
J. oflnequal. & Appl., 2002, Vol. 7(6), pp. 829-866 )Taylor & Francis
Taylor& Francis Group

Generalized Hardy Operators and
Normalizing Measures
TIELING CHEN and GORD SINNAMON

Department of Mathematics, University of Western Ontario, London, Ontario,
N6A 5B7, Canada

(Received 15 February, 2001; in final form May, 2001)

Necessary and sufficient conditions on the weight v and the measure a for the operator

b(s)
k(s, y)f(y)dyKf(s) .

to be bounded from Lo[0 o) to Lq(s) are given. Here a(s) and b(s) are similarly ordered
functions and k(s,y) satisfies a modified GHO condition. Nearly block diagonal
decompositions of positive operators are introduced as is the concept of a normalizing
measure. An application is made to estimates for the remainder in a Taylor approximation.
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1 INTRODUCTION: MONOTONICITY

Generalized Hardy Operators are instances of integral operators having
non-negative kernels:

Tf(s) k(s, y)f(y)dy.
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Since the early 1970s there has been continual progess on the following
question:

Between which weighted Lebesgue spaces is T a bounded operator

(1.1)

Underlying the successes ofthe last 25 y has been the exploitation ofthe
monotonicity of the kernel k. The kernel in Hardy’s integral operator is
k(s, y) ,Vo,s)(y) which is non-decreasing in s and non-increasing in y.
The generalized Stieljtes kernel k(s, y)= (s +y)- and the Riemann-
Liouville kernel k(s,y)= A’(0,s)(s-y)’, 2 > 0, are also monotone in
each variable. See [9] for references. The above question has been an-
swered for Generalized Hardy Operators, those whose kernel k(s, y) is
supported in {(s, y):0 < y < s} and satisfies the GHO condition:

D- k(s, y) < k(s, t) + k(t, y) < Dk(s, y) for y < < s.

Here D is some fixed positive constant. This condition, imposed in
and [7] and later in [2, 3, 5, 8, 12] was sometimes accompanied by
(superfluous) monotonicity conditions. However, it is largely a monoto-
nicity condition itself as we will see in Lemma 2.2 below.

Recently, Question (1.1) has been answered for some operators whose
kernels are not monotone. This is a important step, especially since the
necessary and sufficient conditions given have retained the simple char-
acter of those given for previously studied operators. The new operators
include variable limits on the defining integral, essentially restricting the
support of the kernel to the region between two curves. In [4], Question
(1.1) was resolved for the operator

with a and b smooth functions on [0, cxz) which increase from 0 to o
with s. The paper [3] looks at the more general operator

k(s,y)f(y)dyKi(s)
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with a and b non-decreasing but not necessarily smooth and k satisfying
a modified GHO condition. The boundedness of K is established be-
tween certain Banach function spaces including the weighted Lebesgue
spaces K" Lo[0, cx) -+ Lqu[0, c) for p < q but not for q < p. The case
q < p was the difficult case in [4] and necessitated the introduction there
of the concept of a normalizing function.

In this paper we answer (1.1) for the operatorK in the case q < p. We
also drop the monotonicity assumptions on a and b and as a result we
are able to take the variable s off the half line and allow it to be in a
general measure space. We explore the normalizing function concept
further, placing it in the more general and more natural context of nor-
malizing measures. We examine the GHO condition in some depth,
showing its connection with monotonicity assumptions and formulating
it for use when s is in a general measure space.
An orderly presentation of this investigation requires that we begin

with our look at the GHO condition and prove some needed results
over general measure spaces. This is done in Section 2. Section 3 con-
tains technical results on nearly block diagonal decomposition of opera-
tors with positive kernels. These results are quite generally applicable
and may be of independent interest. In Section 4 we define normalizing
measures and use a block diagonal decomposition to prove our main re-
sultgiving necessary and sufficient conditions for K to be bounded
from [0, cxz) to Lq(s) for an arbitrary measure space (S, a). The exis-
tence of normalizing measures for a large class of pairs (a, b) is estab-
lished in Section 5 where we also see the interesting form taken by what
remains of our monotonicity assumptions. The final section is a brief
presentation of the application of these results to approximation by Tay-
lor polynomials. The integral form of the Taylor remainder is readily re-
cognized as one of the operators we have been studying.
The notation of the paper is standard. The harmonic conjugate of the

Lebesgue index p is denoted p’ so that 1/p + 1/p’-- 1. Weight func-
tions are non-negative and allowed to take the value oe. As usual,
0.o 0. The supremum of the empty set is taken to be zero. Integrals
with limits are assumed to include the endpoints when possible so that

[a,b]
but

[a, cx)
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The expression "A is comparable to B," written A B, means that there
are positive constants C and C2 such that CA <_ B <_ C2A. IfX0 C X
then counting measure on X0 is the measure defined on the a-algebra of
all subsets ofX whose value on E is just (E N X0), the number of ele-
ments in E f3 X0.

2 THE CASE a(s)= 0

The operators we consider in this section take the function
f(y), y [0, oe) to the function Kf(s), s S, with the formula

t(s)

Xf(s) k(s,ylf(y)dy.
dO

Here (S, a) is an arbitrary measure space, b S --> [0, o) is a-measur-
able, and k S x [0, cx) --> [0, cxz) satisfies the GHO condition given in
Definition 2.1 below. The main result of this section, Theorem 2.6, gives
simple integral conditions on k, b, o and a which are necessary and suf-
ficient for the operator K to be bounded as a map from L,,[0, cxz) to
Lq(s).

DEFINITION 2.1 Suppose that (S,a) is a measure space and
b’ S --+ [0, oo) is a-measurable. A kernel k satisfies the GHO condition
on { (s,y) 0 <_ y < .b(s) } provided there exists a D >_ such that

D-k(s,y) < k(s,b(t))+ k(t,y) < Dk(s,y)fory < b(t) < b(s) (2.1)

and

D-k(s, y) < k(s, w) < Dk(s, y)fory < w < b(s), w b(S). (2.2)

If S [0, o) and b(s) s then the case (2.2) does not arise and we
see that this definition agrees with the usual GHO condition.

LEMMA 2.2 Suppose (S, a) is a measure space, b" S --+ [0, c,) is a-
measurable and k satisfies the GHO condition on { (s, y), 0 <_ y <_ b(s) }.
Then there exists a kernel l satisfying the GHO condition on

{ (x, z)" 0 < z < x} such that l(x, z) is non-decreasing in x, l(x, z) is

non-increasing in z, and k(s,y) , l(b(s),y) for 0 < y < b(s).
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Proof Define l" { (x,z) 0 <_ z <_ x} -- [0, eel by

l(x, z) sup{k(t, y) z < y < b(t) < x}. (2.3)

It is clear that l(x, z) is non-decreasing in x and non-increasing in z. It is
also clear that k(s, y) < l(b(s), y) whenever 0 < y < b(s). Let D be the
constant in the GHO condition satisfied by k. If we show that
l(b(s), z) < D2k(s, z) whenever 0 < z < b(s) we will have shown that
k(s, y) l(b(s), y). To this end, fix z > 0 and s 6 S such that z < b(s)
and suppose that y > 0 and 6 S satisfy z < y < b(t) < b(s). First ob-
serve that k(t,y)< Dk(s,y) by the second inequality in (2.1). If
y q b(S) we have k(s, y) < Dk(s, z) by the second inequality in (2.2)
but if y b(S), say y b(tl), then k(s, y) k(s, b(t)) < Dk(s, z) by
the second inequality in (2.1). In either case we have k(t,y)<
Dk(s, y) < D2k(s, z) and, taking the supremum over all y and we get
l(b(s), z) < D2k(s, z) as required.
To complete the proof it remains to show that satisfies the GHO con-

dition on {(x, z)’0 < z < x}. To do this it is enough to show that

D-1 l(x, z) < l(x, w) + l(w, z) < 2l(x, z) for0 < z < w < x. (2.4)

The monotonicity of 1, already established, proves the second inequality
in (2.4). To prove the first we suppose that y and satisfy z < y <

b(t) < x and show that

k(t, y) < D(l(x, w) + l(w, z)) (2.5)

whenever z < w < x by looking at four cases.

Case 1 z < y < b(t) < w < x. The definition of l yields k(t, y) <_
l(w, z) so (2.5) holds. (Recall that D > 1.)

Case 2 z<w<y<b(t)<x. The definition of shows that
k(t, y) < l(x, w) so again (2.5) holds.
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Case 3 z < y <_ w < b(t) < x and o3 ’ b(S). By the first inequality in
(2.2), k(t, y) < Dk(t, w) and by the definition of l, k(t, w) < l(x, w) so
we have k(t, y) < Dl(x, w) and (2.5) follows.

Case 4 z < y < w < b(t) < x and w b(s) for some s 6 S. The first
inequality in (2.2), with s and t interchanged, shows that
k(t, y) < D(k(t, b(s)) + k(s, y)). The definition of l, used twice, shows
that k(t, b(s))< l(x, w) and k(s, y) <. l(w, z) so in this case too we
have (2.5).

Taking the supremum over all and y satisfying z < y < b(t) < x,
(2.5) becomes l(x, z) < D(l(x, w)+ l(w, z)) which completes the proof
of (2.4) and the lemma.

Lemma 2.2 permits us to move from the kernel k depending on the
variable s 6S to a kemel defined in the familiar triangle
{(x, y):0 < y < x}. We must also be able to move from the measure
a on S to a measure on [0, o) and, in order to apply Stepanov’s results
on Generalized Hardy Operators, from there to weight functions on
[0, cx). Somewhat surprisingly, the latter move proves to be more pro-
blematic than the former.

LEMMA 2.3 Suppose (S, a) is a measure space and b" S -- [0, cxz) is

a-measurable. Then there exists a measure l defined on the Borel
subsets of [0,) and satisfying

F(x)dp(x) Is F(b(s))da(s) (2.6)

for every Borel measurable function F’[0, c) --+ [0, cx).

Proof Since b is a-measurable, b-(E) is a-measurable for every
Borel set E C [0, cxz). Define # by

p(E) a(b-1 (E)). (2.7)

It is routine to check that p is a measure and that (2.6) holds.
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THEOREM 2.4 Suppose (S, a) is a measure space and b" S
is a-measurable. Let k be a kernel satisfying the GHO condition on

{ (s,y)" 0 <_ y <_ b(s)} and define l by (2.3). Define lu by (2.7). Ifq > 0
then

j (Ii(S) k(s, Y)f(y)dY)qdr(s) I(o,o) (Ji l(x,Y)f(y)dY) qdl(x)

for allf >_ O.

Proof The work has been done. By Lemma 2.2, k(s,y) l(b(s),y) so
we have

Is (Ji(S) k(s,y)f(y)dy)qdr(s) Is (Ii() l(b(s), y)f(y)dy)qda(s)

with constants independent off. Now let F(x) ( l(x, y)f(y)dy)q and
note that F is non-decreasing and hence Borel measurable. Lemma 2.3
provides

Js (Ii(S) l(b(s),Y)f(y)dY)qdr(s) I[o,) (Ii l(x,Y)f(y)dY) qdlt(x).

The point 0 may be omitted from the range of integration because the
integrand is zero there. This completes the proof.

Theorem 2.4 takes us from the measure space (S, a) back to the half
line but the measure # may not be a weighted Lebesgue measure. How-
ever, the monotonicity of enables us to overcome this difficulty and
approximate integrals with respect to d# by integrals with respect to ab-
solutely continuous measures.
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LEMMA 2.5 flit is a measure on [0, cx) then there exists a sequence Un
of non-negative functions such that

F(x)un(x)dx increases with n to F(x)dit(x) and (2.8)
,0

lim F(x) u(z)dz Un(X)dx F(x)
n 0,o) x,o)

(2.9)

for every > 0 and every non-negative, non-decreasing, left continuous
function F.

Proof Set U(y) J’(y,) dit(x) for y > 0 and note that Ux(o,) is non-
increasing and fight continuous for each integer n >_ 1. Set

Un(X) n[U(x)X{o,n)(X) U(x+ 1/n)X’{o,o)(x+ 1/n)].

Ify<n-lthen

un(x)dx n U(x)dx- n U(x+ 1/n)dx n Iy+l in

,y
U(x)dx.

Since U is non-increasing, this sequences of averages is non-decreasing
and

U(y+ In) <_ u.(x)dx <_ U(y).

The fight continuity of U shows that

’u.(x)dx increases with n to (2.10)

Suppose that F is non-negative, non-decreasing and left continuous.
Standard arguments 10, p. 262ff] show that there exists a measure q6 on
the Borel subsets of [0, cxz) such that F(x) f[0,x) ddp(y) for x > 0. Now
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(2.10) and the Monotone Convergence Theorem show that

J Un(X)dxddp(y) increases with n to I I(i0,o) y,o) [0,cxz) y,x)
dU(x)d (y).

Interchange the order of integration and this becomes

l(o,o ) I[O,x) dq (y)u"(x)dx increases with n t
iO,x)

ddp(y)d#(x)

which establishes (2.8).
Now we repeat the last part ofthe above argument with Un(X) replaced

by (.Ix Un(Z)dz)lUn(X) and d#(x) replaced by (x,)d#(z))d#(x) The
conclusion (2.9) will follow once we show that

I(I?bln(Z)dz)flUn(X)dx
increases with n to something equivalent to

I(y,o) (J[x,) dl2(z)) /d#(x)"
Performing the integration, we have

cx

bln(X)dx (i ign(X)dx) fl+

which increases to (f(y,cx)dla(X))l+1 by (2.10). It remains to show that
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Replacing the interval Ix, o) by (y, o) in the fight hand integral shows
that the left hand integral dominates it. To prove the other direction, sup-
pose that #(y, o) < c and choose y0 > y such that

dp(x) < 2 ] IY,Yol
d#(x) and .I d#(x) < 2 .I(y, oo) Iy0,oo)

It is easy to see that such a Y0 must exist. Now

Although such a Y0 may not exist in the case p(y, o) o, the conclu-
sion remains valid. We omit the details.

Generally speaking, the result of the last lemma cannot be extended to
include functions F which are not left continuous. This leads us to make
the following technical restriction on the function b and the kernel k. If
0 < z < x then

sup{k(t, y) z < y < b(t) < x} sup{k(t, y) z < y <_ b(t) < x}. (2.11)

This will ensure that the kernel l(x, z), defined by (2.3), is left continu-
ous in x.

THEOREM 2.6 Let p,q (1,cx) and o be a non-negative weight
function on (0, cxz). Suppose that (S, tr) is a measure space,
b S--, [0, cxz) is a-measurable, k satisfies the GHO condition on

{(s,y) 0 _< y _< b(s)} and (2.11) holds whenever 0 < z < x. Let C be
the least constant, .finite or infinite, for which the inequality

k(s,y)f(y)dy dtr(s) < C ’v(y)dy)
lip
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holds for all non-negative functions f. If 1 < p < q < c then
C max(A0,A) and if < q < p < c then C , max(B0, B1) where

Ao sup(jy>O [s:b(s)>y}
k(s, y)qda(s) v(z)l -t dz

[t:b(t)>b(s)} dr(t))
1/q (If(s)

k(s, y)P’v(y)l-p’dy)

[s:b(s)>y}

r/q r/q’ )
1/r

k(s, Y)qdty(s)) (I v(z)l-p’dz) v(y)l-p’dy

[t:b(t)>_b(s)}
dr(t))r/p (s)

k(s, y)P’v(y)l-P’dy dr(s)
l/r

Here r is defined by 1/r 1/q- 1/p.

Proof Define 1 and p by (2.3) and (2.7) respectively. Let C’ be the least
constant, finite or infinite, such that

(l(o,oo)(Jil(x’Y)f(y)dy)qd#(X))
1/q

Ct(ioo<_ f(yy’v(y
0

holds for all non-negativef. By Theorem 2.4, C C’. Now let Un be the
sequence from Lemma 2.5 and define C(n) to be the least constant, fi-
nite or infinite, such that

(I(Iil(x,Y)f(y)dY)qun(x)dx) 1/q< C(n)(If(Y)Pv(y)dy)
1/p

holds for all non-negativef. The assumption (2.11) shows that l(x, y) is
left continuous in the variable x and it follows that ([ l(x, y)f(y)dy)q is
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non-negative, non-decreasing, and left continuous for each non-negative
f. By Lemma 2.5

increases to

I(o,o) (Ji l(x’ Y)f(y)dy)qdp(x)
as n-- cx so C(n) is an increasing sequence and supn C(n)--
limn C(n) C’.
Now we apply the results of [12] to get C(n),,max(Ao(n),

Al(n)) when < p < q < c and C(n) max(B0(n),B (n)) when
<q<p<cxwhere

Ao(n) sup l(x, y)qu,,(x)dx v(z)l-p’dz
y>0

A l(n) sup un(z)dz l(x, yy v(y) dy
x>0

r/q

’
r/q’

-P’Bo(n) l(x, y)qun(x)dx /)(Z) 1-t dz v(y) dy

B (n) u,,(z)dz l(x, yy" v(y)-P’dy u,,(x)dx

We show sup, Ao(n) Ao, sup, A1 (n) A, suPn Bo(n) Bo, and
supn B (n) B to complete the proof.

For each fixed y, ,(y,)(x)l(x,y)q is non-negative, non-decreasing,
and left continuous so, by Lemma 2.5,

l(x, y)qttn(x)dx X(y,)(x)l(x, y)qun(x)dx
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increases with n to

X(y,oo)(x)l(x, y)qd(x) j X(y, oo)(x)l(x, y)qdlt(x).

Lemma 2.3 shows that the last expression is equal to

2((y,oo)(b(s))l(b(s), y)qdtr(s) Ils:b(s)>y} l(b(s), y)qdr(s)

which is equivalent, by Lemma 2.2, to

{s:b(s)>y}
k(s, y)qdr(s).

Thus, SuPnAo(n) Ao and, by the Monotone Convergence Theorem,
SUPn Bo(n) Bo.
The proof that SUPn A(n) A also relies on the left continuity in x

of l(x, y). As above we find that fx Un(Z)dz increases to

X(x,)(z)dp(z) Jlt:b(t)>xl dtr(t).

Observe that since {t" b(t) > x] C {t" b(t) > inf(b(S)N [x, oo))} we
have

da(t)<_ sup j
t:b(t)>x} {s:b(s)>x} [t:b(t)>b(s)}



842 T. CHEN AND G. SINNAMON

Now

(Jb )l/q(Ii dY)
I/p

sup da(t) l(x, y)" v(y)-p’
X>0 (t)>x

< sup sup dr(t) l(b(s),y)P’v(y) dy
x>0 b(s)>x X, b(t)>b(s)

)""(l: _., )"’_< sup d(O (b(s),yy’ v(y) dy
(s)>O (t)>_b(s)

< sup lim d(t) l(x,y)n v(y)-p’
b(s)>O xb(s)- (t)>x

_< sup dr(t) l(x,y)P v(y) -P dy
x>O (t)>x

(2.2)

Because the first and last expressions coincide all the inequalities above
are equalities and since Lemma 2.2 shows that the expression (2.12) is
equivalent to A we have sup, A (n) A as required.

For the proof of supnB (n) Bl we apply Lemma 2.5 with fl rip
to see that supB (n) is equivalent to

(o,oo) [x,o)dp(z)) l(x, y)t" v(y)-P’dy dp(x)

which Lemma 2.3, applied twice, shows to be just

(L(J l(b(s), yy" v(y)-P’dy da(s)
[t:b(t)>_b(s)}

l/r

By Lemma 2.2 the last expression is equivalent to B l.

When the kernel k -= the weight conditions simplify and the result
extends to include the case 0 < q < 1.

COROLLARY 2.7. Suppose 0 < q < cx, < p < c, o is a non-nega-
tive weight function on (0, c),(S, tr) is a measure space, and
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b" S -- [0, cx) is a-measurable. Let C be the least constant, finite or

infinite, for which the inequality

IS fb(s) " q 1/q

f(y)Pv(y)dy)
1/p

holds for all f >O. If <p<q
O < q < p < cx then C B where

then CA and if

A sup da(s) v(z)l-p’dz
y>0 {s:b(s)>y}

B dtr(t) v(y)l-p’dy dtr(s)
{t:b(t)>_b(s)}

1/r

Here 1/r 1/q 1/p. Also, ifq > 1 or O < q < 1 and o-P’ is locally
integrable then

{s:b(s)>y}

r/q r/q’ dy)
1/r

da(s)) (Ji v(z)l-p’az) v(y) I-p’

Proof The case < p < q < cx follows from Theorem 2.6 by taking
k since in this case A A0 and it is not difficult to see thatA < A.
In the case 0 < q < p < we define C(n) as in Theorem 2.6. We still
have limn--,o C(n) C. Using [11, Theorem 2.4] we have

l/r

Un(X)dx

In the same way that we showed supB (n) B in Theorem 2.6 we see
that the fight hand side converges to B. The final assertion follows from
the remark on page 93 of [11 ]. This completes the proof.

COROLLARY 2.8
weight function

Suppose 0 < q < c, < p < oe, o is a non-negative
on (0, cx),(S,a) is a measure space, and
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a" S ---. [0, x) is a-measurable. Let C be the least constant, finite or

infinite, for which the inequality

l/p

holds for all f >O. If <p<q<oo
O < q < p < oo then C B’ where

then C , A’ and if

y>O [s:a(s)<y}

[t:a(t)<a(s)}

rip oo riP’ 1/r

dtr(t)) (l v(y)I-p’dY) dr(s)
(s)

Here 1/r 1/q lip. Also, ifq > 1 orO < q < and 0 I-p’ is locally
integrable then

{s:a(s)<v}

r/q oo r/q’ )
I/r

da(s)) (Ig, v(z)l-p’dz) v(y)I-p’dY

Proof Make the change of variable y 1/y and apply Corollary 2.7
with b(s) 1/a(s). We omit the details.

3 DECOMPOSITION OF NEARLY BLOCK DIAGONAL
OPERATORS

Block diagonal matrices are well understood. There are direct sum de-
compositions ofboth the domain and codomain spaces so that the action
ofthe whole matrix is broken down into the action ofthe blocks on their
individual summands. A similar process can be carried out for more
general linear operators whose domain and codomain can be decom-
posed in such a fashion. We restrict our attention to positive linear op-
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erators, those that take non-negative functions to non-negative func-
tions. This restriction allows us to consider operators which do not
have a strictly block diagonal decomposition but which decompose
into blocks whose natural domains (and codomains) may overlap to
some extent. Our decomposition theorem for these nearly block diago-
nal operators is Theorem 3.3.

DEFINITION 3.1 IfK is a linear operator taldng non-negative v-mea-
surablefunctions to non-negative a-measurablefunctions we define the
norm ofK to be

IlKIlg

sup[. jiKf()e>(),S.(s):f >_ O.g >_ O. Ilfll, _< 1. Iigl14-< 1.1"
We identify a function q9 on the measure space (X, ) with the multipli-
cation operatorf---qgf so that if q9 X --+ [0, cx) then

114ollt-+t
suplJxqg(x)f(x)g(x)d(x) "f>0g>0_ Ilfllc <1_ Ilgllc<_ 1}.

DEFINITION 3.2 A non-negative, linear operator K is nearly block
diagonal provided there exists a measure space (X, ), r-measurable
subsets Sx of (S, a), v-measurable subsets Yx of(Y, v), and a positive
constantM such that

(1/M)Kf(s) < .It XSx(S)K(fXrx)(S)d(x) < MKf(s), s S,f > O;

(3.1)

M-1 < I d(x) <_ M, s S; and
J{x:sSx}

M-l < 1" d(x) < M,y Y.
{x:ye Yx

(3.2)
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In this case we say that

(, {(Sx, Yx) X e x})

is a nearly block diagonal decomposition of K.
The assertion of (3.1) is that the action of the operator K can be ex-

pressed in terms of the action of the blocks and (3.2) controls the extent
of the overlap of the decompositions of the spaces Y and S.

THEOREM 3.3 Suppose that (X,) is a measure space and
(, { (Sx, Yx) x E X}) is a nearly block diagonal decomposition ofK. If
Kxf XsxK J’X Yr then

(3.3)

If is counting measure on a subset ofX then

IIKll(Yx)Z(sx)ll(x)(x) M+/P’+I/qIIKIIL(Y)Lq(s). (3.4)

Here M is the constantfrom Definition 3.2.

Proof Fix non-negative functions f and g with
and IlgllLz’(s)<- 1. Set F(x)- M-1/PlIfXr.IIL(rx)
M-l/q’ IlgXs.llf(s.). Note that

Il fllL(Y <-
and G(x)=

by (3.2). In a similar way we see that [[G(x)llL,(x <_ 1.
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To establish (3.3) we use Definition 3.1.

Taking the supremum over all choices off and g we have

IIKIIL(y)-->Lq(s) MI-I/p+I/q’I]

which is (3.3).
Suppose now that is counting measure on some subset of X. In-

equality (3.4) is trivial if Ilgll(r)--,q(s) is infinite so we assume that
it is finite. It is clear from the definition of Kx that Kxf(S)< Kf(s)
for all x 6X, all s 6 S and all non-negative f. It follows that

IIKxIIL(Yx)Lq(sx) < o for all x 6 X.
Fix 2 6 (0, 1). For each x 6 X choose non-negative functions fx and

gx such that I[fx[[L(Y) _< 1, [[gx[lL’(s,) -< and

AIIKxlIL(Yx)L(x) I Kxfx(S)gx(s)da(s). (3.5)

Replacing fx byfxXn and gx by gxXSx does not affect (3.5) and cannot
increase the norms of fx and gx so we may assume henceforth that

fx fxXrx and gx gxXSx.
Let F(x) and G(x) be non-negative functions on (X, ) with

[[F[[c(x) _< and [[Gl[cq,(x) -< and set

jZ(y) M-/p’ f F(x)fx(y) d(x)
Jx
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and

(S) M-l/q J’x G(x)gx(S) d(x).

Since is counting measure, it is clear that

F(x)fx(y) < M/P’.(y) and G(x)gx(S) < M/q(s)

for all y 6 Y, s 6 S and x in the support of .
PWe use duality to estimate the norm of 9v in Lv(Y). Suppose H is

non-negativeand IIHII ’ < Then,, (r)

IIHX.,.II ,’ I1’,, (rx) (x) (L j’r H(y)P’,r.,.(y)dv(y)d(x))
/’’

g(yy" Xr.,.(y)d{(x)dv(y) <M/p’

Y

so we have

Ir "T’(Y)H(y)dv(y) M-’ /P’ Ir Ix F(x)’(y)d(x)H(y)dv(y)

M- /P’ Ix F(x) Irfx(y)H(y)dv(y)d(x)
F(X)Jrfx(y)H(y)Xr.,.(y)dv(y)d(x)

< L F(x)lllL(rx)llHrll ’ r,)d(x)

M-/P’x F(x)IIHXr.

5 M-/P’IIF[[L(X)[I [IHXyx
< M-1/p’M/P’= 1.

Taking the supremum over the nctions H we have IIll(r 1.
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A similar argument shows that IIll qt <
L,r (S)

NOW

2 Ix IIKllLvyr)__>L(s)F(x)G(x)d(x)

< J’x Is Kxfx(s)gx(s)da(s)F(x)G(x)d(x)
1; Jx Kx(F(x)fx)(s)G(x)gx(s)d(x)da(s)

< M’/P’+l/q ls lxKxf’(s)G(s)d(x)da(s)
<_ MI+I/p’+I/q IsK’(s)G(s)da(s)

Taking the supremum over all non-negative F(x) and G(x) with

IIFIlx) < and IlGIIc,(x _< and letting 2 -- 1- we have

IIKxlI(Yxq<s IIL<X)Lqc(x)

This completes the proof.

To use the above theorem we must understand the norm

IIL.x)-x). This is not difficult. A proof of the following simple pro-
position may be found in [6].

PROPOSITION 3.4 If (X, ) is a measure space, <_ q < p <_ xz and
1/r- a/q- lip then

for any non-negative d?. If is counting measure on a subset ofX and
<p<q<_cxzthen
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4 CONDITIONS FOR BOUNDEDNESS OF K

To give necessary and sufficient conditions for the boundedness of the
operator

b(s)

k(s,y)f(y)dyKf(s)
J a(s)

(4.1)

from L/v[0, oo) to Lq(s) we apply the decomposition theorem of the pre-
vious section. The action of the operator on the resulting blocks is
handled using the results of Section 2. The necessary and sufficient
conditions for boundedness on the blocks combine to give integral
conditions similar in form to those of Theorem 2.6.
The values off off Y tOss[a(s), b(s)] have no effect on the values

of Kf so it is natural to consider the functions f to be defined on Y.
It is easy to see that K’L[O, oo)--+ Lq(s) if and only if
K" L’,(Y) --+ Lq(s).
We begin by introducing the concept of a normalizing measure which

provides us with a nearly block diagonal decomposition of the operator
K.

DEFINITION 4.1 Let (S, a) be a measure space and suppose that a and
b are non-negative a-measurable functions on S such that a(s) < b(s)
for all s. A measure on [0, c] is called a normalizing measure for
(a, b) provided there exist positive constants cl and c2 such that

b(s)

Cl < d(x) < c2 (4.2)
a a(s)

for all s S. If in addition, is counting measure on a subset of[O,
then is called a discrete normalizing measure.

Next we show that a normalizing measure is all that is required for the
operator K of (4.1) to be nearly block diagonal.

LEMMA 4.2 Let (S, a) be a measure space and suppose that a and
b are non-negative a-measurable functions on S such that a(s) <_ b(s)
Jbr all s. If is a normalizing measure for (a,b) then
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(, {(Sx, Yx) "X E X}) is a nearly block diagonal decomposition ofK
where X Y Uss[a(s), b(s)], Sx {s S a(s) < x < b(s) }, and
rx {y [0, Sy Sx #

Proof Let cl and 2 be positive constants for which satisfies (4.2)
and set M max(1/c, 2c2). Since

j fb(s)a (x) a (x)
{x:s6Sx} da(s)

for each s 6 S, the first inequality in (3.2) follows from (4.2).
Note that Y (_Js[a(s), b(s)] which is a union of intervals contain-

ing x so Yx is an interval. The symmetry in the definition of Yx shows
that {x’y Y} Yy and since Yy is an interval there exist sequences
Sn and s’n of points in Sy such that

(Yy) lim [a(Sn), b(stn)].

Sincey is in both [a(Sn), b(s,)] and [a(S’n), b(s’n) the last expression is no
greater than

lim [a(sn), b(sn)] + [a(s’,), b(s’,)] _< 2c < M.
n----o

For y 6 X, there exists some s with a(s)< y < b(s) so we have
[a(s), b(s)] c Yy and hence

1/M < Cl < [a(s), b(s)] < (Yy).

We have shown that 1/M < (Yy) < M which establishes the second in-
equality in (3.2).

It remains to show that (3.1) holds. An interchange of the order of
integration yields

Ix Ix fb,s) k(s, y)f(y)2(r,(y)dy d(x)Xsx(s)K(fXrx)(s)a(x) XSx(S)

[() k(s, y)f(y)f 2(s(s)Xv(y)d(x)dy.
aa(s) dx

The inner integral in the last expression is just [a(s), b(s)] so (4.2) im-
plies (3.1). This completes the proof.
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The main results of the paper are presented in Theorems 4.3 and
4.4. It is convenient to split up the cases <q<p< and
<p<q<c.

THEOREM 4.3 Let < q < p < x, v be a non-negative weight, (S, a)
be a measure space, a and b be a-measurable functions on S, and k
be a non-negative kernel satis.ing the GHO condition on

{(s,y) 0 < y < b(s)} and also (2.11). Suppose that is a normalizing
measure for (a, b). Let C be the least constant, finite or infinite, such
that

(is([l(s) )q )l/qk(s,y)f(y)dy dtr(s)
X.aa(s)

holds for all f > O. Then C is bounded above by a multiple of
max(/3, /32, /33, /34) where

x(ia )r/q(!I )r/q’
x_b(s)

]3 IX Ix a(s,<x
A(S, y)qdo(s) v(z)l-p’dz 1)(y)l-p’dyd(x)

y<b(s)

b(s) (s)
-P’

r/F

] l(s) (t)<x
da(t) k(s, y)P’v(y) dy d(x)da(s)

b(s)<_b(t)

b(s) x r/p’

dtr(t) -(x, y)P’v(y)-P’dy d(x)dtr(s).

Here k(x, y) sup{k(t, y) b(t) x}.
If is a discrete normalizing measure then C is also bounded below

by a multiple ofmax(Bl, /32, /33, B4).
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Proof Let X,Y, Sx and Yx be as in Lemma 4.2. Then (, {(Sx,
Yx) "x E X}) is a nearly block diagonal decomposition ofK. It follows
from Theorem 3.3 and Proposition 3.4 that

Ml+l/p+1/ IIKxllx)--,tq(sx)

whereM depends only on the constants c and C2 in the definition of the
normalizing measure .

If is a discrete normalizing measure, the inequality may be essen-
tially reversed to give

IIKx ll(rx)--,tZ(sx) llt(x) M+ /P’+ /q llKllz(r)--->t(s).

Since C IIKIIL[O,o)LgS)= IIKIIL(Y)Lg(S), this reduces the pro-
blem to looking at the norms ofK for each x in X. To work with K
we decompose it into three operators and apply the results of Section
2. Fix x 6 X and take jr >_ 0 to be supported in Y. Then

Xxf(S) XSx(S)
a(s)

k(s, y)f(y)dy

Xs, (s) k(s, y)f(y)dy+ Xs, (s) k(s, y)f(y)dy.
(s)

(4.3)

Note that, according to the definition of Sx, a(s) < x < b(s) whenever

Xsx (s) O. We now use the GHO condition on k to further decompose
the first summand. If x q[ b(S) then k(x, y) 0 and if x b(S), say
x=b(t), then it follows from the condition (2.1) on k that
k(t,y) < k(x,y)< Dk(t,y). In either case we have (using (2.1) or
(2.2) as appropriate)

D-1 k(s, y) < k(s, x) + -(x, y) < Dek(s, y)
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whenevery <_ x < b(s). Applying this estimate to the kernel k in the first
summand of (4.3) shows that Kxf(s) is bounded above and below by
multiples of

’s,. (s)k(s, x) f(y)dy + ,Vs, (s) k(x, y)f(y)dy
(s) (s)

+ R’s.,.(s) k(s,y)f(y)dy =_ Kl!f(s) + KZ)f(s) + Kx3f(s).

Since the operators Kx0), Kx2), and Kxt3), are all non-negative

and hence

IIKll:(v.)_(s.,.) llv.e(x
(2)

To complete the proof we show that

IIK(x2)llt(v.)-t(s.)llt,ex) B4, and

[[K(xa) IIL(r.,.)__.Lg(S.,.) llL(X) max(B2,/33).

The norm IlK(x)llL(y.,.)L(S.,. is the least constant for which the in-
equality

(L. ( li(s)f(y)dy) qk(s,x)qdtT(s)) l/q<_ C( Pv(y)dy)
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holds for allf > 0. It is straightforward to see that it is also the least
constant for which

(j(j(s)f(y)dY)qdo(xl)(s)) < C y )(y

holds for allf _> 0 where da(xl)(s) Xs.(s)k(s, x)qda(s), V(xl)(y) v(y)
fory [0, x] Yx and V(xl(y) cx otherwise. By Corollary 2.8 we have

Ilg(xl)ll(yx)--,Lg(Sx) ’Yx(Y) ’Sx(S)k(s,x)qd6(s)
(s)<y

(I; v(z) l-P’dz) r/q’v(y) l-P’dy.
From this it readily follows that

The norm IlK(xZ)llL(rr)L(Sx) is the least constant for which the inequal-
ity

(ISx (Ji(s)-(x’Y)f(y)dY) qda(s)) /q<- c( Ir.f(y)pv(y)dy)
1/p

holds for allf > O. Making the substitution g(y) k(x, y)f(y), we see
that it is also the
least constant for which

(j(Ia()g(y)dY)qda(x:)(s)) 1/q< C(J g(yv(xz)(y)dy)
1/p
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holds for all g>0 where da(x2)(s)=2(s(s)da(s), V(x2)(y)=
-(x,y)-Pv(y) for y [0, x] f3 Yx and v(xl)(y)= cxz otherwise. Again we
appeal to Corollary 2.8. We get

II/q t,,(.,.) tZcs.) Xs,.(t)da(t)
(t)<a(s)

x k(x, y)P v(y)-p’ Xs.,.(s)da(s)
(s)

and so, with an interchange in the order of integration,

The norm Ilg(x3)llL(.OLq(s.,.) is the least constant for which the in-
equality

(Is.,. (Ji’(S) k(s, Y)f(y)dY)qda(s)) /q< C( .I’y.,.f(Y)Pv(y)dy)
1/p

holds for allf > 0. It is also the least constant for which

(JS(II q )l/q-c(Iof(Y)PV(x3)(y)dy)(S)

k(s,y)f(y)dy) da(x3)(s) <
l/p

holds for all f > 0 where da(x3)(s) Xs,.(s)da(s), V(x3)(y) v(y) for
y [x, co)f3 Y and V(x3(y) cx otherwise. This time we apply Theo-
rem 2.6 to see that Ilgx(3)ll:(n)_,&q(s.,. is comparable to the maximum of

J ’’Y.(Y) (Iy<b(s) k(s, Y)q"s,(s)da(s))
"/q

(Ji’ v(z) l-t"dz)
"/q’

v(y)l-p’dy
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and

r/q

XSx (s)d (s).

From these we conclude that

Ilgx(3) IIc(r)q(s) II(x) max(/2, B3)

to complete the proof.

THEOREM 4.4 Let 1 < p < q < cxz, v be a non-negative weight, (S, a)
be a measure space, a and b be a-measurable functions on S with

a(s) < b(s), and k be a non-negative kernel satisfying the GHO con-
dition on {(s,y): 0 < y < b(s)} and also (2.11). Suppose that (a,b)
admits a discrete normalizing measure. Let C be the least constant,

finite or infinite, such that

k(s, y)f(y)dy) da(s))(L(fdii:
q 1/q 1/p

holds for allf > O. Then C max(,A, ,A2) where

(_[a ) l/qtl.A1 sup
(s)<_x

k(s, y)qda(s) v(z) -P’dz
[(x,y):x<y} \"y<_b(s)

.42 sup
{(x,s):x<b(s)}

1/q

(l(s)
k(s, z)P’v(z)-P’dz)

Proof Suppose that counting measure on X0 is a discrete normalizing
measure for (a, b). Then for any choice ofx and x2, counting measure
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on Xo U {Xl,X2} is also a discrete normalizing measure for (a,b).
Choose Xl and x2 such that

[y:x <y} \y<b(s)

I/q

V
-p’

sup
{s:x2<b(s)}

1/q

k(s, z)P’v(z)-P’dz
\d X2

and

Let be counting measure on Xo U {x, X2}. We decompose the operator
K just as in Theorem 4.3 and apply the results of Section 3 to get

As we have seen above, the norm IlKx)llL(r)_L(Sx) is the least constant
for which the inequality

ff(yY’4’)(y)dy
l/p

holds for allf> 0 where dtrl)(s) ,.G(s)k(s, x)qdo(s), V(x)(y) v(y)
for y [O,x] Yx and v(x)(y) otherwise. Corollary 2.8 shows that

...()II.G IIL’Y.,.)-.L(S.,.)IIL(X)

is comparable to

(Ja )’/qsup sup k(s, x)qdty(s)
x_X y>O (s)<y<x<_b(s)
(x)>O

(4.4)
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The norm IlKx(2)ll(g)_+q(s is the least constant for which the inequal-
ity

(JS(Ja(s)g(y)dY)qdtT(x2)(S))
1/q l/p

holds for all g>0 where dtr(x2)(s)=XSx(S)da(s), V(x2)(y)
(x, y)-Pv(y) for y [0, x] t-I Yx and V(x)(y) c otherwise. Corollary
2.8 shows that

is comparable to

(lasup sup dtr(s)
x" y>0 (s)<y<x<b(s)

(x)>0

Since k(x, z) 0 when x b(S) and k(x, z) k(t, z) when x b(t) the
last expression is comparable to

(Ia )l/q([b(t)sup sup dtr(s) k(t,z)P’v(z) dz
tS y>O (s)<y<b(t)<_b(s) \y

(b(t))>0

(4.5)

(3) is the least constant for which the inequal-The norm IlK’x
ity

(IS(If q)
1/q

(S’k(s,y)f(y)dy) do’(x3’(s) _< C(J’0 f(Y)Pl)(x3’(y)dy)
1/p

holds for all f > 0 where dtr(x3)(s) ?(s,(s)dtr(s), V(x3)(y) v(y) for
y . [x,o) Yx and V(x3)(y) oe otherwise. By Theorem 2.6 the norm
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is comparable to the maximum of

sup sup([
xX y>O \J
(x>O

s:a( <_x<y<b(s)
k(s,y)qdo(s))

l/q

(4.6)

and

(I )’/q(I(s) )sup sup dtr(t) k(s,y)P’v(y)l-p’dy
xeX seS {t:a(t)<x<b(s)<b(t)]
(x)>O

(4.7)

The maximum of the expressions (4.4) and (4.6) is comparable to

sup
{(x,y):x<y}
(x)>0

( )l/q(Jir t lip’

k(s, y)qda(s)
v

v(z) -p’dz
"y<b(s)

which is comparable to .A because (x) > 0.
In a similar way we see that the maximum of (4.5) and (4.7) is com-

parable to M2. This completes the proof.

5 NORMALIZING MEASURES

The results ofthe previous section depend on the existence of a discrete
normalizing measure for the functions a and b. Here we prove that such
a measure exists whenever a and b are sinailarly ordered in the following
sense.

DEFINITION 5.1 Let 2"- { [c, d]" 0 _< c < d _< cx} and define a par-
tial order on by [c, d] -< [-, d] provided c <_ - and d <_ d. We say that
non-negativefunctions a and b on S are similarly ordered provided the
set {[a(s), b(s)] s S} is a totally ordered subset ofZ.

To construct a discrete normalizing measure , we need the set X0 of
atoms of . This set is constructed in the next theorem.
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THEOREM 5.2 IfT is a totally ordered subset ofZ then there exists a
subset Xo of [0, cxz] such that < (Xo q [c, d]) < 3 for all [c, d] E T.

Proof A straightforward application of Zom’s Lemma shows that we
may assume without loss of generality that T is a maximal totally or-
dered subset of 2. That is, we may assume that the only totally ordered
subset ofZ which contains 7" is T itself. It follows from this assumption
thatT [0, ].

If x6[0, c] define Lx=inf{’x6[,d]67-} and Mx=
sup{d’x6 [, d] 7"}. Clearly, Lx < x < Mx. If x < y and x 6 [, d] 67-
then either y 6 [, d] or y > d. In the former case My > d by definition
and in the latter we have My >_ y > d. Taking the supremum over all
such d proves the first half of:

If x < y thenMx <_ My and Lx < Ly. (5.1)

The other half is proved similarly.
We now establish the first half of:

For each x, [Lx, x] T and [x, Mx] T. (5.2)

Once again the second halfmay be proved similarly. By the maximality
of T, if we show that {[Lx,. x]} A 7" is totally ordered then [Lx, x] 7"
will follow. To do this we fix [c,d] 7" and show that either
[c, d] -< [Lx, x] or [Lx, x] -< [c, d]. If x < c then [Lx, x] -< [c, d]. If
c < x _< d then Lx < c by definition so again [Lx, x] -< [c, d]. In the re-
maining case, when d < x, we see that whenever x 6 [, d] 67" we have
d < x < d so [, d]-< [, d] because T is totally ordered. Thus c <

and, taking the infimum over all such [, d], we conclude that c < Lx
so It, d] - [Lx, x]. We have shown that {[Lx, x]} T is totally ordered
and hence [Lx, x] T.

For each x 6 [0, cx] define the subset Ex of [0, cx] as follows.

Ex= (k= [Lkx, L’-lx]) A (k= [Mk-lx’Mkx])"
Here the exponents represent repeated application of the operator and
Lx x Mx. It is clear that Ex [,.J= [Lkx, Mkx] and hence that
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Ex is an interval (or a single point) containing x. It is important to ob-
serve that the operators L and M fix the sets Ex. That is:

Ify a_. Ex then Ly a__ Ex andMy a__ Ex. (5.3)

We prove the second half only. Ify
_
[M’-lx, M’x] for some k > then

(5.1) shows that My [Mkx, Mt’+x] C_ E. Ify 6 [Lt’x, Lk-x] for some
k > then y <_ Lt’-x <_ x so Lkx <_ y <_ My <_ Mx <_ M’x and again we
have My E.

It follows by induction from (5.3) that ify 6 E then L’y and M’y are
in E. Since Ex is an interval, [if’y, M’y] C. Ex and hence Ey C_ Ex. Thus
we have:

Ify . Ex then Ey C Ex. (5.4)

Next we improve this to"

Ify . Ex then Ey Ex. (5.5)

Suppose first that y. [L’x,L’-lx] for some k > 1. We have
y <_ Lk-lx <_ x and since Ey is an interval it will follow that x Ey if
there is any point of Ev greater than or equal to x. Suppose for the
sake of contradiction that Mny < x for all n > 0. Choose m as large
as possible so that Mny < Lmx for all n. This is possible because the
property holds for m 0 and fails for m k. Now choose n > 0 so
that Lm+lx <_ Mny and we have M"y

_
[Lm+Ix, Lmx] so the definition

ofM yields M"+y >_ Lmx contradicting the choice ofm. This contradic-
tion shows that x Ey. We may now apply (5.4) twice to get Ey Ex.
The proof in the case y . [M’-x, Mkx] is analogous.

Since x Ex and (5.5) holds we see that the setsE partition [0, oo] so
we may choose a set of representatives {xj "j J}, for some index set J,
such that Ujj Ex. [0, oo] and Ex, Ex 0 whenever i,j J with
#-j. Define the set X0 to be

Yo {Mkxj, Lt’xj "j J, k O, }.

It remains to verify that X0 has the desired property. If [c, d] 6 7" then
choose j 6 J so that c Ex. We suppose that c [M’-xj, M’xj] for
some k > since if c

_
[L’+xj, ff’xj] for some k > the argument is
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similar. Either c 6 X0 or c (Mk-lxj, Mkxj). In the latter case we have
d >_ Mgxj because (5.2) holds and 7- is totally ordered. In both cases
there is at least one point ofX0 in [c, d] so _< #(X0 fq [c, d]).
To show that #(X0 [c, d]) _< 3 it is enough to show that at most one

point ofX0 is in (c, d). Since [c, d] C [c, Mc] C Ec Ex the only points
ofX0 that may be in (c, d) are points of the form Mkxj or Lkxj for some
k >_ 0. This is because all other points of X0 are in some Ex,, disjoint
from Ex. If M’xj (c, d) for some k _> 0 then Mk+lx..! _> d and if
Lkxj (c, d) for some k _> 0 then Lk+xj <_ c so at most one such
point can be in (c, d). This completes the proof.

COROLLARY 5.3 If non-negative functions a and b on S are similarly
ordered then there is a discrete normalizing measure for (a, b).

Proof Since {[a(s),b(s)]:s E S} is totally ordered, there exists a
subset Xo of [0,] satisfying 1< 4/:(X0 [a(s),b(s)])< 3 for all
s E S. Let be counting measure on the subset X0\{} of [0, ).
Since [a(s), b(s)] for any s E S we have

b(s)

1_< d_<3
Ja(s)

for all s S.
While a discrete normalizing measure exists whenever a and b are si-

milarly ordered, the construction can be somewhat complicated. In
many cases, however, it is easy to discover normalizing measures.

EXAMPLE 5.4 Let S [0, ), a(s) 0, and b(s) s. The Dirac measure
at 0 is a discrete normalizing measure for a and b.

EXAMPLE 5.5 Let S [0, cxz), a(s) s, and b(s) s + L. Lebesgue
measure is a normalizing measure for a and b and counting measure on the
set {n + L n 0, 1,...} is a discrete normalizing measure.

EXAMPLE 5.6. Fix A and B with 0 < A < B. Let S [0, c), a(s) As,
and b(s) Bs. The measure dx/x is a normalizing measure for a and b and
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counting measure on the set {(B/A)n:n 0,+1,+2,...} is a discrete
normalizing measure.

EXAMPLE 5.7 (cf. [4, Theorem 2.5]) Let S [0, c). Suppose a and b
are increasing, differentiable functions satisfying a(0)=b(0)=0,
a(c)=b()=oz, and 0<a(s)< b(s)< for 0<s<. Fix
x0 E (0, o) and define xn (b o a-)"(xo) for each n E Z. Then counting
measure on {x :n E Z} is a discrete normalizing measure for a and b.
Also, defined by

d(x) X[x,.x,+tld(b o a-l)-n(x)
nZ

is a normalizing measure for a and b.

6 APPLICATION TO TAYLOR APPROXIMATION

Suppose F is an n + times differentiable function on (0, oo). The nth
degree Taylor polynomial of F, centred at a, is

F(’O(a)
Pn,a(F)(b) F(a) + F’(a)(b a) +... + n!

(b a)n

and the remainder, Rn,a(F)(b) =- F(b) en,a(F)(b), may be expressed in
the form

Rn,a(F)(b) n! Ja (b
y)nF(n+l)(y)dy. (6.1)

If we let a and b vary with s we recognize the above remainder as an
operator of the form (4.1) applied to Fn+l). Theorems 4.3 and 4.4
can therefore be used to control the accuracy of the approximation by
a Taylor polynomial as the centre and the point of evaluation vary.
The control is in terms ofthe size ofthe n + derivative ofthe function.
Rather than state this as a general result, we provide a simple example in
which F(s) is approximated by its Taylor polynomial centred at s/2.
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EXAMPLE 6.1 Let n be a positive integer. There exists a positive constant
C such that the inequality

(I: Rn’s/2(F)(s)2(s+l)-2n-3ds)1/2 11/4F(n+l)(y)4dy (6.2t

for all n + times differentiable functions F.

Proof We apply Theorem 4.3 with p 4,q- 2, k(s, y) (s y)n/
n!, a(s) s/2, b(s) s, v(y) 1, and da(s) (s + 11-2n-3ds. Ill view
of (6.1), the conclusion of the Theorem 4.3, withf replaced by F(n+l),
will yield (6.2).

To complete the proofwe check the hypotheses ofTheorem 4.3. As in
Example 5.6 we have .[s/z dx/x log(2) so the measure dx/x is a nor-
malizing measure for (a, b). Since

2-n(s y)" < (S t)" + (t-- y)" < 2(S y)n for y < < s,

the kernel k satisfies the GHO condition.
Simple-minded estimates show that/31,132,/33, and B4 are all finite.

We show only the first.

(nt)4jl (s x)2n(s + 1)-2n-3ds
/2

2

(x y)2dy dx
x

_< ((2y x)(2y x)2n(x -+- 1)-2n-3)2(X _y)2dy __dx
/2 x

< (X/2)x4n+2(X + 1)_4n_6(X/2)2 dx
x

Acknowledgement

Support from the Natural Sciences and Engineering Research Council
of Canada is gratefully acknowledged.



866 T. CHEN AND G. SINNAMON

References

[1] S. Bloom and R. Kerman, Weighted norm inequa6tiesfor operators ofHardy type, Proc.
Amer. Math. Soc. 113 (1991), 135-141.

[2] S. Bloom and R. Kerman, Weighted L. integral inequalitiesfor operators ofHardy type,
Studia Math. 110 (1994), 35-52.

[3] A. Gogatishvili and J. Lang, The generalized Hardy operator with kernel and variable
integral limits in Banachfimction spaces, J. lneq. and Applications 4 (1999), 1-16.

[4] H. P. Heinig and G. Sinnamon, Mapping properties of integral averaging operators,
Studia Math. 129 (I 998), 157-177.

[5] E. Lomakina and V. Stepanov, On the Hardy-type integral operators in Banach fimction
spaces, Publ. Mat. 42 (1998), 165-194.

[6] L. Maligranda and L. E. Persson, Generalized duality tfsome Banach fimction spaces,
Publ. Nederl. Akad. Wetensch. Indag. Math. 51 (1989) 51 (1989), 323-338.

[7] R. Oinarov, Weighted inequalities for a class of integral operators, Dokl. Akad. Nauk
SSSR 319 (1991), 1076-1078; English translation in Soviet Math. Dokl. 44 (1992).

[8] R. Oinarov, ,o-sided norm estimatesfor certain class ofintegral operators, Proc. of the
Steklov Institute of Mathematics 3 (1994), 205-214.

[9] B. Opic and A. Kufner, Hardy-type Inequalities, Longman Scientific & Technical,
Longman House, Burnt Mill, Harlow, Essex, England, 1990.

[10] H. L. Royden, Real Analysis, Second Edition, Macmillan, New York, 1968.
[11] G. Sinnamon and V. Stepanov, The weighted Hardy inequality: new proofi" and the case

p 1, J. London Math. Soc. (2) 54 (1996), 89-101.
[12] V. D. Stepanov, Weighted norm inequalities ofHardy typefora class ofintegral operators,

J. London Math. Soc. (2) 50 (1994), 105-120.


