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Necessary and sufficient conditions on the weight v and the measure o for the operator
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to be bounded from L2[0, 00) to L(S) are given. Here a(s) and b(s) are similarly ordered
functions and k(s,y) satisfies a modified GHO condition. Nearly block diagonal
decompositions of positive operators are introduced as is the concept of a normalizing
measure. An application is made to estimates for the remainder in a Taylor approximation.
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1 INTRODUCTION: MONOTONICITY

Generalized Hardy Operators are instances of integral operators having
non-negative kernels:

o0

T(s) = j ks, )/ ().

0
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Since the early 1970s there has been continual progess on the following
question:

Between which weighted Lebesgue spaces is 7' a bounded operator

(1.1)

Underlying the successes of the last 25 y has been the exploitation of the
monotonicity of the kernel k. The kernel in Hardy’s integral operator is
k(s, y) = X0.5(y) which is non-decreasing in s and non-increasing in y.
The generalized Stieljtes kernel k(s, y) = (s +»)™* and the Riemann—
Liouville kernel k(s,y) = Xg.q(s — y)’l, A > 0, are also monotone in
each variable. See [9] for references. The above question has been an-
swered for Generalized Hardy Operators, those whose kernel &(s, y) is
supported in {(s,y) : 0 < y < s} and satisfies the GHO condition:

D7 k(s,y) < k(s, £) + k(t,y) < Dk(s,y) for y<t<s.

Here D is some fixed positive constant. This condition, imposed in [1]
and [7] and later in [2, 3, 5, 8, 12] was sometimes accompanied by
(superfluous) monotonicity conditions. However, it is largely a monoto-
nicity condition itself as we will see in Lemma 2.2 below.

Recently, Question (1.1) has been answered for some operators whose
kernels are not monotone. This is a important step, especially since the
necessary and sufficient conditions given have retained the simple char-
acter of those given for previously studied operators. The new operators
include variable limits on the defining integral, essentially restricting the
support of the kernel to the region between two curves. In [4], Question
(1.1) was resolved for the operator

b(s)
j SOy
a(s)

with a and b smooth functions on [0, oc) which increase from 0 to oo
with 5. The paper [3] looks at the more general operator

b(s)
K/(s) =j ks, )./ )y

a(s)
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with a and b non-decreasing but not necessarily smooth and % satisfying
a modified GHO condition. The boundedness of K is established be-
tween certain Banach function spaces including the weighted Lebesgue
spaces K : I£[0, oo) — L]0, oo) for p < g but not for g < p. The case
g < p was the difficult case in [4] and necessitated the introduction there
of the concept of a normalizing function,

In this paper we answer (1.1) for the operator K in the case ¢ < p. We
also drop the monotonicity assumptions on ¢ and b and as a result we
are able to take the variable s off the half line and allow it to be in a
general measure space. We explore the normalizing function concept
further, placing it in the more general and more natural context of nor-
malizing measures. We examine the GHO condition in some depth,
showing its connection with monotonicity assumptions and formulating
it for use when s is in a general measure space.

An orderly presentation of this investigation requires that we begin
with our look at the GHO condition and prove some needed results
over general measure spaces. This is done in Section 2. Section 3 con-
tains technical results on nearly block diagonal decomposition of opera-
tors with positive kernels. These results are quite generally applicable
and may be of independent interest. In Section 4 we define normalizing
measures and use a block diagonal decomposition to prove our main re-
sult—giving necessary and sufficient conditions for K to be bounded
from [0, 0o) to LI(S) for an arbitrary measure space (S, ¢). The exis-
tence of normalizing measures for a large class of pairs (a, b) is estab-
lished in Section 5 where we also see the interesting form taken by what
remains of our monotonicity assumptions. The final section is a brief
presentation of the application of these results to approximation by Tay-
lor polynomials. The integral form of the Taylor remainder is readily re-
cognized as one of the operators we have been studying.

The notation of the paper is standard. The harmonic conjugate of the
Lebesgue index p is denoted p’ so that 1/p + 1/p’ = 1. Weight func-
tions are non-negative and allowed to take the value co. As usual,
0.00 = 0. The supremum of the empty set is taken to be zero. Integrals
with limits are assumed to include the endpoints when possible so that

b 00
[ P e
a [a,b] a [a,00)
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The expression “A4 is comparable to B,” written 4 = B, means that there
are positive constants C; and C; such that 14 < B < 4. If Xy C X
then counting measure on Xj is the measure defined on the g-algebra of
all subsets of X whose value on E is just §(£ N Xp), the number of ele-
ments in £ N Xy.

2 THE CASE a(s)=0

The operators we consider in this section take the function
f(),y €0, 00) to the function Kf(s), s € S, with the formula

b(s)
Kf(s) = L ks ) SOy,

Here (S, o) is an arbitrary measure space, b : § — [0, 00) is o-measur-
able, and £ : S x [0, 00) — [0, 00) satisfies the GHO condition given in
Definition 2.1 below. The main result of this section, Theorem 2.6, gives
simple integral conditions on k, b, v and ¢ which are necessary and suf-
ficient for the operator K to be bounded as a map from L7[0, oo) to
Li(S).

DEFINITION 2.1 Suppose that (S,0) is a measure space and
b: 8§ — [0,00) is g-measurable. A kernel k satisfies the GHO condition
on {(s,y) : 0 <y < b(s)} provided there exists a D > 1 such that

D k(s,y) < k(s, b(1)) + k(t,y) < Dk(s, y) for y < b(t) < b(s)  (2.1)
and
D7 k(s,y) < k(s, w) < Dk(s,y) fory <w < b(s), w ¢ b(S).  (2.2)

If § = [0, o0) and b(s) = s then the case (2.2) does not arise and we
see that this definition agrees with the usual GHO condition.

LEMMA 2.2 Suppose (S,6) is a measure space, b : S — [0, 00) is o-
measurable and k satisfies the GHO condition on {(s,y),0 <y < b(s)}.
Then there exists a kernel | satisfying the GHO condition on
{(x,2) : 0 <z < x} such that l(x,z) is non-decreasing in x,1(x,z) is
non-increasing in z, and k(s,y) = I(b(s),y) for 0 <y < b(s).
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Proof Define I : {(x,z) : 0 <z < x} — [0,00] by

I(x,2) = sup{k(t,y) : 2 < y < b(t) < x}. 2.3)

It is clear that /(x, z) is non-decreasing in x and non-increasing in z. It is
also clear that k(s,y) < I(b(s), y) whenever 0 <y < b(s). Let D be the
constant in the GHO condition satisfied by & If we show that
I(b(s), z) < D*k(s, z) whenever 0 < z < b(s) we will have shown that
k(s,y) = I(b(s), y). To this end, fix z > 0 and s € § such that z < b(s)
and suppose that y > 0 and ¢ € S satisfy z < y < b(f) < b(s). First ob-
serve that k(¢,y) < Dk(s,y) by the second inequality in (2.1). If
y & b(S) we have k(s,y) < Dk(s, z) by the second inequality in (2.2)
but if y € b(S), say y = b(t1), then k(s,y) = k(s, b(t;)) < Dk(s,z) by
the second inequality in (2.1). In either case we have k(z,y) <
Dk(s, y) < D*k(s, z) and, taking the supremum over all y and 7 we get
I(b(s), z) < D*k(s, z) as required.

To complete the proof it remains to show that / satisfies the GHO con-
dition on {(x, z) : 0 <z < x}. To do this it is enough to show that

D7, 2) < I(x, w)+I(w,2z) < 2(x,z) forO0<z<w<x. (2.4)

The monotonicity of /, already established, proves the second inequality
in (2.4). To prove the first we suppose that y and ¢ satisfy z <y <
b(f) < x and show that

k(t, y) < D{(x, w) + I(w, 2)) @2.5)

whenever z < w < x by looking at four cases.

Case 1 z<y<b(t) <w=<ux The definition of / yields k(¢,y) <
I(w, z) so (2.5) holds. (Recall that D > 1.)

Case 2 z<w<y<b(t)<x. The definition of [ shows that
k(t,y) < l(x, w) so again (2.5) holds.
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Case 3 z<y<wz=b(t) <xand o & b(S). By the first inequality in
(2.2), k(t,y) < Dk(t,w) and by the definition of /, k(z, w) < I(x, w) so
we have k(t,y) < Dl(x, w) and (2.5) follows.

Case 4 z<y=<w=<b(t) <xand w=b(s) for some s € S. The first
inequality in (2.2), with s and ¢ interchanged, shows that
k(t, y) < D(k(t, b(s)) + k(s, y)). The definition of /, used twice, shows
that k(f, b(s)) < l(x,w) and k(s,y) < l(w,z) so in this case too we
have (2.5).

Taking the supremum over all ¢ and y satisfying z <y < b(f) < x,
(2.5) becomes I(x, z) < D(I(x, w) + l(w, z)) which completes the proof
of (2.4) and the lemma.

Lemma 2.2 permits us to move from the kernel & depending on the
variable s €S to a kernel / defined in the familiar triangle
{(x,): 0 <y <x}). We must also be able to move from the measure
o on S to a measure on [0, c0) and, in order to apply Stepanov’s results
on Generalized Hardy Operators, from there to weight functions on
[0, oc). Somewhat surprisingly, the latter move proves to be more pro-
blematic than the former.

LEMMA 2.3 Suppose (S, o) is a measure space and b : S — [0, 00) is

a-measurable. Then there exists a measure u defined on the Borel
subsets of [0,00) and satisfying

j F)dpu(x) = j F(b(s))da(s) 2.6)
[0,00) S

Jor every Borel measurable function F ; [0, 00) — [0, 00).

Proof Since b is g-measurable, b~!(E) is c-measurable for every
Borel set E C [0, 00). Define u by

WE) = (b~ (E)). 2.7

It is routine to check that y is a measure and that (2.6) holds.
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THEOREM 2.4 Suppose (S, @) is a measure space and b : § — [0, 00)
is o-measurable. Let k be a kernel satisfying the GHO condition on
{(s,) : 0 <y < b(s)} and define | by (2.3). Define u by (2.7). If ¢ > 0
then

b(s) 9 X q
J (j k(s,y)f(y)a'y) do(s) w] (J l(x,y)f(y)dy> du()
s\Jo (0,00) \JO

Jorall f > 0.

Proof The work has been done. By Lemma 2.2, k(s,y) = I(b(s),y) so
we have

b(s) q b(s) q
j(J k(s,y)f(y)dy) do(s) zJ (j l(b(s),y)f(y)dy) dos)
S 0 S 0

with constants independent of . Now let Fi(x) = (f(f I(x, »).f(»)dy)? and
note that F is non-decreasing and hence Borel measurable. Lemma 2.3
provides

b(s) q X q
| (J l(b(s),y)f(y)dy) aoo)=| (J I(x,y)f(y)dy) du).
S 0 [0,00) 0

The point 0 may be omitted from the range of integration because the
integrand is zero there. This completes the proof.

Theorem 2.4 takes us from the measure space (S, o) back to the half
line but the measure y may not be a weighted Lebesgue measure. How-
ever, the monotonicity of / enables us to overcome this difficulty and
approximate integrals with respect to du by integrals with respect to ab-
solutely continuous measures.
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LEMMA 2.5 If u is a measure on [0, 00) then there exists a sequence u,
of non-negative functions such that

J F(x)u,(x)dx increases with n to J Fx)du(x) and  (2.8)
0 0,00

00 00 B B
lim J F(x) (J u,,(z)dz) Uy (x)dx ~ J F(x) (J d,u(z)) du(x)
=20 Jo x (0,00) [, 00)

.9

Jor every B > 0 and every non-negative, non-decreasing, left continuous
function F.

Proof Set U(y) = j( yoo) AH(x) for y > 0 and note that Uy, is non-
increasing and right continuous for each integer n > 1. Set

Uy (x) = n[U(x)X(o,,,)(x) —Ux+1/m)X @ nlx+ l/n)].
If y<n—1 then

n—1/n

00 n v+1/n
J u,,(x)dx:nj U(x)dx—nJ Ux+ 1/n)dx=nJ U(x)dx.
v ¥ v y

Since U is non-increasing, this sequences of averages is non-decreasing
and

00

Uy+1/m) < J un(¥)dx < U(y).

y

The right continuity of U shows that

(o9}
J u,(x)dx increases with n to J du(x). (2.10)
y (v,00)

Suppose that F' is non-negative, non-decreasing and left continuous.
Standard arguments [10, p. 262ff] show that there exists a measure ¢ on
the Borel subsets of [0, 00) such that F(x) = JiO,x) d¢(y) for x > 0. Now
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(2.10) and the Monotone Convergence Theorem show that

J J u,(x)dxd¢(y) increases with » to J du(x)d ().
[0,00) J(y,00)

[0.00) J (y,00)

Interchange the order of integration and this becomes

J J dp(y)u,(x)dx increases with n to J J dp(y)du(x)
(0,00) J{0,x) (0,00) J[0,x)

which establishes (2.8).

Now we repeat the last part of the above argument with u,(x) replaced
by (J° tn(2)dz) un(x) and dp(x) replaced by ([, ., du(2)) du(x). The
conclusion (2.9) will follow once we show that

J.(
¥
increases with n to something equivalent to

J (,00) (J [x,00) au (Z))ﬁd.u(x).

Performing the integration, we have

00 / pOO B 00 f+1
B+ 1)J (J un(z)dz) u,(X)dx = (J u,,(x)dx)
y \Jx ¥

which increases to (f( 1,00) a’u(x))/H'1 by (2.10). It remains to show that

1 B
(j du(x)) ~| (j du(2)> du).
(y,00) (y,00) \J{x,00)

00 B
J Uy (z)dz) Un(x)dx

X



838 T. CHEN AND G. SINNAMON

Replacing the interval [x, 00) by (v, 00) in the right hand integral shows
that the left hand integral dominates it. To prove the other direction, sup-
pose that u(y, co) < co and choose yy > y such that

j du(x)szj du(x) andj du(x)szj du(x).
(y,00) (¥l (y,00) {y0,00)

It is easy to see that such a yy must exist. Now

p+1 B
(J du(x)) <oh du(x)(] du(x))
(y,00) J(v.30l [vo,00)

B
<o+ (j du(2)> du(x)
(.V‘,V()] [x! OO)

B
< 2! (J d u(z)) du(x).
J(y,00) \J[x,00)

Although such a yy may not exist in the case u(y, 00) = oo, the conclu-
sion remains valid. We omit the details.

Generally speaking, the result of the last lemma cannot be extended to
include functions F which are not left continuous. This leads us to make
the following technical restriction on the function b and the kernel k. If
0 <z < x then

sup{k(t,y) :z <y < b(t) <x} =suplk(t,y) :z<y < b(t) <x}. (2.11)

This will ensure that the kernel I(x, z), defined by (2.3), is left continu-
ous in x.

THEOREM 2.6 Let p,q € (1,00) and v be a non-negative weight
Junction on (0,00). Suppose that (S,0) is a measure space,
b:8 — [0,00) is o-measurable, k satisfies the GHO condition on
{(s,y) : 0 <y < b(s)} and (2.11) holds whenever 0 < z < x. Let C be
the least constant, finite or infinite, for which the inequality

b(s) q
(J (j k(s,y)f(y)dy) da(s))
S 0

1/q

00 1/p
<C (J Vi (y)"v(y)dy)
0
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holds for all non-negative functions f. If 1 <p<gqg <o then
C ~ max(4g, 4;) and if | < q < p < 00 then C ~ max(By, B1) where

Vg sy RN/
Ay = sup (J k(s, y)qda(s)) <J v(z)! dz)
>0 \J(s:b(s)>y} 0

1/ / pb(s) / , 1/p'

Ay = sup ( J do(t)) (J k(s, W v(y)' P dy)

sES {£:6(t)=b(s)} 0

20 v N\

By = J ( k(s, y)qdo(s)) (J u(z)! dz)

0 \J{s:b(s)>y} 0

. rIp s obs) / / 4 1/r
B = (J ( da(t)) (J k(s, Y v(3)'F dy) do(s)
§ \JHe:b(&)=b(s)} 0

Here r is defined by 1/r = 1/q — 1/p.

’

1/r
o) dy)

Proof Define ! and p by (2.3) and (2.7) respectively. Let C’ be the least
constant, finite or infinite, such that

X q 1/q 00 1/p
(j (j l(x,y)f(y)dy) du(X)> < c(j f(y)”v(y)dy)
(0,00) 0 0

holds for all non-negative f. By Theorem 2.4, C ~ C’. Now let u, be the
sequence from Lemma 2.5 and define C(n) to be the least constant, fi-
nite or infinite, such that

00 /X q 1/q 00 1/p
(L (J I(x, y)f(y)dy) u,,(x)dx) < C(n)(J f(y)”v(y)dy)

0 0

holds for all non-negative f. The assumption (2.11) shows that /(x, y) is
left continuous in the variable x and it follows that (fg 1x, ) f(»)dy)? is
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non-negative, non-decreasing, and left continuous for each non-negative
f. By Lemma 2.5

00 X q
jo (J l(x,y)f(y)dy) ()

0

increases to

X q
[ ([ranrom) ae
(0,00) \J0

as n— oo so C(n) is an increasing sequence and sup,C(n) =
lim,_, o C(n) = C'.

Now we apply the results of [12] to get C(n) =~ max(4y(n),
Ai(n)) when 1 <p<q <o and C(n) = max(By(n), Bi(n)) when
1 < g < p < oo where

AO(”) = sup (J l(x,y)qun(x)dx) (J U(Z)l—p dZ)
y>0 y 0
o0 l/q .Y , , ]/p/
A(m) = sup (J un(z)dz) (J I6x, yY v(»)' 7 dy)
x>0 X 0

1/r

00 00 rlq /ey ) r/q /
o= ([ )" () o)
y
00 / OO P s opx ) / vy 1/r
Bi(n) = ( JO (J un(z)dz) ( JO 1, Y o(»)! a’y) u,,(x)dx)

We show sup, do(n) =~ 4q, sup, 41(n) ~ A4,, sup,Bo(n) ~ By, and
sup, Bi(n) ~ B; to complete the proof.

For each fixed y, X(y,0)(¥)I(x,»)? is non-negative, non-decreasing,
and left continuous so, by Lemma 2.5,

Joo I(x, v)u,(x)dx = J:o X (3,00 (N, Y)Y 1t (x)dx
y
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increases with n to
| Xow@ie i =] Xl dueo.
(0,00) [0,00)
Lemma 2.3 shows that the last expression is equal to

[ Xom @GOG, a0 = 166927500

{s:b(s)>y}

which is equivalent, by Lemma 2.2, to

J k(s,y)da(s).
{s:6(s)>y}

Thus, sup, Ao(n) ~ Ay and, by the Monotone Convergence Theorem,
sup, Bo(n) ~ By.

The proof that sup, 4;(n) = A4, also relies on the left continuity in x
of I(x,y). As above we find that [ u,(z)dz increases to

J Xeso0) @) =j Xesoo @) =J da(h).
(0,00) [0,00) {t:6(6)>x}

Observe that since {t: b(t) > x} C {¢: b(t) > inf(b(S) N [x, 00))} we
have

do(f) < sup

J J da(?).
{t:b()>x} {s:b(s)=x} J{£:b(H)=b(s)}
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Now

1/q ¢ ex ) o\
sup(J da(t)) ([ 1Y o) dy)
x>0 \Jb(t)>x Jo

1/q 7 ¢b(s) , ,
< sup sup (jbw )da(t)) (L b(5), 3 o ()" dy)

x>0 b{s)=x

l/q b(S) 7 7
< sup (j do(t)) (j HB(s),yY o) dy)
b(s)>0 b(0)=b(s) 0

1/q 7 ox , ) 1/p
< sup lim (J do(t)) (J I(x, yY o( y)'"" dy)
b(s)>0 *>6)” \Jb(r)>x 0

Ve NV
< sup (J da(t)) (j e,y o) dy) .
x>0 b(t)>x 0

Because the first and last expressions coincide all the inequalities above
are equalities and since Lemma 2.2 shows that the expression (2.12) is
equivalent to 4; we have sup, 4;(n) = 4, as required.

For the proof of sup, By(n) ~ B; we apply Lemma 2.5 with  =r/p
to see that sup, Bi(n) is equivalent to

o N
(J (J du(2)> ( [[ 3o dy) du(x))
(0,00) [x,00) 0

which Lemma 2.3, applied twice, shows to be just

rip s ¢bl(s) . . r/y
(J (J do(t)) (J 1B(s), Y o) dy) do(s))
S {:b()=b(s)} 0

By Lemma 2.2 the last expression is equivalent to B;.
When the kernel & = 1 the weight conditions simplify and the result
extends to include the case 0 < g < 1.

1/p

V/:4

(2.12)

i/r

1/r

COROLLARY 2.7. Suppose 0 < g < 00,1 < p < 00,0 is a non-nega-
tive weight function on (0,00),(S,0) is a measure space, and
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b:S — [0,00) is g-measurable. Let C be the least constant, finite or
infinite, for which the inequality

(J S( Jj(S)f(y)dy )qda(s)> " C( J:o f(y)f’v(ywy)l/p

holds for all f>0. If 1<p<g<oo then CxA4 and if
0 <qg <p<oothen C =~ B where

Ya /oy , 1/
A =sup (J do(s)) (J v(z)! P dz)
>0 {s:b(s)>y} 0

*Ip f (bs) N
B= (J (J da(t)) (J 6 e dy) da(s))
S \JH{t:b(D)=b(s)} 0

Here 1/r =1/q —1/p. Also, if ¢ > 10r0 < g < 1 and v'~7 is locally
integrable then

o0 s o\ A\
B~ J (J da(s)) (J v(z)!F dz) () Pdy) .
0 {s:b(8)>y} 0

Proof The case 1 < p < g < oo follows from Theorem 2.6 by taking
k = 1 since in this case 4 = Ay and it is not difficult to see that 4, < 4.
In the case 0 < ¢ < p < oo we define C(n) as in Theorem 2.6. We stilt
have lim,_,., C(n) ~ C. Using [11, Theorem 2.4] we have

00 00 Fp s oex , r/p’
Ciny~ (jo (j un(z)dz) (jo o) dy) un(x)dx)

In the same way that we showed sup B(n) ~ B; in Theorem 2.6 we see
that the right hand side converges to B. The final assertion follows from
the remark on page 93 of [11]. This completes the proof.

1/r

1/r

COROLLARY 2.8 Suppose 0 < g < 00,1 < p < 00,0 is a non-negative
weight function on (0,00),(S,0) is a measure space, and
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a:S — [0,00) is o-measurable. Let C be the least constant, finite or
infinite, for which the inequality

00 q 1/q 00 1/p
(j ( | f(y)dy) da(s)) < c(j f(y)”v(y)dy)
S als) 0

holds for all f>0. If l<p<qg<oo then Cx=A" and if
0 <q <p < oo then C = B where

1/g / oo , 1/p
A = sup (J da(s)) (J w(z) P dz)
y>0 \J{s:a(s)<y} y

¥p y poo r/v
B = <J (J da(t)) (J ( y)'_p’dy) do(s))
S \J{ra()=<a(s)) a(s)

Here 1/r =1/q — 1/p. Also, if ¢ > 10r0 < q < 1 and v'~7" is locally
integrable then

00 r/q s oo , r/q ,
B~ (J (J da(s)) (J v(z)' " dz) v(y)' P dy)
0 {s:a(s)<y} y

1/r

1/r

Proof Make the change of variable y — 1/y and apply Corollary 2.7
with b(s) = 1/a(s). We omit the details.

3 DECOMPOSITION OF NEARLY BLOCK DIAGONAL
OPERATORS

Block diagonal matrices are well understood. There are direct sum de-
compositions of both the domain and codomain spaces so that the action
of the whole matrix is broken down into the action of the blocks on their
individual summands. A similar process can be carried out for more
general linear operators whose domain and codomain can be decom-
posed in such a fashion. We restrict our attention to positive linear op-
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erators, those that take non-negative functions to non-negative func-
tions. This restriction allows us to consider operators which do not
have a strictly block diagonal decomposition but which decompose
into blocks whose natural domains (and codomains) may ovetlap to
some extent. Our decomposition theorem for these nearly block diago-
nal operators is Theorem 3.3.

DEFINITION 3.1 If K is a linear operator taking non-negative v-mea-
surable functions to non-negative a-measurable functions we define the
norm of K to be

WKl 25— 12

—sup] [ Kr010)o0):1 > 0.8 0171z = 1 kel <1},

We identify a function @ on the measure space (X, &) with the multipli-
cation operator fi— @f so that if ¢ : X — [0, 00) then

||<Pl|Lg—>Lg

—sun{ | 00021 2 0.2 0,111y < Ll < 1]

DEFINITION 3.2 A non-negative, linear operator K is nearly block
diagonal provided there exists a measure space (X, &), a-measurable
subsets S, of (S,0), v-measurable subsets Y, of (Y,v), and a positive
constant M such that

(1/MKFGs) < JX X5, (YK( Xy )L < MKF(s), 5 € 5.1 = 0:
G.1)

M“'fJ dé(x)<M,se€S; and

[x:5€8;}

M1 SJ dé(x)<M,ye?Y.
{xiyels}

(3.2)
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In this case we say that
(&, {(Sx, Yo) 1 x € X))

is a nearly block diagonal decomposition of K.

The assertion of (3.1) is that the action of the operator K can be ex-
pressed in terms of the action of the blocks and (3.2) controls the extent
of the overlap of the decompositions of the spaces ¥ and S.

THEOREM 3.3 Suppose that (X,&) is a measure space and

(&, {(Sy, Yx) : x € X}) is a nearly block diagonal decomposition of K. If
Kif = Xs K(fXy,) then

1+1/p+1/q
IK Nl pyos L5y < MTPHVEY IKellzery—rasoll oo Lieo- (3.3)
If & is counting measure on a subset of X then
14+1/p"+1
MKl vy Laesolzeo- o0 = M K oy rns)- (34)

Here M is the constant from Definition 3.2.

Proof Fix non-negative functions f and g with || fl|;y) <1
and ”gHLZ’(s) <1. Set F(x)=Mr| Xy iy and G(x) =
M']/q'HgXSxHLz,'(S - Note that

1/p
1FO 00 =017 [ | 507 Zripaviiaeeo)

1/p
(| 107 | Hnpazoan)
<M7PMP|f gy <1

by (3.2). In a similar way we see that [|G(x)]| 1.

<
L =
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To establish (3.3) we use Definition 3.1.
JS Kf(s)g(s)da(s) <M S JX K, f(s)dE(x)g(s)da(s)

—M XjsKx<fxyx)(s)g(s)xs,<s)da(s)das(x)

<M R WKl 2 ry— o syl f X v ez,
X lgXs, 1l ¢ 5,,45(x)
M | Kl FOOGEIEG)
< M+ Kl o vy gl oo e -
Taking the supremum over all choices of / and g we have
KN 20rys 25) < M PHINNK L s 265, 2001200

which is (3.3).

Suppose now that & is counting measure on some subset of X. In-
equality (3.4) is trivial if [|K||z7(y)-19s) is infinite so we assume that
it is finite. It is clear from the definition of K, that K, f(s) < Kf(s)
for all xe X, all s€S and all non-negative f. It follows that
WKl vy >1o(s,) < oo for all x € X.

Fix 4 € (0, 1). For each x € X choose non-negative functions f, and
gy such that || fell iz, < 1, lgxll v s, < 1 and

MKl vy 865y < Js K. fi()gx(s)do(s). (3.5)

Replacing f, by f, X'y, and g, by g« X5, does not affect (3.5) and cannot
increase the norms of f, and g, so we may assume henceforth that
Jo =feXy, and gc = g X,

Let F(x) and G(x) be non-negative functions on (X, ¢) with
HF||L€(X) <1and ||G||LZ/(X) < 1 and set

Fly) =M JX F)f(y) dEx)
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and
G(s) =M J Cg(s) dE().
X

Since ¢ is counting measure, it is clear that

FEL) <M F(y) and G)g.s) < M'9G(s)

for all y € Y,s € S and x in the support of &.
We use duality to estimate the norm of F in LF(Y). Suppose H is

non-negative and ||H|| n = 1. Then

) 1/p'
WHX gy = ([ ], HOY 2naviaeen)

i l/p, o
=(j H(y)"j ny(y)d'f(x)dv(y)> < M
Y X

so we have
| oo =M | | FesmaEmr)
YRy F(x>j SHGI()AER)
Jx Y
=y [ P Lﬁ;(y)H(y)Xy_\.(y)dv(y)dé(x)

<M FOOIRn o IHX Ny, dE00
X v x

J

M7 | FOUHXy |y ) dE0)

o

< M7V F )| o I H Xy, i ooz
: v LAY <
<M l/p,Ml/P/ =1.

Taking the supremum over the functions H we have || F|/;py) < 1.
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A similar argument shows that |G| 1.

’ <
LIS) —
Now

A JX 1Kl 1205, FOGOIAER)
sj j Kfu(9)gu(s)do()F () GRER)
XJS
- L JX K(FO)f)($)Gg(s)dE()do(s)
sM‘/P’“/qj j K F(5)GE)dE@)da(s)
SJIX
< MU+ a J KF(s)G(s)do(s)
A

<MK nepy s

Taking the supremum over all non-negative F(x) and G(x) with

||F||L§(X) <1 and ”G”Lg’(X) < 1 and letting 4 — 1~ we have

MKz Lagsoll e i = M"VPRVEIR 1oy 1)
This completes the proof.
To use the above theorem we must understand the norm
It L0~ LIX): This is not difficult. A proof of the following simple pro-

position may be found in [6].

PROPOSITION 3.4 [f (X, &) is a measure space, 1 < q < p < oo and
1/r=1/q~ 1/p then

||¢||L§(X)—>L§(X) = ||¢|ILE(X)

Jor any non-negative ¢. If & is counting measure on a subset of X and
1 <p<gq<oothen

oo 2300 = 1Dllee)-
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4 CONDITIONS FOR BOUNDEDNESS OF K

To give necessary and sufficient conditions for the boundedness of the
operator

b(s)

W®=Jk@ﬂﬂww @.1)

a(s)

from L2[0, co) to L%(S) we apply the decomposition theorem of the pre-
vious section. The action of the operator on the resulting blocks is
handled using the results of Section 2. The necessary and sufficient
conditions for boundedness on the blocks combine to give integral
conditions similar in form to those of Theorem 2.6.

The values of f off ¥ = Ujes[a(s), b(s)] have no effect on the values
of Kf so it is natural to consider the functions f to be defined on Y.
It is easy to see that K :I0[0,00) — LI(S) if and only if
K IX(Y) — Li(S).

We begin by introducing the concept of a normalizing measure which
provides us with a nearly block diagonal decomposition of the operator
K.

DEFINITION 4.1  Let (S, 0) be a measure space and suppose that a and
b are non-negative a-measurable functions on S such that a(s) < b(s)
Jor all s. A measure & on [0,00] is called a normalizing measure for
(a,b) provided there exist positive constants ¢\ and ¢y such that

b(s)
qu dE0) < o2 @.2)
a(s)

forall s € S. If, in addition, & is counting measure on a subset of [0, 00)
then ¢ is called a discrete normalizing measure.

Next we show that a normalizing measure is all that is required for the
operator K of (4.1) to be nearly block diagonal.

LEMMA 4.2 Let (S,0) be a measure space and suppose that a and
b are non-negative a-measurable functions on S such that a(s) < b(s)
fJor all s. If & is a normalizing measure for (a,b) then
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(& {(Sx, Yy) : x € X}) is a nearly block diagonal decomposition of K
where X =Y = Usesla(s), b(s)],Sx = {s € S 1 a(s) <x < b(s)}, and
Y.={ye0,00):8 NS, # 0}

Proof let c; and ¢, be positive constants for which ¢ satisfies (4.2)
and set M = max(1/c;,2¢c;). Since

b(s)
| ae=] ac
{x:s€8,} a(s)
for each s € §, the first inequality in (3.2) follows from (4.2).

Note that Y, = (. s [a(s), b(s)] which is a union of intervals contain-
ing x so Y, is an interval. The symmetry in the definition of ¥, shows
that {x : y € ¥;} = Y, and since ¥, is an interval there exist sequences
s, and s), of points in S, such that

&) = lim Ela(sy), b))

Since y is in both [a(s,), b(s,)] and [a(s),), b(s;,)] the last expression is no
greater than

Jim Elats), blsn)] + Elals,), bls,)] < 2¢; < M.

For y € X, there exists some s with a(s) <y < b(s) so we have
[a(s), b(s)] C Y, and hence

1/M < ¢ < Ela(s), b(s)] < &(Y)).

We have shown that 1/M < &(Y,) < M which establishes the second in-
equality in (3.2).

It remains to show that (3.1) holds. An interchange of the order of
integration yields

5(s)
JX Xs (DK(f Xy )W) = JX Xs.(6) J DN dEC)

af;

b(s)
=J K, y)f(y)J X5 (5) X, ()ER)dY.
a(s) X

The inner integral in the last expression is just &[a(s), b(s)] so (4.2) im-
plies (3.1). This completes the proof.
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The main results of the paper are presented in Theorems 4.3 and
44. Tt is convenient to split up the cases 1 <g<p <oo and
l<p=<g<oo

THEOREM 4.3 Let 1 < g < p < 00,0 be a non-negative weight, (S, a)
be a measure space, a and b be a-measurable functions on S, and k
be a non-negative kernel satisfving the GHO condition on
{(s,y) : 0 <y < b(s)} and also (2.11). Suppose that { is a normalizing
measure for (a,b). Let C be the least constant, finite or infinite, such
that

l/q

b(s) q 00 \/p
(j (j k(s,y)f(y)dy) do(s)) < c(j f(yY’u(y)dy)
N a(s) 0

holds for all f > 0. Then C is bounded above by a multiple of
max(By, Ba, B3, By) where

r/q
x LN\ ,
B = NO( [ x)"da(S)) (j o) dz) o(y)! " dyde(x)

x<b(s)

a(c) <x
y<b(s)

r/q y , rlg /
ks, y)'do(s) (J o) dz) o) P dyde(x)
b(s) "Ip b(s) ) , r/p’
B=[ [ ([0 #00) (| k607v0 ) " atcaaors
J§ Ja(s) b(s)<b(?)

X

rb(s)

J8 Ja(s) x<b{t) a(s)

r/p
x , N4
Ja(t)sa(s) da(t)) (J k(x, py’ v(y)"” dy) d&(x)do(s).

Here k(x, y) = sup{k(t, y) : b(f) = x}.
If & is a discrete normalizing measure then C is also bounded below
by a multiple of max(B,, B,, B3, By).
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Proof Let X,Y,S; and Y, be as in Lemma 4.2. Then (&, {(S,
Y,) : x € X}) is a nearly block diagonal decomposition of K. It follows
from Theorem 3.3 and Proposition 3.4 that

KN 2oy 135y < MITHPHIDY) IRl vy el 2o - 1o

=MV K gy s lzz oo

where M depends only on the constants ¢, and ¢, in the definition of the
normalizing measure £,

If £ is a discrete normalizing measure, the inequality may be essen-
tially reversed to give

14+1/p/+1
IKll vy asollzen < M VKN oy 1(s)-

Since C = [|K|i1210,00)-r2(5) = 1Kl z2(r)—12(s)> this reduces the pro-
blem to looking at the norms of K for each x in X. To work with K,
we decompose it into three operators and apply the results of Section
2. Fix x € X and take /' > 0 to be supported in ¥,. Then

b(s)

Kef(s) = X, <s)] ks ) )y

a(s)

X b(s)
= X5, () j )k(S,J’)f()’)dJ’"i"Xs,(S)J ko )f Dy, (4.3)

a(s X

Note that, according to the definition of S, a(s) < x < b(s) whenever
X5, () 5% 0. We now use the GHO condition on £ to further decompose
the first summand. If x ¢ b(S) then k(x,y) =0 and if x € b(S), say
x = b(t), then it follows from the condition (2.1) on £ that
k(t,y) < k(x,y) < Dk(t,y). In either case we have (using (2.1) or
(2.2) as appropriate)

D7'k(s, y) < k(s, %) + k(x, ) < D*k(s,)
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whenever y < x < b(s). Applying this estimate to the kernel k in the first
summand of (4.3) shows that K,f(s) is bounded above and below by
multiples of

X5, (k(s, x)] SO szs)j Fnf oy

h(s

)
+ Xs..(s)j ks )f )y = KOF(5) + KO7(s) + KOS (s).

X

Since the operators KV, K@, and K'®), are all non-negative

1K el 2659 ~ WK ey osy + IKP -3

3
S LS s

and hence

~ 1
KNz v s lzon & MK izony— taso iz
2
F K e rasolgeo

+ ”K,({’j)||L{5(YY)—>L:’,(SX)“LL;(X)-
To complete the proof we show that

1 o~
K¢ )”L',?()@)—mz(s,)“Lg(X) ~ By,

2 o~
K220 105 llizex) ~ Ba, and

3 o
K Nz 1650 lz00 ~ max(Bz, Bs).

The norm [|K{V| Lr)—14s,) 18 the least constant for which the in-
equality

X q l/q I/p
(j (J f(y)dy) k(s,x)qda(s)) < c(j f(y)”v(y)dy)
S a(s) Yy
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holds for all /> 0. It is straightforward to see that it is also the least
constant for which

00 q l/q 00 1/p
(j (j f(y)dy) do-;”(s)) < c(j f(y)”vi’)(y)dy>
N a(s) 0

holds for all £ > 0 where do'V(s) = X5, (s)k(s, x)7da(s), v'\V(y) = v(y)
fory € [0, x] N Yy and v{V(y) = oo otherwise. By Corollary 2.8 we have

X rlq
M Wy 2305 ™ JO Xy (y) (j Xs, ()ks, x)qdo(s>)

a(s)<y
X , r/q ,
X (J v(z)! P dz) v(»)' P dy.

y

From this it readily follows that
I ||K,£1) 22 ry— 2650 ”LE(X) ~ Bi.

The norm ||K§2)|| 2(r)—Lis,) 18 the least constant for which the inequal-

ity

x q Vq /p
(j (j k(x,y)f(y)dy) da(s>) < c(j f(y)”v(y)dy)
Sz \Ja(s) Y,

holds for all £ > 0. Making the substitution g(y) = k(x, y) (), we see
that it is also the
least constant for which

00 q 1/q9 60 1/p
(j (j g(y)dy) da;2><s>) sc(j g(y)f’v;”(y)dy)
S \Ja(s) 0
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holds for all g>0 where dol?(s)= X (s)da(s), vP(y)=
k(x, ) Pv(y) for y € [0,x] N ¥, and () = oo otherwise. Again we
appeal to Corollary 2.8. We get

r/p
“Kf)”&(x\-)—w:',(sx) ’“’J (J st(t)da(t))
§ \Ja(r)=za(s)

s RN
x (J ke, yY o()' ™" dy) Xs,(s)da(s)

a(s)

and so, with an interchange in the order of integration,
2 o~
K 22y Laesolzen) ~ Ba

The norm K& |ryy 15, is the least constant for which the in-
equality

b(s) q g 1/p
(L (J k(s, y)f(y)dy) do(S)) < C(Jyf (y)”v(y)dy)

holds for all /' > 0. It is also the least constant for which

5(s) q 1/q 00 1/p
( L(L k(s,y)f(y)dy) doS)(s)) sc(j f(y)”vi”(y)dy)

0

holds for all f >0 where do®(s) = Xs,(s)da(s), ¥D(y) = v(y) for
y € [x,00) N ¥, and v¥(y) = oo otherwise. This time we apply Theo-
rem 2.6 to see that ”KS)HZ{KYXH 19(5,) is comparable to the maximum of

%0 v\t ,
j xy,(y)(j b()k(s,y)"xs_\.(s)da(s>) (j o) dz) o(5)! 7 dy
y<b(s x

X
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and

b g (ble) , N\
j(j xsx(r)dam) (j ks, 9 o) dy) X5, ()do(s).
S \Jb(s)=<b(t)

X

From these we conclude that
K 20vy 1965, Nz 0y & max(By, Bs)

to complete the proof.

THEOREM 4.4 Let 1 < p < q < 00, v be a non-negative weight, (S, o)
be a measure space, a and b be a-measurable functions on S with
a(s) < b(s), and k be a non-negative kernel satisfying the GHO con-
dition on {(s,y) : 0 <y < b(s)} and also (2.11). Suppose that (a,b)
admits a discrete normalizing measure. Let C be the least constant,
finite or infinite, such that

5(s) q 1/q o0 1/p
(j (j k(s,y)ﬂy)dy) do—(s>> < c(j f(y)”v(y)dy>
S \Ja(s) 0

holds for all f > 0. Then C ~ max(A;, Ay) where

t/q y / 1y
A = sup J _ Kk(s,y)'da(s) <J v(z)! " dz)
(aprar) | JHEEE x

y=b(s)
1/q 5s) , ’ 1y
A, = sup J 0= do(?) (J k(s, zy v(z)' P dz)
{(x,8):x<b(s)} Z(s)_sz ® x

Proof Suppose that counting measure on Xy is a discrete normalizing
measure for (a, b). Then for any choice of x; and x,, counting measure
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on XoU {x),x,} is also a discrete normalizing measure for (a,b).
Choose x; and x; such that

1/q

Y RN
Ai1/2< sup Ja(s)q‘ k(s, y)do(s) (J u(z)' P dz) and

b 9T\ y<is i

1/q

b(s) ) N\
A2/2 < sup Ja(r)sz do(r) (J k(s,zf v(z)! P a’z) .

lsmx2 <b\ oy <o) "

Let £ be counting measure on Xy U {x;, x2}. We decompose the operator
K just as in Theorem 4.3 and apply the results of Section 3 to get

KW 210,00 L26s) ™ WKk 2y 225 Ly
~ MK ) cacso oo
2
+ [HIKE )”Lff(}’x)——»L?,(S,)”Lg"(X)

K - taeso o

As we have seen above, the norm ||K}C‘) |2 (ry—12(s,) 18 the least constant
for which the inequality

00 q 1/q 00 1/p
(j (j f(y)dy) do-;"(s>) < c(j f(y)"vi"(wdy)
S a(s) 0

holds for all f > 0 where da'D(s) = Xs,(s)k(s, x)?da(s), v\V(y) = v(»)
for y € [0,x] N Y, and v{"(y) = oo otherwise. Corollary 2.8 shows that

1
K N2y acsollzer)

is comparable to

l/q /ox , W/
sup sup (I k(s,x)qda(s)) ( J v(z)! P dz) . (44
f{xe)): 0 y>0 \Ja(s)<p<x=<b(s) v
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The norm [|[KP || 12(¥.)—Li(s,) is the least constant for which the inequal-

ity
) q 1/q ) I/p
(j (j g(y)dy) da;”(s)) < c(j g(y)f’v;”(y)dy)
S a(s) 0

holds for all g=0 where dolP(s) = X (s)do(s), vP(y)=
k(x,y)Pu(y) for y € [0, x] N Y, and v{P(y) = oo otherwise. Corollary
2.8 shows that

2
K iz 1650 )

is comparable to

g /ox ) Lo\
sup sup (J da(s)) (J k(x, 2y v(z)! dz) .
0 y>0 \Jals)<y<x<b(s) y

xeX
$(x)>

Since k(x, z) = 0 when x ¢ b(S) and k(x, z) ~ k(t, z) when x = b(¢) the
last expression is comparable to

1/q 7 ob(e) / ) ¥/
sup sup(J da(s)) (J k(t, 2y v(z)' P dz) .
«f(bt(f)§>0 y>0 \Ja(s)<y<b(f)<b(s) y

4.5)

The norm ||K§3)||L€(yx)_, 19, 18 the least constant for which the inequal-

ity
b(s) q 1/q 00 1/p
(J (J k(s,y)f(y)dy) doff)(s)) < c(J f(y)”vf)(y)dy)
S 0 0

holds for all £ > 0 where do*S’)(s) = Xg (s)do(s), vf)( ) =v(y) for
y € [x, 00) N ¥, and v®(y) = oo otherwise. By Theorem 2.6 the norm

K 208 050 ey
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is comparable to the maximum of

y

/g9 / ¢ ) ip'
sup sup (J k(s, y)"da(s)) (J v(z)' P a’z)) (4.6)
64(\'6))( 0 y>0 \J{s:a(s)<x<y<b(s)} X
X)>

and

19 1 (bis) , N
sup sup (J da(t)) (J k(s, y) v(y)! * dy) .
Z?A'E)XO REN {t:a(r)<x<b(s)<b(r)} x
cl{x)>

@.7)

The maximum of the expressions (4.4) and (4.6) is comparable to

1/q . | »
wp | [, k0ot (J o) dz)

e \ 5 "

which is comparable to A, because &(x;) > 0.
In a similar way we see that the maximum of (4.5) and (4.7) is com-
parable to .A;. This completes the proof.

5 NORMALIZING MEASURES

The results of the previous section depend on the existence of a discrete
normalizing measure for the functions a and b. Here we prove that such
a measure exists whenever a and b are similarly ordered in the following
sense.

DEFINITION 5.1 Let T = {[c,d] : 0 < ¢ < d < oo} and define a par-
tial order on I by [c,d] < [¢,d) provided ¢ < ¢ and d < d. We say that
non-negative functions a and b on S are similarly ordered provided the
set {[a(s),b(s)] : s € S} is a totally ordered subset of T.

To construct a discrete normalizing measure &, we need the set X of
atoms of &. This set is constructed in the next theorem.
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THEOREM 5.2 If T is a totally ordered subset of T then there exists a
subset Xy of [0, 00] such that 1 < (Xo N [c,d]) <3 forall [c,d] € T.

Proof A straightforward application of Zorn’s Lemma shows that we
may assume without loss of generality that 7 is a maximal totally or-
dered subset of Z. That is, we may assume that the only totally ordered
subset of 7 which contains 7 is 7 itself. It follows from this assumption
that UT = [0, 00).

If xe[0,00] define Lx=inf(c:xe[¢,d]eT} and Mx=
sup{d:xe[c,d] € T}. Clearly, Lx <x < Mx. If x < y and x€[¢, d]eT
then either y € [, d] or y > d. In the former case My > d by definition
and in the latter we have My > y > d. Taking the supremum over all
such d proves the first half of:

If x < ythen Mx < My and Lx < Ly. 5.1

The other half is proved similarly.
We now establish the first half of:

For each x, [Lx,x] € T and [x, Mx] € T . (5.2)

Once again the second half may be proved similarly. By the maximality
of T, if we show that {[Lx,x]} U T is totally ordered then [Lx,x} € T
will follow. To do this we fix [c,d] €7 and show that either
fe,d) < [Lx,x] or [Lx,x] <l|c,d}. If x <c then [Lx,x} <[c,d]. If
¢ < x < d then Lx < c¢ by definition so again [Lx, x] < [¢, d]. In the re-
maining case, when d < x, we see that whenever x € [¢, d] € T we have
d <x<d so [c,d] < [¢,d] because T is totally ordered. Thus ¢ <&
and, taking the infimum over all such [c, d), we conclude that ¢ < Lx
so [c, d] < [Lx, x]. We have shown that {[Lx, x]} U7 is totally ordered
and hence [Lx,x] € 7.
For each x € [0, oo] define the subset E, of [0, o] as follows.

E, = (Oo [L¥x, Lk—lx]) U ( ¥ [M""x,M"x]).
1

k= k=1

Here the exponents represent repeated application of the operator and
L% = x = M%. It is clear that E, = | J;°,[L*x, M¥x] and hence that
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E, is an interval (or a single point) containing x. It is important to ob-
serve that the operators L and M fix the sets E,. That is:

IfyeE thenLye E,and My € E,. (5.3)

We prove the second half only. If y € [M*~'x, M*x] for some k > 1 then
(5.1) shows that My € [M*x, M**'x] C E,. If y € [L*x, L*~'x] for some
k> 1theny < L*'x < xso L*x < y < My < Mx < M*x and again we
have My € E,.

It follows by induction from (5.3) that if y € E, then L*y and M*y are
in E,. Since E, is an interval, [L*y, M*y] C E, and hence E, C E,. Thus
we have:

If y € E, then E, C E,. (5.4)
Next we improve this to:
If y € E, then E, = E,. (5.5

Suppose first that y e [L‘x, L¥~'x] for some k> 1. We have
y = L¥'x < x and since E, is an interval it will follow that x € E, if
there is any point of E, greater than or equal to x. Suppose for the
sake of contradiction that M"y < x for all n > 0. Choose m as large
as possible so that M"y < L™x for all n. This is possible because the
property holds for m = 0 and fails for m = k. Now choose n > 0 so
that L"+'x < M"y and we have M"y € [L"t'x, L"x] so the definition
of M yields M™*'y > L"x contradicting the choice of m. This contradic-
tion shows that x € E,. We may now apply (5.4) twice to get E, = E,.
The proof in the case y € [M*~'x, M*x] is analogous.

Since x € E, and (5.5) holds we see that the sets E, partition [0, oo] so
we may choose a set of representatives {x; : j € J}, for some index set J,
such that |, By, = [0, o] and Ej, N E;, = ¥ whenever i,j € J with
i # j. Define the set Xy to be

Xo= My, L*x;jed k=0,1,...}.
It remains to verify that X has the desired property. If [c, d] € T then

choose j € J so that ¢ € E,. We suppose that ¢ € [M*~'x;, M*x;] for
some k > 1 since if ¢ € [L¥*x;, Lkx;] for some k > 1 the argument is
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similar. Either ¢ € Xy or ¢ € (M*~'x;, M*x;). In the latter case we have
d > M*x; because (5.2) holds and 7 is totally ordered. In both cases
there is at least one point of Xy in [c, d] so 1 < #(Xy N e, d]).

To show that #(Xy N [c, d]) < 3 it is enough to show that at most one
point of X is in (c, d). Since [c, d] C [c, Mc] C E, = E,, the only points
of X, that may be in (c, d) are points of the form M*x; or L"xj for some
k > 0. This is because all other points of X; are in some E,., disjoint
from E,. If M*x; € (c,d) for some k > 0 then M*"'x; > d and if
Lk € (c,d) for some k > 0 then Lk+1x <c so at most one such
point can be in (c, d). This completes the proof

COROLLARY 5.3  If non-negative functions a and b on S are similarly
ordered then there is a discrete normalizing measure for (a, b).

Proof Since {[a(s),b(s)] : s € S} is totally ordered, there exists a
subset Xy of [0,00] satisfying 1 < #(Xp N la(s), b(s)]) <3 for all
s € S. Let £ be counting measure on the subset Xp\{oo} of [0,00).
Since oo ¢ [a(s), b(s)] for any s € § we have

forall s € S.

While a discrete normalizing measure exists whenever a and b are si-
milarly ordered, the construction can be somewhat complicated. In
many cases, however, it is easy to discover normalizing measures.

EXAMPLE 5.4 Let S = [0,00), a(s) = 0, and b(s) = s. The Dirac measure
at 0 is a discrete normalizing measure for g and b.

EXAMPLE 5.5 Let §=[0,00),a(s) =s, and b(s) =s+ L. Lebesgue
measure is a normalizing measure for ¢ and b and counting measure on the
set {n+L:n=0,1,...} is a discrete normalizing measure.

EXAMPLE 5.6. Fix 4 and B with 0 < 4 < B. Let § = [0, 00), a(s) = 4s,
and b(s) = Bs. The measure dx/x is a normalizing measure for a and b and
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counting measure on the set {(B/4)" :n=0,+1,42,...} is a discrete
normalizing measure.

EXAMPLE 5.7 (cf. [4, Theorem 2.5]) Let S = [0, 00). Suppose a and b
are increasing, differentiable functions satisfying a(0) = b(0) =0,
a(oo) = b(oo) =00, and 0 < a(s) < b(s) <oo for 0<s < oo Fix
xo € (0, 00) and define x, = (b oa~')"(xy) for each n € Z. Then counting
measure on {x, :n € Z} is a discrete normalizing measure for a and .
Also, ¢ defined by

dé(x) = Zz X,y 1d(boa™ )™ (x)

is a normalizing measure for a and b.

6 APPLICATION TO TAYLOR APPROXIMATION

Suppose F is an n + 1 times differentiable function on (0, 00). The nth
degree Taylor polynomial of F, centred at a, is

F)(q)
n!

Ppo(F)O)=F(@)+F(@)b—-a)+--+ (b-a’

and the remainder, R, ,(F)(b) = F(b) — P, ,(F)(b), may be expressed in
the form

b
Raa PO = [ 6 =27 F ). 6.1

a

If we let @ and b vary with s we recognize the above remainder as an
operator of the form (4.1) applied to F**1. Theorems 4.3 and 4.4
can therefore be used to control the accuracy of the approximation by
a Taylor polynomial as the centre and the point of evaluation vary.
The control is in terms of the size of the n + 1 derivative of the function.
Rather than state this as a general result, we provide a simple example in
which F(s) is approximated by its Taylor polynomial centred at s/2.
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EXAMPLE 6.1 Let n be a positive integer. There exists a positive constant
C such that the inequality

00 i/2 00 1/4
(j Rn,s/z(F)(S)2(5+1)_2"_3dS> sc(j F<"+”(y>4dy) 62)
1]

0
Jor all n+ 1 times differentiable functions F.

Proof We apply Theorem 4.3 with p = 4,9 = 2,k(s,y) = (s — »)"/
nla(s) =s/2,b(s) = s,v(y) = 1, and do(s) = (s + 1) " ds. In view
of (6.1), the conclusion of the Theorem 4.3, with f replaced by F"*+1),
will yield (6.2).

To complete the proof we check the hypotheses of Theorem 4.3. As in
Example 5.6 we have fss/z dx/x = log(2) so the measure dx/x is a nor-
malizing measure for (a, b). Since

27—y =0+ —y) <265 —y)" for y<i<s,
the kernel % satisfies the GHO condition.

Simple-minded estimates show that By, B,, B3, and B, are all finite.
We show only the first.

e[ [

0 Jx/2

X 2
J y(s —x)*(s + 1)‘2”‘3ds) (& —yydy 6‘?‘

X

<[ j (@ = )2y — D+ 1P - yPdy &
0 Jx2 x

tA

co(x/z)x“"“(x +1)™=5(x/2)? % < 0.
0
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