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Abstract

The standard median filter based on a symmetric moving window has only one tuning parameter: the window

width. Despite this limitation, this filter has proven extremely useful and has motivated a number of extensions:

weighted median filters, recursive median filters, and various cascade structures. The Hampel filter is a member of the

class of decsion filters that replaces the central value in the data window with the median if it lies far enough from the

median to be deemed an outlier. This filter depends on both the window width and an additional tuning parameter t,

reducing to the median filter when t = 0, so it may be regarded as another median filter extension. This paper adopts

this view, defining and exploring the class of generalized Hampel filters obtained by applying the median filter

extensions listed above: weighted Hampel filters, recursive Hampel filters, and their cascades. An important concept

introduced here is that of an implosion sequence, a signal for which generalized Hampel filter performance is

independent of the threshold parameter t. These sequences are important because the added flexibility of the

generalized Hampel filters offers no practical advantage for implosion sequences. Partial characterization results are

presented for these sequences, as are useful relationships between root sequences for generalized Hampel filters and

their median-based counterparts. To illustrate the performance of this filter class, two examples are considered: one is

simulation-based, providing a basis for quantitative evaluation of signal recovery performance as a function of t, while

the other is a sequence of monthly Italian industrial production index values that exhibits glaring outliers.

1 Introduction
In their paper, “On a class of nonlinear filters,” Sicuranza

and Carini begin by noting [1]:

“The set of nonlinear filters is extremely large since

their definition simply excludes the applicability of the

linear superposition property on which the theory of

linear filters is based. However, from the very

beginning, attempts have been done to suitably classify

nonlinear filters on the basis of some peculiar

properties, leading to the identification of certain

classes of nonlinear filters.”

This paper adopts a similar philosophy, restricting con-

sideration to a class of nonlinear filters obtained by com-

bining two previously studied filter classes: the Hampel

filter described in Section 2, and the median filter exten-

sions described in Sections 4 and 7. The result is a class of

nonlinear filters we believe to be new, that includes all of

these previously studied filters as special cases, but which

exhibits a greater degree of design flexibility.
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2 Standardmedian and Hampel filters
All of the filters discussed in this paper are based on the

following moving data window, or some simple extension

of it:

WK
k = {xk−K , . . . , xk , . . . , xk+K }, (1)

where K is a positive integer called the window half-

width. The standard median filterMK was introduced by

J.W. Tukey in 1974 [2] and is obtained by computing the

median of the moving data windowWK
k :

mk = median{xk−K , . . . , xk , . . . , xk+K }. (2)

The only tuning parameter for this filter is the window

half-width parameter K , which limits its flexibility, but

the real strength of the median filter lies in its extreme

resistance to local outliers or impulsive noise in the input

data squence {xk}. Unfortunately, the median filter can

also introduce significant distortion in the portion of

the signal we wish to retain, making its utility strongly

application-dependent. These filter characteristics have

led to the development of a number of median filter exten-

sions, including the recursive median filter discussed in

Section 4 and others described in Section 7.
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A closely related filter is the Hampel filter HK , which

belongs to the class of decision-based filters discussed in

the book by Astola and Kuosmanen ([3] p. 194), who

note that the basic concept has been reinvented again

and again. The version considered here represents a

moving-window implementation of the Hampel identifier

described by Davies and Gather [4], an outlier detec-

tion procedure based on the median and the MAD scale

estimator. Specifically, this filter’s response is given by:

yk =

{

xk |xk − mk| ≤ tSk ,

mk |xk − mk| > tSk .
(3)

where mk is the median value from the moving data

window and Sk is the MAD scale estimate, defined as:

Sk = 1.4826 × medianj∈[−K ,K ]{|xk−j − mk|}. (4)

The factor 1.4826 makes the MAD scale estimate an

unbiased estimate of the standard deviation for Gaussian

data.

The key observation on which this paper is based is that,

when the threshold parameter t is set to zero, we recover

the standard median filter:

yk|t=0 = mk . (5)

It follows from this observation that we may regard the

Hampel filter as a generalization of the median filter, with

t as an additional tuning parameter. The central question

explored in this paper is what the consequences of this

generalization are when we combine it with other gener-

alizations of the median filter that are well-known in the

literature, as described in Sections 4 and 7.

A filter’s root sequences are those sequences {xk} that

are invariant under the action of the filter, and the root

squences for the standard median filter have been well-

characterized (see, for example [5] or [6]). Thus, it is

worth noting that the set Rt of root sequences for the

Hampel filter with threshold t contains the median filter

root sequence R0 for all t ≥ 0. Specifically, if s ≤ t, it

follows that:

|xk − mk| ≤ sSk ≤ tSk ⇒ Rs ⊂ Rt . (6)

The practical implication of this result is that the

Hampel filter may be viewed as a “less aggressive exten-

sion” of the median filter, generally becoming less aggres-

sive with increasing threshold value t. In particular, for

“most” sequences {xk}, the Hampel filter varies from the

median filter at is most aggressive (i.e., for t = 0) to an

identity filter as t → ∞. The important exception to

this behavior is the class of implosion sequences described

next.

3 Implosion sequences
The MAD scale estimator has the extremely desirable

characteristic of exhibiting the maximum possible outlier

resistance [4], but it does suffer from an unfortunate sen-

sitivity to implosion: if more than 50 % of the data values

are the same, the MAD scale estimate is zero, indepen-

dent of the other values in the data sequence. The practical

consequences for the Hampel filter are that if K + 1 or

more of the values in the data windowWK
k have the same

value, then Sk = 0, implying that yk = mk , independent

of the threshold parameter t. Thus, we make the following

definitions:

1. Define the windowWK
k to be an implosion window if

Sk = 0;

2. Define the sequence {xk} to be an implosion
sequence if all windows are implosion windows (i.e.,

if Sk = 0 for all k);

3. Define the sequence {xk} to be implosion-free if it

contains no implosion windows (i.e., if Sk > 0 for all

k).

The practical consequence of these definitions is that if

{xk} is an implosion sequence, the output of the Hampel

filter reduces to that of the median filter for all t, so

the added flexibility of the Hampel filter offers no prac-

tical advantage for these sequences. Similarly, since the

Hampel filter root set contains the median filter root

set for all threshold values t, the added flexibility of

the Hampel filter offers no practical advantage for these

sequences, either. Thus, the signals of greatest interest in

characterizing Hampel filter performance are implosion-

free sequences that are not median filter roots.

As noted in Section 2, the Hampel filter reduces to the

standard median filter when the threshold parameter has

the value t = 0, and it becomes generally less aggres-

sive with increasing t. It follows directly from the defining

equations that the Hampel filter has no effect on the input

signal if the following condition is satisfied:

max
k

|xk − mk| ≤ tmin
k

Sk , (7)

where the maximum on the left-hand side and the min-

imum on the right-hand side of this condition are taken

over all moving data windows. If {xk} is an implosion-

free sequence, it follows that mink Sk > 0, so Eq. (7)

can be inverted to yield the following condition for signal

preservation:

t ≥
maxk |xk − mk|

mink Sk
. (8)

That is, if {xk} is an implosion-free sequence, the

Hampel filter reduces to an identity filter for some suffi-

ciently large but finite value of t. This result means that the

practical characterization of Hampel filter performance

can be restricted to the range 0 ≤ t ≤ t∗, where t∗ is this

identity filter threshold value.
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Theorem The sequence {xk} is an implosion sequence

forHK if and only if, for all k, more than K elements of the

windowW
K
k have the same value.

Proof 1. Assume {xk} is an implosion sequence for

HK . This means:

median{|xk − mk|} = 0,

implying |xk − mk| = 0 for at least K + 1 values,

implying xk = mk for at least K + 1 values inWK
k .

2. Conversely, suppose that at least K + 1 values inWK
k

are equal to some constant c. It follows immediately

that the median value in this window ismk = c,

implying |xk − mk| = 0 for at least K + 1 values,

implying Sk = 0 so that {xk} is an implosion sequence

forHK .

This result allows us to construct some specific exam-

ples of Hampel filter implosion sequences from the signal

components used by Gallagher and Wise to character-

ize median filter root sequences [6]. Specifically, given K ,

define the following four components:

1. Aconstant neighborhood is a sequence of at least

K + 1 consequtive identical values;

2. An edge is a monotonically increasing or decreasing

sequence, preceeded and followed by constant

neighborhoods of different values;

3. An impulse is a sequence of at most K values,

preceeded and followed by constant neighborhoods

having the same value, with the values of the

intermediate points distinct from those of the

surrounding constant neighborhoods;

4. An oscillation is any sequence of values not contained

in a constant neighborhood, an edge, or an impulse.

Based on these definitions, it can be shown that {xk} is

a root sequence for the median filter MK if and only if it

consists entirely of constant neighborhoods and edges [6].

Note that by the above theorem, a sequence {xk} that

consists entirely of constant neighborhoods will be an

implosion sequence for HK . In this case, it follows by

the above result that {xk} is also a root sequence for the

median filter MK , so we expect no difference in behav-

ior between the median and Hampel filters for this case

by the root sequence nesting condition (6). A more inter-

esting example is the case of a sequence {xk} composed

of constant neighborhoods and impulses. Here again, it is

easy to see that this sequence is an implosion sequence

for HK , but it is not a median filter root sequence. In this

case, the Hampel filter will reduce to the median filter for

all threshold parameters t and map {xk} to a sequence of

constant neighborhoods with the impulses removed. Note

that this sequence is a median filter root sequence. Finally,

a third class of implosion sequences is the class of binary

oscillations:

xk =

{

a k even,

b k odd,
(9)

for any a 
= b. Since at any k, the moving windowWK
k will

have K of one of these values and K + 1 of the other value,

it follows immediately from the above theorem that {xk} is

an implosion sequence forHK .

An interesting open question is whether there are other

classes of implosion sequences for HK besides the three

just described. Since any root sequence for the median

filter MK is also a root for all Hampel filters HK , regard-

less of threshold, the important implosion sequences are

those that are not median filter roots: these sequences are

modified by the median filter and also modified in exactly

the same way by the Hampel filter, independent of the

threshold parameter t.

4 Recursivemedian and Hampel filters
The recursive median filter is obtained by replacing the

symmetric moving windowWK
k defined in Eq. (1) with the

following recursive data window:

RK
k = {mk−K , . . . ,mk−1, xk , xk+1, . . . , xk+K }, (10)

wheremk−j represents the output at prior time k− j of the

standard median filter applied to the input sequence {xk}.

This extension exhibits a number of interesting proper-

ties, including idempotence [7], i.e., a single application of

the recursive median filter maps {xk} into the filter’s root

set. Further, it has also been shown that the root set for the

recursive median filter is identical to that for the standard

median filter.

The recursive Hampel filter is defined analogously,

replacing the recursive window defined in Eq. (10) based

on prior median filter outputs, with the alternative

window:

R
t,K
k = {Ht

k−K , . . . ,H
t
k−1, xk , xk+1, . . . , xk+K }, (11)

whereHt
k−j

represents the output at prior time k− j of the

Hampel filter with threshold parameter t applied to the

input sequence {xk}.

It follows by direct extension of the root set nesting

result given in Eq. (6) for the nonrecursive case that the

recursive Hampel filter root set contains the recursive

median filter root set. Specifically, if {rk} is a root for the

Hampel filter with threshold s for 0 ≤ s ≤ t, then:

|rk−j−mk−j| ≤ sSk−j ≤ tSk−j ⇒ Hs
k−j = Ht

k−j = rk−j.

(12)

Thus, if we let R̃t denote the root set for the recursive

Hampel filter with threshold parameter t, the following

two conclusions are immediate:
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1. The recursive and non-recursive Hampel root sets

are identical for every threshold parameter: R̃t = Rt

for all t;

2. The recursive Hampel root sets nest: for all 0 ≤ s ≤ t,

it follows that R̃s ⊂ R̃t .

Beyond these results, the following interesting questions

are open at present:

1. The recursive median filter is idempotent—does this

behavior extend to recursive Hampel filters for

arbitrary t? If not, is the recursive median filter the

only idempotent member of this family? More

generally, how does idempotence depend on t?

2. What is the relationship between implosion

sequences for the recursive and non-recursive

Hampel filters?

5 The influence of t on filter performance
To provide quantitative filter performance results, the fol-

lowing section presents a brief case study that examines

the influence of the Hampel filter tuning parameter t on

the performance of both the standard Hampel filter and

the recursive Hampel filter. Since the primary question

of interest is the influence of the tuning parameter t, this

example considers a fixed window half-width parameter

(specifically, K = 5, yielding an 11-point moving win-

dow filter) and examines filter performance over a range

of t values. The basis for these performance comparisons

is a simulated data example described in Section 5.1: the

advantage of considering a simulation-based example is

that we can be explicit about the signal components we

wish to recover and can therefore quantify signal recovery

performance. More specifically, this example considers

two possible signal recovery problems described in detail

in Section 5.1 and characterizes performance in terms

of two metrics: the root mean square signal recovery

error (RMSE) and the mean absolute signal recovery error

(MAE).

5.1 A simulated data example

To provide a basis for comparing the different filters con-

sidered in this paper, we apply them to the 420-point

simulated data sequence shown in Fig. 1, which contains

four components:

1. Step-and-ramp sequence (median filter root) for

k = 1, 2, . . . , 420;

2. Low-level Gaussian noise (partial: nonzero only for

k = 1, 2, . . . , 240);

3. Sinusoid (partial: nonzero only for

k = 101, 102, . . . , 420);

4. Impulsive noise, randomly distributed throughout

the sequence.

More specifically, the step-and-ramp sequence consists

of eight segments:

1. yk = 0 for k = 1 to k = 40;

2. a linear increase from yk = 0 to yk = 1 from k = 41

to k = 100;

3. yk = 1 for k = 101 to k = 140;

4. yk = 2 for k = 141 to k = 220;

5. a linear decrease from yk = 2 to yk = 0 from k = 221

to k = 300;

6. yk = 0 for k = 301 to k = 320;

7. yk = −1 for k = 321 to k = 400;

8. yk = 0 for k = 401 to k = 420.

TheGaussian noise component hasmean zero and stan-

dard deviation σ = 0.1, and the sinusoid has period 29 and

amplitude 0.3. The impulsive noise component is an addi-

tive term that is zero everywhere except for the following

eight values of k, where it takes the nonzero values indi-

cated in parentheses: k = 20 (+1), k = 35 (−1), k = 120

(+1), k = 190 (−1.5), k = 220 (−2.5), k = 300 (+1),

k = 350 (+2.5), and k = 410 (+1.5).

The primary question of interest here is how well the

different filters considered eliminate the isolated spikes

in this signal while preserving the low-level details, espe-

cially the sinusoidal component. The presence of the

low-level noise in approximately the first half of the sig-

nal raises a subtle practical issue, however: is a “good”

filter one that simply removes the impulsive spikes from

the data sequence, or should it also address the low-level

noise? Given that median filters and their extensions are

much better suited to the removal of impulsive noise than

the smoothing of low-level noise, the first formulation

seems the more reasonable here, but the question is raised

to emphasize that filter performance criteria are generally

problem-specific.

Additional insights can be obained from this example

by considering filter performance for the three qualita-

tively distinct signal subsequenes separated by dashed

vertical lines in Fig. 1. Specifically, the first 100 points of

the sequence—denoted “Noise Only” in Fig. 1—consists

of a median filter root sequence, contaminated with both

low-level Gaussian noise and impulsive noise spikes. The

second subsequence, from k = 100 to k = 240 and

labelled “Noise + Sine,” contains all four of the signal com-

ponents listed above, while the third subsequence, from

k = 240 to k = 420 and labelled “Sine Only,” consists of a

median filter root sequence with a superimposed sinusoid

and isolated spikes, but no low-level noise.

The two signal recovery problems considered here are

the following:

P1 the impulsive noise removal problem, where the

signal to be recovered consists of the sum of the first

three components listed above;
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Fig. 1 A simulated 420-point signal

P2 the complete noise removal problem, where the

signal to be recovered consists of the sum of the two

deterministic components (i.e., the median filter root

plus the sinusoid), without either low-level or

impulsive noise.

As noted above, these signal recovery problems have

different characters, with the first being more suitable

for the filter class considered here, but the second prob-

lem is of considerable practical significance. Two perfor-

mance measures are considered for both problems: the

root-mean-square recovery error (RMSE) is more widely

used, but may be less appropriate than the mean absolute

recovery error (MAE) in the presence of impulsive noise.

Finally, it is important to note that, for the filter window

width considered here (K = 5), the signal sequence shown

in Fig. 1 is implosion-free and is not a median filter root

sequence. Thus, it follows that filter performance should

depend on the threshold parameter t, and the objective of

the following discussions is to illuminate the nature of this

dependence.

5.2 Results for the Hampel filter

For the signal defined in Section 5.1, the identity filter

threshold described in Section 3 is approximately t = 21,

so the results presented here consider the performance of

the Hampel filter over the range from t = 0 to t = 21, in

increments of 0.5. Four views of the signal recovery per-

formance of the Hampel filter over this range of t values

are presented in Fig. 2. The upper left plot shows the

RMSE signal recovery measure for the impulsive noise

removal problem, the upper right shows the correspond-

ing MAE signal recovery measure, the lower left plot

shows the RMSE measure for the complete noise removal

problem, and the lower right shows the MAE measure for

this problem. Note that the two RMSE plots are shown

on the same scale to facilitate comparison, as are the two

MAE plots, but the RMSE and MAE scales are differ-

ent. For the impulsive noise removal problem (the upper

two plots), bothmeasures exhibit a broad but well-defined

minimum for threshold parameters t between 3.0 and 6.5.

For values much smaller than 3, performance degrades

sharply as t decreases to the t = 0 median filter limit; sim-

ilarly, performance again degrades as the t value increases

from 6.5, particularly for the RMSE measure, as the

Hampel filter approaches the identity limit. The MAE

view in the upper right is particularly interesting here:

this performance measure is poorest for the median fil-

ter, becoming consistently better than themedian filter for

all t ≥ 1.0. This result reflects the significant distortion

introduced into the signal sequence by the median filter,

offsetting its ability to remove the noise spikes.

For the complete noise removal problem (the lower

two plots), the dependence of filter performance on the

threshold parameter is very different. In particular, per-

formance degrades uniformly with increasing t for both

the RMSE and MAE measures. Since the complete noise

removal objective requires removal of both the impulsive
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Fig. 2 Hampel filter performance vs. t by four different criteria: RMSE or MAE, impulsive noise removal or complete noise removal

noise and the low-level noise, these results suggest that as

t increases, the Hampel filter allows more of the low-level

noise to pass through the filter unmodified, offsetting the

performance advantage of lower distortion of the sinu-

soidal signal components. In particular, since the filter

removes all of the impulsive noise spikes for t between 0

and 6.5, it follows that the poorer performance seen for the

complete noise removal problem over the impulsive noise

removal optimal performance range (t = 3.5 to t = 6.0)

relative to the median filter limit t = 0 is caused by the

filter’s allowing more low-level noise into the output sig-

nal. These results emphasize the point made earlier that

these filters are not well-suited to low-level noise removal

problems.

Figure 3 shows the MAE performance for the impul-

sive noise removal problem as a function of t, broken

down by signal segment: the upper left plot corresponds

to the upper right plot in Fig. 2, characterizing the com-

plete signal sequence, while the other three plots show the

corresponding results for the three segments indicated in

Fig. 1. The upper right plot presents the results for Seg-

ment 1 (“Noise only”), consisting of the median filter root

sequence, low-level Gaussian noise, and impulsive noise

spikes. This plot clearly shows the low-level noise dis-

tortion effects for small t values, which is worst for the

median filter (t = 0), decreasing monotonically until t =

3.0, where the filter is sufficiently non-aggressive to allow

most of the low-level noise through unmodified. In fact,

the optimal filter performance for this signal sequence

occurs at t = 8.5 where the MAE is near zero. For t ≥ 9.5,

the filter begins allowing impulsive noise spikes into the

output, causing a dramatic increase in MAE. The lower

left plot in Fig. 3 shows the results for Segment 2 (“Noise +

Sine”). As in Segment 1, the performance is worst for

the median filter, improving uniformly with increasing t

until the optimal plateau between t = 3.0 and t = 6.5,

where the filter is aggressive enough to remove all of the

impulsive noise spikes but forgiving enough to pass the

low-level noise and sinusoidal components without dis-

tortion. As t increases beyond this range, the Hampel filter

quickly becomes an identity filter, passing all of the impul-

sive noise spikes for t ≥ 9.5. Finally, for Segment 3 (“Sine

only,” lower right plot), the distortion introduced in the

sinusoidal component by the median filter reduces essen-

tially to zero for t ≥ 1.0 and the Hampel filter exhibits

optimal performance for 1.0 ≤ t ≤ 6.5. As t increases
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Fig. 3 Hampel filter MAE performance vs. t for impulsive noise removal: full sequence (upper left), Segment 1 (upper right), Segment 2 (lower left), and

Segment 3 (lower right)

beyond this limit, the filter begins to pass impulsive noise

spikes, becoming an identity filter for t ≥ 14.0.

Figure 4 shows a plot of the median filter response (t =

0, represented by open circles), overlaid with a solid line

representing the response of the Hampel filter with t = 5,

falling in the optimal parameter range for the complete

signal and all segments except Segment 1, where the per-

formance is near-optimal. In addition, points where these

two filter responses differ are indicated by solid rectan-

gles. From these results, it is clear that the Hampel filter

with t = 5 passes both the low-level noise components

and the sinusolidal components essentially perfectly, while

the median filter seriously distorts the portions of the sig-

nal contaminated with low-level noise, and it “clips” the

tops and bottoms of the sinusoidal component. It is also

clear that both filters remove all of the impulsive noise

from the signal sequence.

The frequency of the sinusoidal component in this

example is important. Specifically, the maximum possi-

ble frequency is that of the binary implosion sequence

described in Section 3, implying that in this limit, the

Hampel filter offers no advantage over the median filter.

At the other extreme, if the sinusoidal frequency is low

enough, the N-point finite signal sequence will be mono-

tonic, and thus a root sequence for the median filter and

all Hampel filters. For intermediate frequencies; however,

sinusoidal components are neither implosion sequences

nor roots, and as this example illustrates, the response

of the Hampel filter to these components generally varies

strongly with t.

5.3 Results for the recursive Hampel filter

Figure 5 shows the complete sequence performance for

the recursive Hampel filter. Specifically, the upper left

plot shows the RMSE measure versus t for the impul-

sive noise removal problem, while the upper right plot

shows the correspondingMAE results; the lower two plots

present these same results for the complete noise removal

problem. Comparing the upper two plots in Fig. 5 with

those in Fig. 2, we see the same general behavior of the

recursive Hampel filter as that for the standard Hampel

filter, although the “optimal plateau” starts later and is

slightly shorter. Indeed, Fig. 6 shows that the low-level

distortion is worse for the recursive median filter than

that for the standard median filter, although it declines

rapidly with increasing t until the optimal plateau is
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Fig. 4Median filter response (open circles) and Hampel filter response with t = 5 (lines), with points of disagreement marked as solid squares

Fig. 5 Recursive Hampel filter performance vs. t by four different criteria: RMSE or MAE, impulsive noise removal or complete noise removal



Pearson et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:87 Page 9 of 18

Fig. 6 Recursive (solid triangles) and non-recursive (open circles) Hampel filter MAE performance vs. t for impulsive noise removal

reached, after which the two filter responses appear to be

identical.

The more interesting results in Fig. 5 are the two bot-

tom plots for the complete noise removal problem: in

contrast to the monotonic behavior seen in the corre-

sponding plots in Fig. 2, the recursive filter exhibits a

sharp optimum at t = 1. A more detailed comparison of

the recursive and nonrecursive Hampel filter MAE per-

formance is shown in Fig. 7: for small t, the recursive

filter performance is much worse than the standard filter,

although for t values between 1.0 and 3.0, the recursive

filter actually performs slightly better; for larger t values,

both filters exhibit essentially identical performance.

Figure 8 summarizes the recursive median filter’s MAE

performance for the complete noise removal problem as

a function of t for the complete signal and the three seg-

ments marked in Fig. 1. The upper left plot shows the

results for the complete signal and is the same as the

lower right plot in Fig. 5, included here to facilitate visual

comparisons. The upper right plot shows the results for

Segment 1 (“Noise only”) and here, the optimum at t = 1

is much sharper than that for the complete signal, with

performance degrading much more rapidly as t increases

beyond this value. The results for Segment 2 (“Noise +

sine”) shown in the lower left plot are a bit more compli-

cated: optimal performance is again obtained for t = 1,

but this optimum is shallower than that for Segment 1 and

there is a second, small local minimum from t = 2.5 to t =

3, after which performance again degrades monotonically

with increasing t. Finally, the performance for Segment 3

(“Sine only”, lower right plot) is virtually identical to that

seen for the standard Hampel filter shown in the lower

right plot in Fig. 3.

Overall, these results—particularly those for the com-

plete noise removal performance of the recursive Hampel

filter—show that the performance of these filters depends

strongly on the threshold value t, but very differently for

different signal extraction problems and different signal

characteristics. For example, for Segment 3 (“Sine only”),

the performance of the recursive and standard Hampel

filters are almost identical, both for the impulse noise

removal problem and for the complete noise removal

problem: distortion is observed for t less than 1.0, excel-

lent performance is observed for t between 1.0 and 6.5,

with consistent performance degradation as t is increased

beyond this value. In contrast, for Segment 1 (“Noise

only”), these performance curves are very different: for

the impulsive noise removal problem with the standard

Hampel filter, performance is worst in the median filter

limit, improves uniformly as t increases to 3.5 where it

remains near-optimal as t increases to 8.5; optimal

performance—only slightly better—is achieved for t

between 8.5 and 9.0, after which performance becomes

discontinuously worse, but never approaches the level of

poor performance seen for the median filter. In contrast,

for the complete noise removal problemwith the recursive

Hampel filter for this data segment, a sharp optimum is

observed at t = 1.0, with increasingly poorer performance
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Fig. 7 Recursive (solid triangles) and non-recursive (open circles) Hampel filter MAE performance vs. t for complete noise removal

as t increases, exhibiting worse performance than the

recursive median filter for all t > 2. Finally, as noted,

the complete noise removal performance for the recur-

sive Hampel filter for Segment 2 (“Noise + sine”) is even

more complicated, exhibiting local optima in its MAE vs.

t performance curve.

6 A real data example
To provide an illustration of how the generalized Hampel

filters described in this paper work with a real data exam-

ple, the following section applies several of these filters

to a publically-available time-series dataset. Specifically,

this example is based on the gipi sequence included in

the tsoutliers R package [8], available as one row of the

bde9915 data frame. This data sequence is a monthly

time-series of Italian industrial production index from

1981 to 1996, consisting of 192 observations. A plot of

this time-series is shown in Fig. 9, from which the pres-

ence of significant outliers in the data is clear. In fact,

these anomalous data points occur at regular 12-month

intervals and represent what Kaiser and Maravall call sea-

sonal outliers [9]. If we apply standard time-series mod-

eling procedures (e.g., fitting ARMA or ARIMA models

to the data), the results will be profoundly influenced by

the presence of these outliers, and at least two general

strategies can be used to address these problems. The

first is the development of specialized analysis procedures

that are resistant to the anomalies in the data, extending

standard analysis methods using fundamental ideas from

robust statistics, such as the robust time-series model-

ing approach described by Martin and Yohai [10] or the

robust-resistant spectrum estimation approach described

by Martin and Thomson [11]. The second approach is the

use of simple data-cleaning filters like those described in

this paper to remove the outliers from the data sequence,

after which standard analysis procedures are applied. The

primary objective of this example is to illustrate the range

of results that may be obtained when different general-

ized Hampel filters are applied to the time-series shown in

Fig. 9.

Figure 10 shows the results of two standard median fil-

ters (upper two plots) and two recursive median filters

(lower two plots) applied to the Italian industrial produc-

tion data shown in Fig. 9. The left-hand plots correspond

to filters based on the window half-width parameter K =

3 (i.e., 7-point moving data windows), while the right-

hand plots correspond to filters with K = 5 (i.e., 11-point

moving data windows). In all cases, the vertical scale is

the same to facilitate comparisons. All of these filters

completely eliminate the seasonal outliers, but they also

introduce significant distortion in the nominal part of the

signal. This is less pronounced in the standard median

filter results, where the original signal details are much

better approximated than in the results obtained from the
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Fig. 8 Recursive Hampel filter MAE performance vs. t for complete noise removal: full sequence (upper left), Segment 1 (upper right), Segment 2

(lower left), and Segment 3 (lower right)

recursive median filters. It is also clear that the distortion

introduced by these filters is worse for K = 5 than it is for

K = 3.

Figure 11 shows comparative results for four different

Hampel-based filters. As in Fig. 10, the top two plots are

for nonrecursive Hampel filters, while the bottom two

plots are for their recursive counterparts. Here, all of these

filters are based on the half-width parameter K = 5,

with the right- and left-hand plots differing in the Ham-

pel threshold parameter t. Specifically, the left-hand plots

correspond to the more aggressive threshold value t = 1,

while the right-hand plots are based on t = 2. As before,

all of these filters completely eliminate the seasonal out-

liers from the data, introducingmuch less distortion in the

nominal part of the signal than the corresponding median

filters do. Comparing the left-hand and right-hand plots,

it is also clear that these filters introduce much less distor-

tion with t = 2 than with t = 1. Comparing the upper and

lower plots, it is also clear that while the recursive Ham-

pel filter introduces more nominal signal distortion than

the nonrecursive filter for this signal, this effect becomes

much less pronounced with increasing t.

One type of generalized Hampel filter that was not dis-

cussed in connection with the simulation example was

the subclass of cascade interconnections of Hampel fil-

ters and/or recursive Hampel filters. Figure 12 shows the

results obtained when four different filter cascades are

applied to the Italian industrial production index data

shown in Fig. 9. In the upper left plot, the results were

obtained by first applying the standard median filter with

K = 3 (i.e., the 7-point median filter) to the raw signal,

and then applying the recursive median filter with K = 5

(i.e., the 11-point recursive median filter) to the output

of this filter. Comparing this plot with those for either

of the individual components of this cascade in Fig. 10

(i.e., the standard median filter with K = 3 shown in the

upper left plot and the recursive median filter with K = 5

shown in the lower right plot), it is clear that the cascade

results are intermediate in their tendency to emphasize

the low-frequency trend in the data at the expense of

key high-frequency details, while still removing the sea-

sonal outliers. The upper right plot in Fig. 12 relaxes both

components of this first cascade, increasing the thresh-

old parameter from the median filter limit t = 0 to the
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Fig. 9Monthly Italian industrial production index, 1981–1996

Fig. 10Median filter and recursive median responses to the Italian industrial production index
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Fig. 11 Hampel filter and recursive Hampel filter responses to the Italian industrial production index

less aggressive value t = 1. Here, intermediate and high-

frequency details are better preserved than in the median

filter cascade results shown to the left, giving a result with

fewer “flat streches” than seen for the recursive Hampel

filter with t = 1 shown in the lower left plot in Fig. 11. The

lower left plot in Fig. 12 represents the next step in this

general trend, keeping the same basic cascade structure as

in the previous two examples, but further increasing the

threshold parameter for both filter components to t = 2.

Interestingly, this cascade filter response preserves much

less of the original nominal signal detail than the recursive

Hampel filter with K = 5, as may be seen by compar-

ing this result with the lower right plot in Fig. 11. Finally,

the lower right plot in Fig. 12 shows the results of a sim-

ilar cascade, but with the threshold of the recursive filter

reduced from t = 2 as in the lower left plot to t = 1.

As expected, by making this second cascade component

more aggressive, we further attenuate many of the original

signal details relative to the response shown in the lower

left plot, but not nearly as much as in the still more aggres-

sive cascade shown in the upper right plot directly above.

The key point of this example is to demonstrate that cas-

cade interconnection of simpler generalized Hampel filter

components can significantly expand the range of possible

filter behavior.

The final result presented here considers a filter that is

not a member of the generalized Hampel family, but is

conceptually similar in an important sense. Specificallly,

recall that the basic idea behind the Hampel filter is to

consider the central point in the moving data window and

determine whether it is “anomalous:” if so, it is replaced

with the “more reasonable” median value computed from

the data window; otherwise, it is left unmodified. The An

filter described by Rohwer ([12] p. 37) is based on a simi-

lar idea, but with a different definition of “anomalous” and

a different replacement value for these points. This filter

belongs to the LULU family, described briefly here; for a

more detailed introduction, refer to Rohwer’s book [12].

A less detailed introduction to these filters is also given

in the book by Pearson and Gabbouj ([13] Section 6.2.3),

which also provides Python implementations in the Non-

linearDigitalFiltersmodule.

The LULU filter class consists of filters constructed

from cascade interconnections of the following two asym-

metric moving window operators:

∨

K

{xk} = max{xk , xk+1, . . . , xk+K }

∧

K

{xk} = min{xk−K , . . . , xk−1, xk}. (13)
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Fig. 12 Cascade filter responses to the Italian industrial production index

Members of the LULU family consist of cascade inter-

connections of the component filters Ln andUn built from

these two operators:

LK {xk} =
∨

K

◦
∧

K

{xk},

UK {xk} =
∧

k

◦
∨

K

{xk}, (14)

where the composition operator ◦ represents cascade

interconnection, with the operator to the right of the ◦

symbol applied to the raw input signal, and the opera-

tor to the left of the ◦ symbol applied to the output of

the first filter. It is not difficult to show that the filters LK
and UK are symmetric moving window filters with win-

dow half-width parameter K , and it is traditional to drop

the ◦ symbol when indicating cascades of these filter com-

ponents. Rohwer shows that the response of the cascade

filter UKLK is a pointwise lower bound on the response of

the standard median filter with half-width K , and that the

response of the cascade filter LKUK is a pointwise upper

bound ([12] p. 23):

UKLK {xk} ≤ MK {xk} ≤ LKUK {xk}. (15)

In fact, these filter responses are also lower and upper

bounds on the response of the recursivemedian filter ([12]

p. 36). These observations motivate the definition of the

An filter considered here, defined in a very similar spirit to

the Hampel filter ([12] p. 37): if the central point xk in the

data window falls between the UKLK and LKUK bounds,

the filter output is simply xk , unmodified; otherwise, the

filter output is the average of the upper and lower bounds.

Figure 13 shows the response of the A5 filter applied

to the Italian industrial production index data sequence,

indicated as solid triangles. To see how this filter modi-

fies the original signal, the original signal values are also

shown on the plot as open circles, overlaid on a dot-

ted line. Note that because the vertical axis limits cut off

the lowest-valued seasonal outliers in the original data

sequence, not all of these points are shown, but a few of

the seasonal outliers are evident, including the one near

the end of the sequence that the filter passes umodified.

Also, note that most of most extreme non-outlying down-

ward excursions in the original signal are modified by this

filter, as are many of the largest upward excursions.

For comparison, Fig. 14 shows the corresponding results

for the Hampel filter with K = 5 and threshold parame-

ter t = 2, in the same format as Fig. 13. Note that here,

none of the seasonal outliers are passed by the filter, most

of the most extreme non-outlying lower excursions of the

signal are left unmodified, as are all but one of the largest
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Fig. 13 A5 filter applied to the monthly Italian industrial production index (solid triangles), overlaid on the original signal (dotted lines with open circles)

Fig. 14 Hampel filter (K = 5, t = 2) applied to the monthly Italian industrial production index (solid triangles), overlaid on the original signal (dotted

lines with open circles)
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upper excursions. In fact, careful comparisons of all of

the filter results presented here show that, if our filtering

objective is to remove only the seasonal outliers and leave

the rest of the signal unmodified, the Hampel filter with

K = 5 and t = 2 gives the best performance of any of the

filters considered here. It is important to emphasize, how-

ever, that analogous results cannot be expected to hold in

all situations. For example, in cases where some degree of

smoothing of the low-level noise is also desirable, cascade

filters like that shown in the lower right plot in Fig. 12

may bemuch better choices. The key point of this example

has been to illustrate, first, the range of behavior pos-

sible when applying various members of the generalized

Hampel filter class to a real data sequence, and second,

to provide a comparison with a useful data cleaning filter

that does not belong to this class.

7 Other generalizations of the Hampel filter

7.1 Weighted filters

Weighted median filters are obtained by replacing the

moving window WK
k defined in Eq. (1) with the following

weighted data window:

Qk = {w−K ⋄ xk−K , . . . ,w0 ⋄ xk , . . . ,wK ⋄ xk+K }, (16)

where the operator ⋄ denotes replication (m ⋄ xj cre-

ates a set with the data value xj replicated m times),

and {w−K , . . . ,w0, . . . ,wK } represents a sequence of pos-

itive integer weights. This extension greatly increases the

median filter’s flexibility, but it also greatly complicates

the analysis of filter characteristics; for example, no com-

plete characterization of the root sequences of arbitrarily

weighted median filters is known. For a more detailed dis-

cussion of this filter class and what is known about it, refer

to the survey paper by Yin et al. [14].

The weighted Hampel filter is defined by replacing the

original data windowWK
k in the definition of the standard

Hampel filter with the weighted window Qk defined in

Eq. (16). Specifically, the weighted Hampel filter is defined

by:

yk =

{

xk |xk − mk(Q)| ≤ tSk(Q),

mk |xk − mk(Q)| > tSk(Q),
(17)

where mk(Q) is the median of the weighted window Qk

and Sk(Q) is the corresponding MAD scale estimator. As

with the standard Hampel filter, note that the weighted

Hampel filter reduces to the weighted median filter for

t = 0, and the root sequence nesting condition for these

filters—for fixed weights—follows as before: s ≤ t implies

Rs ⊂ Rt . Similarly, the concept of implosion sequences

introduced in Section 3 also applies to the weighted

Hampel filters, but the conditions for {xk} to be an implo-

sion sequence now depend on the filter weights {wk}.

Given the lack of a general characterization for weighted

median filter root sequences noted above and the strong

connection between standard Hampel filter implosion

sequences and standard median filter roots shown in

Section 3, it is likely that a complete characterization

of weighted Hampel filter implosion sequences will be

challenging.

7.2 Weighted recursive filters

The class of weighted recursive median filters is obtained

by adopting both of the modifications just described:

using the recursive moving window RK
k defined in

Section 4 with the weight-based replication scheme

described in Section 7.1. Specifically, the resulting moving

data window has the form:

Zk = {w−K ⋄ yk−K , . . . ,w0 ⋄ xk , . . . ,wK ⋄ xk+K }, (18)

where yk−j is the output of the weighted median filter at

prior sample k − j. Since this median filter generalization

includes both of the previous ones as proper subsets, the

flexibility of this class is even greater, as is the complexity

of its analysis. The survey paper by Yin et al. also includes

a discussion of these filters [14].

The weighted recursive Hampel filter is defined by

replacing the original data window R
t,K
k in the definition

of the recursive Hampel filter with the weighted window

Zk defined in Eq. (18) where yk−j is the output of the

weighted Hampel filter defined in Section 7.1 at time k− j.

Specifically, the weighted Hampel filter is defined by:

yk =

{

xk |xk − mk(Z)| ≤ tSk(Z),

mk |xk − mk(Z)| > tSk(Z),
(19)

wheremk(Z) is the median of the recursive weighted win-

dow Zk and Sk(Z) is the corresponding MAD scale esti-

mator. It follows by the reasoning presented in Section 4

that the recursive weighted Hampel filter root sets are

identical with the non-recursive weighted Hampel filter

root sets, and that the recursive weighted Hampel fil-

ter root sets nest for increasing threshold parameters

t. Again, it is likely that complete characterizations of

the weighted recursive Hampel filter root sequences and

implosion sequences will be challenging.

7.3 Extensions to image processing

A detailed discussion of the extension of the one-

dimensional generalized Hampel filters discussed here to

image processing applications is beyond the scope of this

paper, but this extension is important enough to warrant

a brief discussion. All of the filters defined in this paper

can be extended to two-dimensional images in at least

two different ways. The first and simpler is analogous

to that described in Section 1.3.3 of the book by Astola

and Kuosmanen [3]: the one-dimensional moving window
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considered here can be replaced by a square (2K + 1)×

(2K + 1) two-dimensional window that is moved across

the image. The median and MAD scale estimate can then

be computed from these (2K+1)2 pixel intensities exactly

as in the one-dimensional case, and the same logic applied

as before: if the central point in the data window lies more

than t times the MAD scale estimate from the median

value, the filter’s output is themedian value; otherwise, the

filter’s output is the unmodified central value. As in the

one-dimensional case, setting t = 0 reduces this filter to

the two-dimensional median filter, and increasing tmakes

the filter less aggressive.

Two-dimensional recursive filters are also possible, gen-

eralizing the two-dimensional recursive median filter,

although as noted by Astola and Kuosmanen, the results

obtained with this filter will depend on the order in which

the pixels are processed ([3] p. 203). That is, since there

is no unique total order on the points in an image, it is

necessary to impose such an order for the “prior filter out-

puts” required in a recursive filter implementation to be

well-defined. This can be done in different ways (e.g., left-

to-right lexical order, top-to-bottom lexical order, etc.),

generally yielding different results.

Finally, an alternative approach is to construct multi-

stage Hampel image processing filters that combine the

outputs of subfilters like those discussed by Nieminen and

Neuvo [15], corresponding to vertical, horizontal, diago-

nal, cross- or x-shaped subwindows applied to the image.

This general construction is described in Section 3.7 of

the book by Astola and Kuosmanen [3], and it can also be

readily extended to generalized Hampel filters by simply

replacing the median filters defined on these subwindows

with the corresponding Hampel filters.

8 Conclusions
The Hampel filter introduced in Section 2 is effectively

a moving window outlier detector that replaces the orig-

inal signal value with the median filter response if that

value is deemed an outlier. This determination is based

on a threshold parameter t chosen by the user and the

MAD scale estimate for the moving window, and the fil-

ter reduces to the standard median filter if t = 0. The

central idea of this paper was to view the Hampel fil-

ter as a generalization of the median filter and ask what

the consequences of this generalization are, first for the

standard Hampel filter and then for novel extensions like

the recursive Hampel filter. One important aspect of this

investigation was the partial characterization in Section 3

of implosion sequences, for which this generalization has

no effect: these are sequences for which the response

of the Hampel filter is independent of t. In addition, it

was shown that Hampel filter root sequences nest, with

the median filter root set included in all Hampel filter

root sets. Thus, the input sequences of greatest interest

here are neither implosion sequences nor root sequences,

where the Hampel filter may be tuned from its most

aggressive limit (t = 0, corresponding to themedian filter)

to an identity filter for sufficiently large t.

A detailed description of the recursive Hampel filter was

given in Section 4, where it was shown that this filter’s root

set for each t is the same as the standardHampel filter root

set for the same value of t, generalizing the well-known

result for the recursive median filter [7]. One of the inter-

esting characteristics of the recursive median filter is its

idempotence—the fact that it reduces any input sequence

to a root sequence in a single pass—and an intriguing

question is whether this behavior extends to the recursive

Hampel filter for any t > 0.

Section 5 presented a brief simulation-based case study

exploring the performance of the standard and recur-

sive Hampel filters as a function of t for a simulated

signal sequence that was neither a median filter root

sequence nor an implosion sequence. More specifically,

this signal consisted of a median filter root sequence with

three additional components superimposed on it: low-

level Gaussian noise for one part of the signal, a sinusoid

for another part of the signal, and impulsive noise spikes.

Two performance measures were considered—RMSE and

MAE—for two signal recovery problems: impulsive noise

removal, and a complete noise removal problem that also

attempted to remove low-level Gaussian noise from the

signal. Not surprisingly, performance was much better

for the impulsive noise removal problem, but the real

point of this example was to provide specific illustrations

of how much performance does depend on t, and how

strongly this dependence varies between different prob-

lem formulations and signal characteristics (e.g., different

signal subsequences exhibiting different combinations of

the components listed above).

To provide a more representative illustration of the per-

formance of generalized Hampel filters, Section 6 applied

several members of this filter class to a monthly Italian

industrial production index series that contains glaring

outliers every 12 months (seasonal outliers [9]). The fil-

ters applied to this example included the standard and

recursive median filters for two different window half-

width parameters, both standard and recursive Hampel

filters, and four cascade interconnections of filters from

the generalized Hampel family. If our objective is sim-

ply the removal of the seasonal outliers, it appears that

the standard Hampel filter with a sufficiently large thresh-

old parameter t is the optimum choice here, but one of

the points illustrated by these filtering results was that

cascade interconnections of Hampel and recursive Ham-

pel filters exhibit smoothing behavior that is much less

extreme than that of the recursive median filter and which

may be advantageous in some applications. For compar-

ison, results were also presented for a promising data
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cleaning filter that is not a member of the generalized

Hampel family: theAn filter defined by Rohwer ([12] p. 37)

from the LULU filter family. For this example, the An fil-

ter was not sufficiently aggressive, failing to eliminate the

least extreme of the seasonal outliers in the data sequence,

but again, it is important to emphasize that the “best” fil-

ter can be expected to depend strongly on the details of

the application.

Finally, three other generalizations of the Hampel filter

were described briefly in Section 7: the weighted Hampel

filter, the recursive weighted Hampel filter, and exten-

sions to two-dimensional image processing applications.

The first two of these filters are generalizations of the

weighted median filter and the recursive weighted median

filter, respectively, which are more difficult to character-

ize than their non-weighted counterparts. For this reason,

characterizations of roots, implosion sequences, and other

performance characteristics of these generalized Hampel

filters appears likely to be much more challenging than

the corresponding characterizations of the standard and

Hampel recursive filters. Finally, while a detailed treat-

ment of image processing applications is beyond the scope

of this paper, the one-dimensional filters described here

can all be extended to these applications in much the same

way as median filters have been.
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