2

A0(k1ω1)A
0(k2ω2),

( ~Ak1ω1 , ~A∗
k2ω2) =

(
~S(k1) ~S∗(k2)

)
A+

k1ω1
A+∗

k2ω2
+ ~S∗(k1)~S(k2)A

−
k1ω1

A−∗
k2ω2

+

+
(
~S(k1)~S(k2)

)
A+

k1ω1
A−∗

k2ω2
+

(
~S∗(k1) ~S∗(k2)

)
A+∗

k1ω1
A−

k2ω2
+

+
A0(k1ω1)

k1

(
~k1, ~S(k2)A

+(k2) + ~S∗(k2)A
−(k2)

)
+ (4.8)

+
A0∗(k2, ω2)

k2

(
~k2, ~S(k2)A

+(k2) + ~S∗(k2)A
−(k2)

)
+

(~k1
~k2)

k1k2

A0(k1ω1)A
0∗(k2ω2).

By substituting (4.7),(4.8) to (4.3), we can express S4 in terms of A±(k, ω),
A0(k, ω). Let us suppose that the waves are almost monochromatic. This

means that ~A(k, ω) is supported at

~k = k0( ~n3 + ε~κ), ε ¿ 1,

ω = ω0(1 + εη), (4.9)
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only. Further, we can expand the vector field ~S(k) in powers of ε,

~S(k) = ~S0 + ε~S1 + ε2~S2 + · · · , (4.10)

where
~S0 =

1√
2
( ~n1 + i ~n2),

~S1 = − 1√
2
(κ(1) + iκ(2)) ~n3 +

iκ3

2
√

2
( ~n1 − i ~n2). (4.11)

In zero order of ε we can put A0 = 0. Then, in this approximation,

( ~Ak1ω1 , ~Ak2ω2) = A+
k1ω1

A−
k2ω2

+ A−
k1ω1

A+
k2ω2

,

( ~Ak1ω1 , ~A∗
k2ω2) = A+

k1ω1
A+∗

k2ω2
+ A−

k1ω1
A−∗

k2ω2
, (4.12)

and for the quartic part of the action S we obtain the following expression:

S4 = −1

2
ω4

0

∫
α

[
(A+

k1ω1
A+∗

k2ω2
+ A−

k1ω1
A−∗

k2ω2
) (A+∗

k3ω3
A+

k4ω4
+ A−∗

k3ω3
A−

k4ω4
)×

×δk1−k2−k3+k4δω1−ω2−ω3+ω4 +

+β(A+
k1ω1

A−
k2ω2

+ A−
k1ω1

A+
k2ω2

)(A+∗
k3ω3

A−∗
k4ω4

+ A−∗
k3ω3

A+∗
k4ω4

)×
×δk1+k2−k3−k4δω1+ω2−ω3−ω4 ] dk1 dk2 dk3 dk4 dω1 dω2 dω3 dω4. (4.13)

In this local approximation, the Maxwell equations describing the media
can be reduced to the system of nonlinear Schrödinger equations, which was
first derived by Zakharov and Schulman[4]. To obtain a specific form of the
equation, we must choose one variable as the efficient time. In the original
paper[5], the physical time plays this role.

The variational approach formulated in this article makes it possible to
derive a correction to the NSLE model in a regular way. The detailed de-
scription of these calculations will be published in a separated paper.
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